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Chapter 1

Linear Algebra and
Optimization: An Introduction

1. For any two vectors x and y, which are each of length a, show that (i) x − y is
orthogonal to x+ y, and (ii) the dot product of x− 3y and x+ 3y is negative.

(i) The first is simply x·x−y·y using the distributive property of matrix multiplication.
The dot product of a vector with itself is its squared length. Since both vectors are of
the same length, it follows that the result is 0. (ii) In the second case, one can use a
similar argument to show that the result is a2 − 9a2, which is negative.

2. Consider a situation in which you have three matrices A, B, and C, of sizes 10 × 2,
2× 10, and 10× 10, respectively.

(a) Suppose you had to compute the matrix product ABC. From an efficiency per-
spective, would it computationally make more sense to compute (AB)C or would
it make more sense to compute A(BC)?

(b) If you had to compute the matrix product CAB, would it make more sense to
compute (CA)B or C(AB)?

The main point is to keep the size of the intermediate matrix as small as possible
in order to reduce both computational and space requirements. In the case of ABC,
it makes sense to compute BC first. In the case of CAB it makes sense to compute
CA first. This type of associativity property is used frequently in machine learning in
order to reduce computational requirements.

3. Show that if a matrix A satisfies A = −AT , then all the diagonal elements of the
matrix are 0.

Note that A+AT = 0. However, this matrix also contains twice the diagonal elements
of A on its diagonal. Therefore, the diagonal elements of A must be 0.

4. Show that if we have a matrix satisfying A = −AT , then for any column vector x, we
have xTAx = 0.

Note that the transpose of the scalar xTAx remains unchanged. Therefore, we have
xTAx = (xTAx)T = xTATx = −xTAx. Therefore, we have 2xTAx = 0.
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5. Show that if we have a matrix A, which can be written as A = DDT for some matrix
D, then we have xTAx ≥ 0 for any column vector x.

The scalar xTAx can be shown to be equal to ||DTx||2.
6. Show that the matrix product AB remains unchanged if we scale the ith column of A

and the ith row of B by respective factors that are inverses of each other.

The idea is to express the matrix multiplication as the sum of outer-products of
columns of A and rows of B.

AB =
∑
k

AkBk

Here,Ak is the kth column ofA andBk is the kth row ofB. Note that the expression on
the right does not change if we multiply Ai by α and divide Bi by α. Each component
of the sum remains unchanged including the ith component, where the scaling factors
cancel each other out.

7. Show that any matrix product AB can be expressed in the form A′ΔB′, where A′ is
a matrix in which the sum of the squares of the entries in each column is 1, B′ is a
matrix in which the sum of the squares of the entries in each row is 1, and Δ is an
appropriately chosen diagonal matrix with nonnegative entries on the diagonal.

After expressing the matrix product as the sum of outer-products, we can scale each
vector in the outer-product to unit-norm, while pulling out a scalar multiple for the
outer-product component. The matrices A′ and B′ contain these normalized vectors,
whereas Δ contains these scalar multiples. In other words, consider the case, where
we have the product in the following form using the kth column Ai of A and the kth
row Bi of B:

AB =
∑
k

AkBk

One can express this matrix product in the following form:

AB =
∑
k

‖Ak‖ ‖Bk‖︸ ︷︷ ︸
δkk

Ak

‖Ak‖
Bk

‖Bk‖

We create a diagonal matrix Δ in which the kth diagonal entry is δkk and then create
A′ and B′ as the normalized versions of A and B, respectively.

8. Discuss how a permutation matrix can be converted to the identity matrix using at
most d elementary row operations of a single type. Use this fact to express A as the
product of at most d elementary matrix operators.

Only row interchange operations are required to convert it to the identity matrix.
In particular, in the ith iteration, we interchange the ith row of A with whatever
row contains the ith row of the identity matrix. A permutation matrix will always
contain such a row. This matrix can be represented as the product of at most d
elementary row interchange operators by treating each interchange operation as a
matrix multiplication.

9. Suppose that you reorder all the columns of an invertible matrix A using some random
permutation, and you know A−1 for the original matrix. Show how you can (simply)

2



compute the inverse of the reordered matrix from A−1 without having to invert the
new matrix from scratch. Provide an argument in terms of elementary matrices.

All the rows of A−1 are interchanged using exactly the same permutation as the
columns of A are permuted. This is because if P is the permutation matrix that
creates AP , then PTA−1 is the inverse of AP . However, PT performs exactly the
same reordering on the rows of A as P performs on the columns of A.

10. Suppose that you have approximately factorized an n×d matrix D as D ≈ UV T , where
U is an n × k matrix and V is a d × k matrix. Show how you can derive an infinite
number of alternative factorizations U ′V ′T of D, which satisfy UV T = U ′V ′T .

Let P be any invertible matrix of size k×k. Then, we set U ′ = UP , and V ′ = V (P−1)T .
It can be easily shown that UV T = U ′V ′T .

11. Either prove each of the following statements or provide a counterexample:

(a) The order in which you apply two elementary row operations to a matrix does
not affect the final result.

(b) The order in which you apply an elementary row operation and an elementary
column operation does not affect the final result.

It is best to think of these problems in terms of elementary matrix operations.

(a) If you start with the matrix A, then the two successive row operations correspond-
ing to matrices E1 and E2 create the matrix E2E1A. Note that matrix multiplication
is not commutative and this is not the same as E1E2A. For example, rotation matrices
do not commute with scaling matrices. Scaling the first row by 2 followed by inter-
changing the first and second rows creates a different result than the one obtained by
reversing these operations.

(b) In this case, if the row and column operators are Er and Ec, the final result is
ErAEc. Because of the associativity of matrix multiplication, (ErA)Ec and Er(AEc)
are the same. The result follows that the order does not matter.

12. Discuss why some power of a permutation matrix is always the identity matrix.

There are a finite number of permutations of a sequence. Therefore, after some number
k of repeated permutations by P , the sequence will be repeated. In other words we
have P k = I.

13. Consider the matrix polynomial
∑t

i=0 aiA
i. A straightforward evaluation of this poly-

nomial will require O(t2) matrix multiplications. Discuss how you can reduce the num-
ber of multiplications to O(t) by rearranging the polynomial.

The matrix polynomial can be written as a0I +A(
∑t

i=1 aiA
i−1). This can be further

expanded as follows:

a0I +A(
t∑

i=1

aiA
i−1) = a0I +A(a1I +A(

t∑
i=2

aiA
i−2))

= a0I +A(a1I +A(a2I +A(

t∑
i=3

aiA
i−2)))

Using this type of expansion recursively, one can obtain the desired result.
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14. Let A = [aij ] be a 2 × 2 matrix with a12 = 1, and 0s in all other entries. Show that
A1/2 does not exist even after allowing complex-valued entries.

Suppose that such a matrix exists. If the entries of the 2×2 matrix A1/2 listed row-wise
are a, b, c, and d, then we obtain the following system of equations:

a2 + bc = 0

cb+ d2 = 0

ab+ bd = 1

ca+ dc = 0

Using the first two equations, we obtain a2 − d2 = 0, which means either a = −d or
a = d. Note that a = −d is not possible because the third equation would be violated.
Using a = d, we can eliminate d to obtain the following system:

a2 + bc = 0

2ab = 1

ac = 0

Since ab is nonzero and ac is zero, it means that a cannot be zero, and c is zero.
However, if c is zero, then the first equation implies that a is zero is well. Therefore,
we reach a contradiction.

15. Parallelogram law: The parallelogram law sates that the sum of the squares of the
sides of a parallelogram is equal to the sum of the squares of its diagonals. Write this
law as a vector identity in terms of vectors A and B. Now use vector algebra to show
why this vector identity must hold.

The identity is as follows:

2||A||2 + 2||B||2 = ||A−B||2 + ||A+B||2

One can expand the right-hand side by using dot products, and then apply the dis-
tributive property to show that it is equal to the left-hand side.

||A−B||2 + ||A+B||2 = A ·A− 2A ·B +B ·B +A ·A+ 2A ·B +B ·B
After canceling out the terms involving A · B and consolidating others, we get the
desired result.

16. Write the first four terms of the Taylor expansion of the following univariate functions
about x = a: (i) log(x); (ii) sin(x); (iii) 1/x; (iv) exp(x).

(i) log(a) + (x− a)/a− (x− a)2/(2a2) + (x− a)3/(3a3)

(ii) sin(a) + (x− a)cos(a)− (x−a)2

2 sin(a)− (x−a)3

6 cos(a)

(iii) 1
a − (x−a)

a2 + (x−a)2

a3 − (x−a)3

a4

(iv) exp(a) + (x− a)exp(a) + (x−a)2

2 exp(a) + (x−a)3

6 exp(a)

17. Use the multivariate Taylor expansion to provide a quadratic approximation of sin(x+
y) in the vicinity of [x, y] = [0, 0]. Confirm that this approximation loses its accuracy
with increasing distance from the origin.
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The Taylor expansion is as follows:

[1, 1][x, y]T + [x, y]

[
0 0
0 0

]
[x, y]T

The resulting approximation is x+ y. Note that if x = π/200 and y = π/200 radians,
which are small angles, we have sin(x+ y) = 0.031410 ≈ π/200 + π/200. However, if
we choose large values of x and y like x = y = π, then sin(x+ y) = 0� π + π.

18. Consider a case where a d×k matrix P is initialized by setting all values randomly to
either −1 or +1 with equal probability, and then dividing all entries by

√
d. Discuss

why the columns of P will be (roughly) mutually orthogonal for large values of d of the
order of 106. This trick is used frequently in machine learning for rapidly generating
the random projection of an n× d data matrix D as D′ = DP .

The dot product between any pair of columns has mean of 0 and standard deviation of
1/
√
d, since it is the sum of d iid random variables from the Bernoulli distribution. For

large values of d like 106, the standard deviation will be of the order of 10−3, and the
distribution will be close to normal. Since most of the density of normal distributions
is captured between ±3 standard deviations, it means that the cosine of the angle
between each pair of columns will be between −0.003 and 0.003 with high probability.
This means that the vectors are very nearly orthogonal. In particular, the pairwise
angles will lie between 89.83o and 90.17o with high probability.

19. Consider the perturbed matrix Aε = A + εB, where the value of ε is small and A,B
are d× d matrices. Show the following approximation:

A−1
ε ≈ A−1 − εA−1BA−1

This approximation is useful when A−1 is already known.

A−1
ε = (A+ εB)−1 = [A(I + εA−1B)]−1 = (I + εA−1B)−1A−1

= (I − εA−1B + ε2(A−1B)2 − . . .)A−1 ≈ A−1 − εA−1BA−1

One can verify that the product of Aε with (A−1−εA−1BA−1) differs from the identity
matrix by a term dependent on ε2, which is assumed to be negligible. The approach is
particularly efficient when B is very sparse, such as when it contains a small number
of nonzero columns.

20. Suppose that you have a 5 × 5 matrix A, in which the rows/columns correspond to
people in a social network in the order John, Mary, Jack, Tim, and Robin. The entry
(i, j) corresponds to the number of times person i sent a message to person j. Define
a matrix P , so that PAPT contains the same information, but with the rows/columns
in the order Mary, Tim, John, Robin, and Jack.

The permutation matrix is P as follows:

P =

⎡
⎢⎢⎢⎢⎣

0 1 0 0 0
0 0 0 1 0
1 0 0 0 0
0 0 0 0 1
0 0 1 0 0

⎤
⎥⎥⎥⎥⎦
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21. Suppose that the vectors x, y and x − y have lengths 2, 3, and 4, respectively. Find
the length of x+ y using only vector algebra (and no Euclidean geometry).

This follows from the parallelogram law discussed in an earlier exercise. The corre-
sponding length is

√
22 + 22 + 32 + 33 − 42 =

√
10.

22. Show that the inverse of a symmetric matrix is symmetric.

Suppose that A is symmetric and B is the inverse of A. Then, we have AB = BA = I.
Taking the transpose, we obtain (AB)T = (BA)T = I. Using symmetry of A, this is
the same as saying that BTA = ABT = I. In other words, BT is the inverse of A as
well. However, since the inverse is unique, we must have BT = B. Alternatively, we
can use AB = ABT = I to assert that A(B−BT ) = 0. Left multiplying by B, we get
(BA)(B −BT ) = 0. Since BA = I, we have B −BT = 0. In other words, B = BT .

23. Let A1, A2, . . . Ad be d×d matrices that are strictly upper triangular. Then, the product
of A1, A2, . . . Ad is the zero matrix.

Let Bi be given by A1A2 . . . Ai. It can be shown inductively that Bi is also strictly
triangular, but with at least i zero rows and columns. Therefore, Bd will be the zero
matrix.

24. Apollonius’s identity: Let ABC be a triangle, and AD be the median from A to BC.
Show the following using only vector algebra and no Euclidean geometry:

AB2 +AC2 = 2(AD2 +BD2)

You will get the simplest algebra by orienting your triangle properly with respect to
the origin.

Put the vertex of A at a and D as the origin. Then the vertices of B and C are b and
c = −b. Then, the identity reduces to showing the following:

||a− b||2 + ||a+ b||2 = 2(||a||2 + ||b||2)

This is easy to show using dot products. In fact, the Apollonius identity reduces to
the parallelogram law in this case!

25. Sine law: Express the sine of the interior angle between a and b (i.e., the angle not
greater than 180 degrees) purely in terms of a ·a, b · b, and a · b. You are allowed to use
sin2(x) + cos2(x) = 1. Consider a triangle, two sides of which are the vectors a and
b. The opposite angles to these vectors are A and B, respectively. Show the following
using only vector algebra and no Euclidean geometry:

‖a‖
sin(A)

=
‖b‖

sin(B)

The sine of the angle is

√
1−

[
a·b

‖a‖ ‖b‖

]2
. This is essentially obtained using sin(x) =√

1− cos2(x). Since we are only looking for interior angles, the sine is a positive

quantity. Therefore, we can ignore the possibility sin(x) = −√1− cos2(x).
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The angle A is formed between vectors a−b and 0−b. The angle B is formed between
vectors b− a and 0− a. Therefore, we obtain the following for the first ratio:

‖a‖
sin(A)

=
‖a‖√

1−
[

−b·(a−b)

‖−b‖ ‖a−b‖

]2
=

‖a‖ ‖b‖ ‖a− b‖√
‖a‖2‖b‖2 − (a · b)2

The second expression is obtained by applying the same approach to the the angle B:

‖b‖
sin(B)

=
‖b‖√

1−
[

−a·(b−a)

‖−a‖ ‖b−a‖

]2
=

‖a‖ ‖b‖ ‖b− a‖√
‖a‖2‖b‖2 − (a · b)2

Note that the two expressions are the same because we have ||a− b|| = ||b− a||. This
proves the result.

26. Trigonometry with vector algebra: Consider a unit vector x = [1, 0]T . The vector
v1 is obtained by rotating x counter-clockwise at angle θ1, and v2 is obtained by rotating
x clockwise at an angle θ2. Use the rotation matrix to obtain the coordinates of unit
vectors v1 and v2. Use this setup to show the following well-known trigonometric
identity:

cos(θ1 + θ2) = cos(θ1)cos(θ2)− sin(θ1)sin(θ2)

On using the rotation matrix, one obtains the vectors [cos(θ1), sin(θ1)] and
[cos(θ2),−sin(θ2)] as follows:[

cos(θ1) −sin(θ1)
sin(θ1) cos(θ1)

] [
1
0

]
,

[
cos(−θ2) −sin(−θ2)
sin(−θ2) cos(−θ2)

] [
1
0

]

The value of cos(θ1 + θ2) is the cosine of the angle between the vectors, which also be
algebraically obtained by using the dot product between the two rotated versions of
[1, 0]T . As a result, we algebraically obtain the following dot product:

cos(θ1 + θ2) = cos(θ1)cos(θ2)− sin(θ1)sin(θ2)

27. Coordinate geometry with matrix algebra: Consider the two lines y = 3x + 4
and y = 5x + 2 in the 2-dimensional plane. Find the intersection of the two lines by
writing the equations in the following form for appropriately chosen A and b:

A

[
x
y

]
= b

Find the intersection coordinates (x, y) of the two lines by inverting matrix A.
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The linear equation is as follows:[ −3 1
−5 1

] [
x
y

]
=

[
4
2

]

One can show that the inverse of the matrix is as follows:

A−1 =
1

2

[
1 −1
5 −3

]

On computing A−1b, one obtains x = 1 and y = 7.

28. Use the matrix inversion lemma to invert a 10×10 matrix with 1s in each entry other
than the diagonal entries which contain the value 2.

The matrix can be written as I +uuT , where u is a column vector of 1s. So we obtain
the following:

(I + uuT )−1 = I − uuT

1 + 10
= I − uuT

11

In other words, we will have 10/11 on each diagonal entry and −1/11 on all other
entries in the inverse.

29. Solid geometry with vector algebra: Consider the origin-centered hyperplane in
3-dimensional space that is defined by the equation z = 2x + 3 y. This equation has
infinitely many solutions, all of which lie on the plane. Find two solutions that are
not multiples of one another and denote them by the 3-dimensional column vectors
v1 and v2, respectively. Let V = [v1, v2] be a 3 × 2 matrix with columns v1 and v2.
Geometrically describe the set of all vectors that are linear combinations of v1 and v2
with real coefficients c1 and c2:

V =

{
V

[
c1
c2

]
: c1, c2 ∈ R

}

Now consider the point [x, y, z]T = [2, 3, 1]T , which does not lie on the above hyper-
plane. We want to find a point b on the hyperplane for which b is as close to [2, 3, 1]T

as possible. How is the vector b− [2, 3, 1]T geometrically related to the hyperplane? Use
this fact to show the following condition on b:

V T

⎛
⎝b−

⎡
⎣ 2

3
1

⎤
⎦
⎞
⎠ =

[
0
0

]

Find a way to eliminate the 3-variable vector b from the above equation and replace
with the 2-variable vector c = [c1, c2]

T instead. Substitute numerical values for entries
in V and find c and b with a 2× 2 matrix inversion.

Two such solutions are v1 = [1, 0, 2]T and v2 = [0, 1, 3]T . The set of all points in
V defines the set of all vectors on the surface of the hyperplane corresponding to
the equation. The above condition holds because the point b must be normal to the
hyperplane in order to be the closest point to it. Therefore, all vectors on the surface

8



of this origin-centered hyperplane must be normal to the line joining b and the line
[2, 3, 1]T . In other words, we have:

v1 ·
⎛
⎝b−

⎡
⎣ 2

3
1

⎤
⎦
⎞
⎠ = 0

v2 ·
⎛
⎝b−

⎡
⎣ 2

3
1

⎤
⎦
⎞
⎠ = 0

Stacking up these conditions in matrix form, we get the condition in the statement
of the problem. Furthermore, one can instead set b = V c and solve for c instead of b.
This leads to the following condition:

V TV c = V T

⎡
⎣ 2

3
1

⎤
⎦

[
1 0 2
0 1 3

]⎡⎣ 1 0
0 1
2 3

⎤
⎦ =

[
1 0 2
0 1 3

]⎡⎣ 2
3
1

⎤
⎦

Simplifying, we obtain: [
5 6
6 10

]
c =

[
4
6

]

Inverting c, we obtain the following:

c =
1

14

[
10 −6
−6 5

] [
4
6

]

In other words, we have c = 1
7 [2, 3]

T . One can now derive b as V c, which is as follows;

b =
1

7

⎡
⎣ 1 0

0 1
2 3

⎤
⎦[

2
3

]
=

1

7

⎡
⎣ 2

3
13

⎤
⎦

30. Let A and B be two n×d matrices. One can partition them columnwise as A = [A1, A2]
and B = [B1, B2], where A1 and B1 are n× k matrices containing the first k columns
of A and B, respectively, in the same order. Let A2 and B2 contain the remaining
columns. Show that the matrix product ABT can be expressed as follows:

ABT = A1B
T
1 +A2B

T
2

As discussed in the chapter, each matrix multiplication ABT can be expressed as the
sum of the outer-products between columns of A and B. One can do the same for
both A1, B1 and A2, B2. In each case, the products turn out to be the same.
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31. Matrix centering: In machine learning, a common centering operation of an n× n
similarity matrix S is the update S ⇐ (I − U/n)S(I − U/n), where U is an n × n
matrix of 1s. How would you use the associative property of matrix multiplication to
implement this operation efficiently.

The matrix U can be expressed as 1 1
T
, where 1 is a column vector of 1s. We can

write the above matrix multiplication as follows:

(I − U/n)S(I − U/n) = S − US/n− SU/n+ USU/n2

The above expression requires the computation of US, SU , and USU , aside from

some cheap matrix addition operations. The matrix US can be computed as 1 (1
T
S),

where the bracketing tells us about the ordering of the multiplications. Furthermore,

the matrix SU can be computed as (S1) 1
T
, where the bracketing tells us about

the ordering of the multiplications. The final matrix is USU , which can be written

as 1 [1
T
(S1)]︸ ︷︷ ︸

Scalar

1
T
. All of these operations are simple matrix-to-vector multiplications,

which can be done very cheaply.

32. Energy preservation in orthogonal transformations: Show that if A is an n×d
matrix and P is a d× d orthogonal matrix, then we have ‖AP‖F = ‖A‖F .
One can use the relationship with the trace.

‖AP‖2F = tr(AP (AP )T ) = tr(A(PPT )AT ) = tr(AAT ) = ‖A‖2F

33. Tight sub-multiplicative case: Suppose that u and v are column vectors (of not
necessarily the same dimensionality). Show that the matrix u vT created from the outer
product of u and v has Frobenius norm of ‖u‖ ‖v‖.
One can again use the properties of the trace. The squared Frobenius norm is as
follows:

tr(u [vT v]uT ) = ‖v‖2tr(uuT ) = ‖v‖2tr(uT u) = ‖v‖2‖u‖2

It is important to note that we were able to pull out ‖v‖2 from the trace in one of
the above steps, because the expression vT v is a scalar, and simply scales up all the
matrix entries uniformly.

34. Frobenius orthogonality and Pythagorean theorem: Two n × d matrices A
and B are said to be Frobenius orthogonal if the sum of entry-wise products of their
corresponding elements are zero [i.e., tr(ABT ) = 0]. Show the following:

‖A+B‖2F = ‖A‖2F + ‖B‖2F

The squared Frobenius norm can be expressed in terms of the trace as follows:

‖A+B‖2F = tr((A+B)(A+B)T ) = tr(AAT ) + tr(BBT ) + tr(ABT ) + tr(BAT )︸ ︷︷ ︸
0

= ‖A‖2F + ‖B‖2F
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35. Let x and y be two orthogonal column vectors of dimensionality n. Let a and b be two

arbitrary d-dimensional column vectors. Show that the outer products x aT and y b
T

are Frobenius orthogonal (see Exercise 34 for definition of Frobenius orthogonality).

The sum of the entry-wise products in the two matrices is given by tr((x aT )T (y aT )).
On simplifying, one will obtain xT y in the middle, which evaluates to 0. As a result
all entries in the product matrix will be zero. Therefore, the trace will be zero as well.

36. Suppose that a sequence of row and column operations is performed on a matrix. Show
that as long as the ordering among row operations and the ordering among column
operations is maintained, changing the ordering between row and column operations
does not make any difference to the final result.

If the row operations have operator matrices in the order R1 . . . Rk and the column
operations have operator matrices in the order C1 . . . Ck, the overall transformation
of A can be expressed as Rk . . . R1AC1 . . . Ck. Note that we can group these operator
matrices in any way we like because of the associative property of matrix multiplica-
tion.

37. Show that any orthogonal upper-triangular matrix is a diagonal matrix.

This result can be shown by case-by-case analysis of matrix U . First note that the
diagonal elements of the product UUT are the products of the diagonal elements of
U and UT . Therefore, all diagonal elements of U are nonzero, or else the product of
the two can never have 1s on the diagonal elements in order to create the identity
matrix. In fact, the values on the diagonal will be 1 and -1. Second, note that dot
products between pairs of columns of U are zero. Since the dot product between the
first and second column of U , which is u11u12, is zero, it means that the u12 must be
zero. This is because u11 is guaranteed to be non-zero. Next, we take the dot product
of the third column with the second column and first column (in that order) to show
that the off-diagonal elements of the third column are zeros. In general, for the rth
column, we take the dot product with the (r− 1)th, (r− 2)th, and so on in that order
in order to show that successive off-diagonal elements are zeros.

Simpler proof: The inverse of an upper-triangular matrix is also upper triangular.
However, the inverse of an orthogonal matrix is its transpose which happens to be
lower triangular. Therefore, we obtain a matrix that is both upper triangular and
lower traingular. This can happen only when the matrix is diagonal.

38. Consider a set of vectors x1 . . . xn, which are known to be unit normalized. You do not
have access to the vectors but you are given all pairwise squared Euclidean distances
in the n × n matrix Δ. Discuss why you can derive the n × n pairwise dot product
matrix by adding 1 to each entry of the matrix − 1

2Δ.

When the vectors are unit normalized, the dot product and Euclidean distance can
be derived from one another without any additional information about placement of
points. Consider the two unit vectors x and y. Then, we have the following:

Euclidean(x, y)2 = (x− y) · (x− y) = x · x+ y · y︸ ︷︷ ︸
1+1

−2x · y = 2− 2x · y

This implies that the dot product is obtained by multiplying the squared Euclidean
distance with −0.5 and then adding 1. The result follows.
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39. We know that every matrix commutes with its inverse. We want to show a general-
ization of this result. Consider the polynomial functions f(A) and g(A) of matrix A,
so that f(A) is invertible. Show the following commutative property:

[f(A)]−1g(A) = g(A)[f(A)]−1

We know that f(A)g(A) = g(A)f(A). This is because polynomials of the same matrix
commute. In fact, a large number of useful identities in matrix algebra, such as the
push-through identity, indirectly depend on this fact. Then, by both right multiplying
and left multiplying with f(A)−1, we get the desired result.

40. Given an example of a 2 × 2 matrix A and a polynomial function f(·), so that A is
invertible but f(A) is not invertible. Given an example of a matrix A so that A is
not invertible but f(A) is invertible. Note that the constant term in the polynomial
corresponds to a multiple of the identity matrix.

Let A be the identity matrix, and f(A) = A − I, which is the zero matrix. Then, A
is invertible but f(A) is not. Also let A be the 2 × 2 matrix with a single 1 for the
entry a11 and zeros in all other entries. Let f(A) = A + I. Then A is not invertible,
but f(A) is invertible.

41. Let A be a rectangular matrix and f(·) be a polynomial function. Show that
AT f(AAT ) = f(ATA)AT . Now suppose that both f(AAT ) and f(ATA) are invertible.
Show the following result:

[f(ATA)]−1AT = AT [f(AAT )]−1

Interpret the push-through identity as a special case of this result.

One can write f(AAT ) as follows:

f(AAT ) =
n∑

i=0

ci(AA
T )i

Left-multiplying both sides with AT , we obtain the following:

AT f(AAT ) = AT
n∑

i=0

ci(AA
T )i =

[
n∑

i=0

ci(A
TA)i

]
AT = f(ATA)AT

Therefore, we obtain the first result. Now consider the case where we left multiply this
identity with f(ATA)−1 and right-multiply this identity with f(AAT )−1, we obtain
the second result. The push-through identity is a special case of this result by setting
f(AAT ) = AAT + λI.

42. Discuss why one cannot generalize the formula for the scalar binomial expansion (a+
b)n to the matrix expansion (A + B)n. Also discuss why generalization is possible in
cases where B = f(A) for some polynomial function f(·).
This formula cannot be generalized because of non-commutativity of matrices. For
example, (A+B)2 is A2+AB+BA+B2, and the expressions for AB and BA cannot
be consolidated. The problem increases with increasing value of n. In the case, where
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B = f(A), the matrices A and B commute. Therefore, the terms can be consolidated
and the formula continues to hold. In fact, the binomial expansion holds for matrices
if and only if the two matrices in the expansion commute. This does happen quite
frequently in many practical settings.

43. Suppose that A is a d×d matrix satisfying A4 = 0. Derive an algebraic expression for
(I +A)−1 as a matrix polynomial in A.

The formula is I −A+A2 −A3. This result can be obtained by using the subsection
on the result on the computation of (I + A)−1, which is an infinite series. Note that
multiplying with I + A yields I − A4, which is the identity matrix, since we have
A4 = 0.

44. Compute the inverse of the following triangular matrix by expressing it as the sum of
two matrices:

A =

⎡
⎣ 1 0 0

2 1 0
1 3 1

⎤
⎦

One can express the matrix as (I + A), since the values along the diagonal are 1s.
Here, A is a strictly triangular matrix satisfying the nilpotency condition A3 = 0.
Therefore, the inverse is given by (I + A)−1 = I − A+ A2. This value can be shown
to be the following matrix:

A−1 =

⎡
⎣ 1 0 0
−2 1 0
5 −3 1

⎤
⎦

45. Express a d × d matrix M of 1s as the outer product of two d-dimensional vectors.
Use the matrix inversion lemma to compute an algebraic expression for (I +M)−1.

Using the matrix inversion lemma, one obtains the expression I −M/(n+ 1).

46. Show that if A and B commute, the matrix polynomials f(A) and g(B) commute as
well.

One can show the result by using the distributive property of matrix multiplication,
then swapping the order of A and B in the individual terms, and then regrouping
them back.

47. Show that if invertible matrices A and B commute, Ak and Bs commute for any
integers k, s ∈ [−∞,∞]. Show that the previous exercise holds for “polynomials” with
both positive and negative integer exponents included.

This exercise can be shown by using case-wise analysis. First, note that if either k or
s is zero, the proof becomes trivial. Therefore, we will only consider nonzero k and s.
The following are the cases:

Case I k > 0, s > 0: In this case, we have AkBs = BAkBs−1. This is because
we have:

AkBs = Ak−1(AB)Bs−1 = Ak−1(BA)Bs−1 = Ak−2(BA)ABs−1 = . . . = BAkBs−1

The overall effect is to pull a single matrix B from the end of the expression to
the front of the expression. We repeatedly pull each and every B to the front
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using the commutative property. By repeating the process for each of matrices
B, we get AkBs = BsAk.

Case II k > 0, s < 0. Note that AkB−s = B−sAk using the argument of Case
I. Post-multiplying and pre-multiplying the above equation with Bs, we get the
desired result.

Case III k < 0, s > 0. This case is exactly analogous to Case II.

Case IV k < 0, s < 0. In this case, we have A−kB−s = B−sA−k by using the
argument of Case I. Pre-multiplying and post-multiplying both sides with Bs,
we get BsA−k = A−kBs. Then, pre-multiplying and post-multiplying both sides
with Ak we get AkBs = BsAk, which is the desired result.

The proof for the extended definition of polynomials (with negative exponents in-
cluded) is similar to that of the previous exercise. We can use the distributive property
of matrix multiplication and then swap the order of A and B in the multiplicative
terms.

48. Let U = [uij ] be an upper-triangular d × d matrix. What are the diagonal entries of
f(U) as scalar functions of the matrix entries uij?

The diagonal entries of f(U) are f(λ1) . . . f(λd), where λi = uii. This because the
diagonal entries of Uk can be shown to be λk

1 . . . λ
k
d. The diagonal entries of the sum

of two matrices are the sum of their diagonal entries.

49. Inverses behave like matrix polynomials: The Cayley-Hamilton theorem states
that a finite-degree polynomial f(·) always exists for any matrix A satisfying f(A) = 0.
Use this fact to prove that the inverse of A is also a finite-degree polynomial.

The Cayley-Hamilton theorem is introduced in Chapter 3. Although invertible matri-
ces can be shown to have some special properties of the polynomial, such as a nonzero
constant term, we will not make this assumption in this proof, since these results have
not been introduced yet. We will only assume that an inverse of A exists. Let the
smallest degree in the polynomial f(A) be r (which is guaranteed to be 0 in the case
of invertible matrices but we do not make this assumption). We multiply f(A) with
A−r−1 to obtain the following:

A−r−1f(A) = 0

The above matrix polynomial can be expressed in the form cA−1 + g(A) for some
matrix polynomial g(A) and non-zero coefficient c. Therefore, the inverse of A is
simply expressed as −g(A)/c.

50. Derive the inverse of a 3× 3 row addition operator by inverting the sum of matrices.

A 3×3 row addition operator matrix can be expressed as (I+C) where C is a matrix
containing a single off-diagonal entry. We use the following result:

(I + C)−1 = I − C + C2 − C3 + . . .

Since C contains only a single off-diagonal entry, it is a nilpotent matrix satisfying
C2 = 0. Therefore, the inverse is given by the following:

(I + C)−1 = I − C
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51. For any non-invertible matrix A, show that the infinite summation
∑∞

k=0(I − A)k

cannot possibly converge to a finite matrix. Give two examples to show that if A is
invertible, the summation might or might not converge.

Suppose that the summation does converge to a finite matrix. Then, we know that
(I−A)k tends to the zero matrix as k becomes large. Now multiplying the summation
with A, we obtain the following:

A
∞∑
k=0

(I −A)k = [I − (I −A)]
∞∑
k=0

(I −A)k

One can use the distributive property of matrix multiplication to obtain the following:

A

∞∑
k=0

(I −A)k =

∞∑
k=0

[(I −A)k − (I −A)k+1]

This summation has adjacent terms that cancel each other out, and the trailing terms
converge to zero as k gets very large. Therefore, one is left with only the first term,
which is (I −A)0 = I. In other words, the summation is the inverse of the matrix A.
This is a contradiction to the original statement of the problem.

Now, we consider the cases where A is invertible. Choosing A = I/2, results in a con-
verging summation. Choosing A = 3I results in a summation that does not converge.

52. The chapter shows that the product, A1A2 . . . Ak, of invertible matrices is invertible.
Show the converse that if the product A1A2 . . . Ak of square matrices is invertible, each
matrix Ai is invertible. Use only the material discussed in this chapter for the proof.

If A1A2 . . . Ak is invertible, there must exist a matrix C, such that the following is
true:

CA1A2 . . . Ak = I

Therefore, the product of CA1A2 . . . Ak−1 and Ak is I. This possible only if Ak is
invertible. Furthermore, we can show that A1A2 . . . Ak−1 is invertible, because we
have:

[A1A2 . . . Ak−1][AkC] = I

What we have achieved is to use the invertibility of A1A2 . . . Ak to show the invertibil-
ity of the smaller pieces A1A2 . . . Ak−1 and Ak. We can then apply the same approach
to A1A2 . . . Ak−1 to show that A1A2 . . . Ak−2 and Ak−1 are invertible. This process is
repeated to show that each matrix Ai is invertible.

53. Show that if a d×d diagonal matrix Δ with distinct diagonal entries λ1 . . . λd commutes
with A, then A is diagonal.

Suppose that a non-diagonal entry aij of A is non-zero. Then, the (i, j)th entry of
AΔ is aijλj , whereas the (i, j)th entry of ΔA is λiaij . Since λi 
= λj , and aij 
= 0,
these values cannot be equal. Therefore, we have a contradiction, and it follows that
aij cannot be nonzero for non-diagonal entries. Therefore, A is a diagonal matrix.

54. What fraction of 2× 2 binary matrices with 0-1 entries are invertible?

All matrices with zero 1s, one 1s, and four 1s are not invertible. There are 1+4+1 =
6 such matrices. All matrices with three 1s are invertible, and there are four such
matrices. Among matrices with two 1s, the four matrices with 1s in the same row or
column are not invertible, whereas the two others are invertible. Therefore six out of
sixteen binary matrices are invertible. The required fraction is 6/16 = 3/8
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Chapter 2

Linear Transformations and
Linear Systems

1. If we have a square matrix A that satisfies A2 = I, then, is it always the case that
A = ±I? Either prove the statement or provide a counterexample.

This statement is not always true. For example, flipping the sign of only a subset
of the diagonal elements of the identity matrix results in a matrix A, which satisfies
A2 = I.

2. Show that the matrices A, AAT , and ATA must always have the same rank for any
n× d matrix A.

First, we will show that the ranks of A and ATA are the same. If the vector x belongs
to the right null space of A then we have Ax = 0. Multiplying with AT we get
ATAx = 0. In other words, x belongs to the right null space of ATA. Similarly, if x
belongs to the right null space of ATA, one can show that ||Ax||2 = xTATAx = 0.
In other words, we have Ax = 0 and therefore x is in the null space of A. Therefore,
the null spaces of A and ATA are the same. Since both matrices have d columns (i.e.,
vectors of length d in rows), the sum of the ranks of the right null space and row space
must be d in both cases. Therefore, the row rank is the same in both cases. But the
row rank is the same as the matrix rank. In other words, the ranks of A and ATA
must be the same. One can use a similar result to show that the ranks of AT and
AAT are the same by simply applying the entire argument to AT instead of A. Since
the ranks of A and AT are the same, the result follows.

3. Provide a geometric interpretation of A9, where A is a 2 × 2 rotation matrix at a
counter-clockwise angle of 60o.

If a rotation matrix rotates by θ, its kth power rotated by kθ. Therefore, we have a
counterclockwise rotation of 540o, which is the same as a 180o rotation.

4. Consider 6 × 10 matrices A and B of rank 6. What is the minimum and maximum
possible rank of the 6× 6 matrix ABT . Provide examples of both cases.

The maximum possible rank is ABT is 6. An example of this case is one in which A
has orthonormal rows, and we set B = A. The product ABT will be the 6×6 identity
matrix.
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The minimum possible rank based on Sylvester’s inequality is 6 + 6− 10 = 2. In this
case, we set A to have 6 orthonormal rows. B is constructed by choosing 2 of its rows
from B, and the other four rows to be orthonormal to all the rows in A. The resulting
product ABT will be a diagonal matrix with its first two diagonal entries set to 1,
and the remaining entries set to 0.

5. Use each of row reduction and Gram-Schmidt to find basis sets for the span of
{[1, 2, 1]T , [2, 1, 1]T , [3, 3, 2]T }. What are the best-fit coordinates of [1, 1, 1]T in each
of these basis sets? Verify that the best-fit vector is the same in the two cases.

The answer to this question is not unique, and it will depend heavily on the order in
which one processes the rows. In the case of row reduction, one possible basis set is
[1, 2, 1]T , and [0, 3, 1]. In the case of Gram-Schmidt orthogonalization, the basis set is
[1, 2, 1]T /

√
6, [7,−4, 1]T /√66. One can create a 3×2 matrix A using the two columns

[1, 2, 1]T , and [0, 3, 1] and compute the coordinates of [1, 1, 1]T as follows:

x = (ATA)−1AT

⎡
⎣ 1

1
1

⎤
⎦

The resulting coordinates that are the components of vector x in Ax = b are
12/11 and −4/11. The best fit Ax of [1, 1, 1]T with the use of these coordinates is
[12/11, 12/11, 8/11]T .

In the case of Gram-Schmidt orthogonalization, the coordinates are much easier to
compute with the use of dot products. Using dot product of the basis vectors with
[1, 1, 1]T , we obtain the coordinates as 4/

√
6 and 4/

√
66. The best fit vector is the

transposition of 4∗[1, 2, 1]/6+4∗[7,−4, 1]/66. This vector evaluates to the transposition
of 4 ∗ [18, 18, 12]/66 = [12, 12, 8]/11.

6. Propose a test using Gram-Schmidt orthogonalization to identify whether two sets of
(possibly linearly dependent) vectors span the same vector space.

Let S1 and S2 be two sets of vectors. Find a Gram-Schmidt basis for S1. Now con-
tinuing to apply Gram-Schmidt for each vector in S2 will always evaluate to the zero
vector. Therefore, S2 is a subspace of S1. Now perform this same approach in reversed
order by creating a basis for S2 first. If all vectors in S1 evaluate to the zero vector,
it will show that S1 is a subspace of S2. Combining the two, we get the fact that the
two vector spaces are the same.

Another approach: For the first set S1, first find an orthonormal basis using Gram-
Schmidt. For the second set S2, find an orthonormal basis using Gram-Schmidt. First,
the dimensionality of both sets must be the same. Second, test if the norm of each
vector is S2 is preserved when represented using coordinates in the orthonormal basis
for S1. (Basis transformation is easy for orthonormal sets). If this is the case then
both sets have the same span. Note that one does not need to test whether the norm
of each vector in S1 is preserved when represented using the orthonormal basis for S2.
This is already guaranteed based on the two tests that have been done.

7. A d × d skew symmetric matrix satisfies AT = −A. Show that all diagonal elements
of such a matrix are 0. Show that x ∈ Rd is orthogonal to Ax if and only if A is skew
symmetric. Discuss the difference between this transform and a pure rotation by 90o.
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Since AT = −A, we have aii = −aii which is possible only when aii = 0. Since the
transpose of a scalar is always the same scalar, we have xTAx = xTATx. However, this
means that xTAx = −xTAx. This means that xTAx = 0. Therefore, x is orthogonal
to Ax.

To prove the converse, we assume that xTAx = 0. We first show that the diagonal
entries are zero. We pick a vector x that is the same as ei. In such a case, we have
eTi Aei = aii = 0. Next, we choose a vector x with 1s in the ith and jth entry and zeros
in all other entries. In such a case, we have 0 = xTAx = aii+ajj+aij+aji = aij+aji.
Therefore, aij = −aji and the matrix is skew symmetric.

Note that a rotation matrix preserves the norm of a vector. A skew symmetric matrix
might not preserve the norm of a vector.

8. Consider the 4 × 4 Givens matrix Gc(2, 4, 90). This matrix performs a 90o counter-
clockwise rotation of a 4-dimensional column vector in the 2-dimensional projection
corresponding to the second and fourth dimensions. Show how to obtain this matrix as
the product of two Householder reflection matrices. It is strongly encouraged to think
geometrically in order to solve this problem. Is the answer to this question unique?

This problem is first solved for 2 × 2 matrices, where it can be shown that a 90o

counter-clockwise rotation is two reflections. A 90o counter-clockwise rotation is first
a reflection across x = y and then a reflection across the Y -axis. One can generalize
this idea to 4 × 4 matrices by performing exactly this operation in that projection.
The answer to this question is not unique, as one can first reflect across the X-axis
and then reflect across x = y to achieve the same result. As long as the two reflection
lines are at an angle of 45o to one another, the approach will work.

9. Repeat Exercise 8 for a Givens matrix that rotates a column vector counter-clockwise
for 10o instead of 90o.

The best way of solving this problem is to examine the case of 2×2 matrices. Successive
reflection in two lines at an angle of θ/2 causes rotation at an angle of θ. The ordering
of the two reflections decides whether the rotation is clockwise or counter-clockwise.
One can generalize this result to d × d Givens matrices by performing the operation
in the corresponding 2-dimensional projection.

10. Consider the 5× 5 matrices A, B, and C, with ranks 5, 2, and 4, respectively. What
is the minimum and maximum possible rank of (A+B)C.

The matrix A+ B can have minimum rank of 3 and maximum rank of 5. Therefore,
maximum rank of (A + B)C is 4 since C has rank 4. The minimum is 3 + 4 − 5 = 2
using the Sylvester inequality.

11. Solve the following system of equations using the Gaussian elimination procedure dis-
cussed in the book: ⎡

⎣ 0 1 1
1 1 1
1 2 1

⎤
⎦
⎡
⎣ x1

x2

x3

⎤
⎦ =

⎡
⎣ 2

3
4

⎤
⎦

Take care to use the same conventions for subtracting rows and columns as discussed in
the book. Now use these row operations to create an LU decomposition. Is it possible to
perform an LU decomposition of this matrix without the use of a permutation matrix?
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On subtracting row 2 from row 3, and row 1 from row 2, we obtain the following:⎡
⎣ 0 1 1

1 0 0
0 1 0

⎤
⎦
⎡
⎣ x1

x2

x3

⎤
⎦ =

⎡
⎣ 2

3− 2
4− 3

⎤
⎦

Swapping the rows will lead to lower triangular form. The solution by back substi-
tution results in xi = 1 for each i. A permutation matrix is essential to get the LU
decomposition because swapping rows is essential.

12. Solve the system of equations in the previous exercise using QR decomposition. Use the
Gram-Schmidt method for orthogonalization. Use the QR decomposition to compute
the inverse of the matrix if it exists.

The solution to the system of equations is xi = 1 for all i.

13. Why must the column space of matrix AB must be a subspace of the column space of
A? Show that all four fundamental subspaces of Ak+1 must be the same as that of Ak

for some integer k.

This is the case because each column of AB is a linear combination of the columns of
A. Note that if Ak+1 does not have the same column space as Ak, that of Ak+1 must
be a proper subspace of Ak. This can happen for at most d times for a d× d matrix.
Therefore, for some integer k at most equal to d, the condition must be satisfied. Note
that if the column space of the matrix does not change, the rank of the row space will
not change either. Therefore, the row space will also remain unchanged and all four
fundamental subspaces will remain the same.

14. Consider a vector space V ⊂ R3 and two of its possible basis sets B1 =
{[1, 0, 1]T , [1, 1, 0]T } and B2 = {[0, 1,−1]T , [2, 1, 1]T }. Show that B1 and B2 are ba-
sis sets for the same vector space. What is the dimensionality of this vector space?
Now consider a vector v ∈ V with coordinates [1, 2]T in basis B1, where the order
of coordinates matches the order of listed basis vectors. What is the standard basis
representation of v? What are the coordinates of v in B2?
First, note that the vectors in each of B1 and B2 are linearly independent. Each of the
vectors in B2 can be expressed in terms of the vectors in B1 as follows:

[0, 1,−1]T = [1, 1, 0]T − [1, 0, 1]T

[2, 1, 1]T = [1, 1, 0]T + [1, 0, 1]T

Similarly, one can express the vectors in B1 in terms of those in B2. Since both sets
contain linearly independent vectors, each is the basis of some vector space. Further-
more, since all vectors can be expressed terms of each B1 and B2, it implies that these
vector spaces are the same. The dimensionality of each vector space is the size of the
basis, which is 2.

The vector b in the standard basis is as follows:

v = [1, 0, 1]T + 2 ∗ [1, 1, 0]T = [3, 2, 1]T

The coordinates in the second basis are [1, 3]T , and these can be computed using the
left-inverse.
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15. Find the projection matrix of the following matrix using the QR method:

A =

⎡
⎣ 3 6

0 1
4 8

⎤
⎦

How can you use the projection matrix to determine whether the vector b = [1, 1, 0]T

belongs to the column space of A? Find a solution (or best-fit solution) to Ax = b.

The QR decomposition is as follows:

A =

⎡
⎣ 3/5 0

0 1
4/5 0

⎤
⎦[

5 10
0 1

]

The first matrix in the decomposition is Q. The projection matrix is QQT .⎡
⎣ 3/5 0

0 1
4/5 0

⎤
⎦[

3/5 0 4/5
0 1 0

]
=

⎡
⎣ 9/25 0 12/25

0 1 0
12/25 0 16/25

⎤
⎦

The projection of the vector should be itself when it does belong to the column space
of the matrix. The projection of vector x is Px, where P = QQT is the projection
matrix. Therefore, the projection of [1, 1, 0]T is as follows:⎡

⎣ 9/25 0 12/25
0 1 0

12/25 0 16/25

⎤
⎦
⎡
⎣ 1

1
0

⎤
⎦ =

⎡
⎣ 9/25

1
12/25

⎤
⎦

Since the projection of the vector is not itself, it follows that the best fit is the vector
on the right-hand side of the above equation.

The solution to the system is x = R−1QT b which is as follows:[
1/5 −2

0 1

] [
3/5

1

]
=

[ −47/25
1

]

16. For the problem in Exercise 15, does a solution exist to ATx = c, where c = [2, 2]T ?
If no solution exists, find the best-fit. If one or more solutions exist, find the one for
which ||x|| is as small as possible.

Yes, a solution does exist because the column space of A spans all of R2. One example
of a solution is [2/3,−2, 0]T . There are an infinite number of solutions, since the
columns of AT are linearly dependent. The right inverse is as follows (which is the
same as the Moore-Penrose pseudoinverse):

A+ =

⎡
⎣ 0.12 0
−2 1
0.16 0

⎤
⎦

The most concise solution is x = A+c using the right inverse, and the corresponding
coordinate vector is [0.24,−2, 0.32]T .
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17. Gram-Schmidt with Projection Matrix: Given a set of m < n linearly indepen-
dent vectors a1 . . . am in Rn, let Ar be the n×r matrix defined as Ar = [a1, a2, . . . , ar]
for each r ∈ {1 . . .m}. Show the result that after initializing q1 = a1, the unnormal-
ized Gram-Schmidt vectors q2 . . . qm of a2 . . . am can be computed non-recursively as
follows:

qs+1 = [I −As(A
T
s As)

−1AT
s ]as+1 = as+1 − [Psas+1] ∀s ∈ {1, . . . ,m− 1}

Here, Ps is the projection matrix derived from As.

This result can be shown by proving inductively that qs+1 is orthogonal to qr for r ≤ s.
We first assume that orthogonality holds between each pair qi and qj for i, j ≤ s. Now,
we will show that qs+1 is also orthogonal to each qr for all r ≤ s. First note that Ps can
also be rewritten as QsQ

T
s , where the jth column of Qs is qj/||qj ||. This is because we

can write As = QsR using the QR decomposition based on the inductive assumption.
Substituting for As = QsR in Ps = As(A

T
s As)

−1AT
s , we obtain Ps = QsQ

T
s . Once we

written the projection matrix in this form, it is easy to show that for all r ≤ s, we
have qTr Ps = qTr QsQ

T
s = ‖qr‖eTr QT

s = qTr . Taking the dot product of qs+1 with qr, we
obtain:

qTr qs+1 = qTr as+1 − qTr as+1 = 0

This proves the inductive assumption.

18. Consider a d × d matrix A such that its right null space is identical to its column
space. Show that d is even, and provide an example of such a matrix.

Let us say that the column space rank is k. Therefore, the row rank is k as well.
Furthermore, the rank of the null space is k. Therefore, the sum of the row rank and
null space is 2k, which is d. An example of such a matrix is as follows:

A =

[
0 0
1 0

]

19. Show that the columns of the n × d matrix A are linearly independent if and only if
f(x) = Ax is a one-to-one function.

Suppose that the columns of A are linearly independent and the function is not one-to-
one. So we can find two different choices of x equal to x1 and x2, so that f(x1) = f(x2).
Therefore, it follows that A(x1 − x2) = 0, and it would imply that the columns of A
are not linearly independent. A contradiction follows.

Now suppose that the function f(x) is a one-to-one function, but the columns of A
are not linearly independent. In such a case, a non-zero vector y exists from the right
null space of A, so that Ay = 0. Now consider any non-zero vector x. It can be shown
that f(x+ y) = A(x+ y) = Ax+ 0 = f(x). In other words, we have f(x+ y) = f(x),
which implies that f(·) is not a one-to-one function. A contradiction follows.

20. Consider an n × n matrix A. Show that if the length of the vector Ax is strictly less
than that of the vector x for all nonzero x ∈ Rn, then (A− I) is invertible.

If (A− I) is not invertible, its rank is strictly less than n and some nonzero vector v
lies in its null space. Therefore, (A − I)v = 0. This would imply that Av = v, which
is a contradiction to the pre-condition of the problem.
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21. It is intuitively obvious that an n× n projection matrix P will always satisfy ‖Pb‖ ≤
‖b‖ for any b ∈ Rn, since it projects b on a lower-dimensional hyperplane. Show
algebraically that ‖Pb‖ ≤ ‖b‖ for any b ∈ Rn.

Let us represent the projection matrix P in the form QQT for some n× d matrix Q,
where d ≤ n and defines the dimensionality of the projection. In such a case, we have
the following:

||QQT b||2 = b
T
QQTQ︸ ︷︷ ︸

I

QT b = ||QT b||2. Note that QT b is a d-dimensional vector. We

could add (n−d) orthogonal columns to the n×d matrix Q to create an n×n matrix
Qbig, which is a square orthogonal matrix and whose columns create a basis for all
of Rn rather than only the d-dimensional projection space. Note that QT

bigb has the

same first d coordinates as QT b, and the former has the same length as b because it
is a square and orthogonal matrix. Therefore, the length QT b will be no larger than
that of b.

22. Let A be a 10×10 matrix. If A2 has rank 6, find the minimum and maximum possible
ranks of A. Give examples of both matrices.

By the Sylvester inequality the maximum rank of A is 8. This is because if the rank
of A is a, the Sylvester inequality states that the minimum rank of A2 is 2 ∗ a − 10.
Therefore, a is at most 8, although it can be smaller for A2 to meet the threshold.
This bound is also tight, because examples exist where this is the case. Choosing A to
be any strictly upper triangular matrix of rank 8 in which the bottom two rows are
zeros, will result in A2 with rank 6.

The minimum rank is 6. This is because A2 can never have rank larger than that of
A. This bound is also tight. Choosing A to be any projection matrix of rank 6 will
result in A2 = A, which also has rank 6.

23. Suppose that we have a system of equations Ax = b for some n × d matrix A. We
multiply both sides of the above equation with a non-zero, m × n matrix B to obtain
the new system BAx = Bb. Provide an example to show that the solution sets to the
two systems are not identical. How are the solution sets related in general? Provide
one example of a sufficient condition on a rectangular matrix B under which they are
identical.

An example is the case where we have an inconsistent system of equations Ax = b.
However, we choose B = A+, which is the Moore-Penrose pseudoinverse of A. In such
a case, the system becomes consistent after multiplying with B, and x = A+b is a valid
solution. Therefore, solutions often exist to the second system that are not present
in the first system. However, any solution to the first system also satisfies the second
system.

The solution set for the second system is always a superset of the first (and sometimes
identical). The two solution sets are the same if B has linearly independent columns
(sufficient condition).

The proof is as follows. If B has linearly independent columns, we can multiply both
sides with the left-inverse of B to obtain the first system.

More detailed possibilities are as follows.

When the first system is consistent: The necessary and sufficient condition for
identical solutions is that the column space of A and null space of B need to be
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mutually exclusive. Note that there are two distinct solutions to the second equation
only one of which belongs to the first, if and only if a vector α (which is the difference
of these solutions), exists for which Aα 
= 0 and BAα = 0. This is possible if and only
if the column space of A and null space of B are not mutually exclusive. Note that if
B has linearly independent columns, its null space is empty.

When the first system is inconsistent: This means that b cannot lie in the column
space of A but must lie in the column space of BA. In other words, b ∈ col(BA) −
col(A). Note that the column space of BA is a subset of the column space of B.

The overall conditions of this problem are rather messy, and therefore only a sufficient
condition was asked.

24. Show that every n×n Householder reflection matrix can be expressed as Q1Q
T
1 −Q2Q

T
2 ,

where concatenating the columns of Q1 and Q2 creates an n × n orthogonal matrix,
and Q2 contains a single column. What is the nature of the linear transformation,
when Q2 contains more than one column?

Any Householder reflection matrix can be expressed as (I − 2v vT ) for some column
vector v. Now find an orthogonal basis of Rn in which v is the first member, and
Q1 contains the remaining members. The matrix Q2 is set to v. The result is then
true for this construction of [Q1, v] because the identity matrix can be written as
I = Q1Q

T
1 + v vT .

For the second part of the question, consider a matrix of the form Q1Q
T
1 − Q2Q

T
2 .

This matrix can be written as [Q1, Q2][Q1, Q2]
T − 2Q2Q

T
2 = I − 2Q2Q

T
2 . Let the k

columns of Q2 be v1 . . . vk. The resulting matrix multiplication Q2Q
T
2 can be expanded

in terms of outer products as
∑k

i=1 viv
T
i . Therefore, the resulting matrix is of the

form I − 2(
∑k

i=1 viv
T
i ). Because of the orthogonality of v1 . . . vk, one can write this

expression as
∏k

i=1(I−2vivTi ). This is simply a sequence of k Householder transforms.

25. Show that if Bk has the same rank as that of Bk+1 for a particular value of k ≥ 1,
then Bk has the same rank as Bk+r for all r ≥ 1.

We only need to show that Bk+1 has the same rank as Bk+2, because we can apply
the result repeatedly to prove that Bk+2 has the same rank as Bk+3 . . . Bk+r.

Suppose that the rank of Bk+1 is not the same as that of Bk+2 (and the latter must
be smaller by the matrix product results discussed in the chapter). Then, there must
exist a vector x in the null space of Bk+2, which does not exist in the null space of
Bk+1. Therefore, Bk+2x = 0 and Bk+1x 
= 0. However, this also means that we have
a vector y = Bx for which we have Bk+1y = 0 and Bky 
= 0. Therefore, we reach a
contradiction to the statement of the assumption.

26. Show that if an n×n matrix B has rank (n− 1), and the matrix Bk has rank (n−k),
then each matrix Br for r from 1 to k has rank (n−r). Show how to construct a chain
of vectors v1 . . . vk so that Bvi = vi−1 for i > 1, and Bv1 = 0.

According to the Sylvester inequality, the rank of Br can reduce by at most 1 because
of multiplication with B. Therefore, the matrix Bk has rank that is at most k− 1 less
than that of B. However, since the rank of Bk is exactly k − 1 less than that of B
(according to the statement of the problem), it follows that the rank of Br is exactly
(n− r).
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The vector vk should be set so that Bkvk = 0 and Bk−1vk 
= 0. Such a vector always
exists because the rank of Bk is strictly less than that of (k − 1). Subsequently, we
set vr = Bk−rvk for r < k.

27. Suppose that Bkv = 0 for a particular vector v for some k ≥ 2, and Brv 
= 0 for all
r < k. Show that the vectors v,Bv,B2v, . . . , Bk−1v must be linearly independent.

Let us define vi = Biv. Now consider the case where the vectors v0 . . . vk−1 are linearly

dependent, and so we have
∑k−1

i=0 αivi = 0. Multiplying both sides with Bk−1, we
obtain α0B

k−1v0 = 0. Therefore, α0 = 0. We again repeat this process by multiplying
with Bk−2 and prove that α1 = 0. We keep repeating until all coefficients are proven
to be 0. In other words, the vectors are linearly independent.

28. Inverses with QR decomposition: Suppose you perform QR decomposition of an
invertible d × d matrix as A = QR. Show how you can use this decomposition rela-
tionship for finding the inverse of A by solving d different triangular systems of linear
equations, each of which can be solved by backsubstitution. Show how to compute the
left inverse and the right inverse of a (tall or fat) matrix with QR decomposition and
back substitution.

Let X = [x1 . . . xd] be the inverse of A. Then, we have AX = I, which we can write
as follows:

A[x1 . . . xd] = [e1 . . . ed]

QR[x1 . . . xd] = [e1 . . . ed]

R[x1 . . . xd] = [QT e1 . . . Q
T ed]

Each triangular system of equations Rxi = QT ei is solved. This can be solved by back
substitution.

For left inverse, we assume that the matrix A is of size n× d with n > d. The matrix
A is decomposed as A = QR, where Q is of size n× d and R is of size d× d. The left
inverse is (ATA)−1AT , which works out to (RTR)−1RTQT = R−1QT . Note that R−1

can be computed using backsubstiution as RY = Id, where Y is the inverse of R.

For right inverse, we assume that the matrix A is of size n× d with n < d. However,
here we decompose AT = QR, where Q is of size d × n and R is of size n × n. The
right inverse is AT (AAT )−1, which is QR(RTR)−1 = Q(RT )−1. This is a similar
situation to the left inverse except that we are computing in the inverse of RT by
backsubstitution.

29. Least-squares error by QR decomposition: Let Ax = b be a system of equations
in which the n × d matrix A has linearly independent columns. Suppose that you
decompose A = QR, where Q is an n × d matrix with orthogonal columns and R is
a d × d upper-triangular matrix. Show that the best-fit error (using the least-squares
model) is given by ‖b‖2−‖QT b‖2. How would you find the least-squares error via QR
decomposition in the case that A does not have linearly independent columns or rows?

The best fit of b is simply its projection QQT b using the projection matrix QQT .
Note that one can also derive this solution as x = R−1QT b, and then multiply again
with A = QR to obtain Ax = QQT b. Therefore, the best fit error is ||Ax − b||2 =
(QQT b − b)T (QQT b − b). On expanding with the distributive property, one obtains
the desired result.
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30. Consider a modified least-squares problem of minimizing ‖Ax − b‖2 + cTx, where A
is an n× d matrix, x, c are d-dimensional vectors, and b is an n-dimensional vector.
Show that the problem can be reduced to the standard least-squares problem as long as
c lies in the row space of A. What happens when c does not lie in the row space of A?

When c lies in the row space of A, we can rewrite c as ATα for some column vector
α. Therefore, the objective function becomes the following:

(Ax− b)T (Ax− b) + αTAx = (Ax− [b− α/2])T (Ax− [b− α/2])− ||α||2/4 + b
T
α

The last few terms in α and b are constants which do not affect the overall objective
function. However, the vector b has now been translated by α/2, which is the main
difference to the original objective function.

If c does not lie in the row space of A, the problem can have an unbounded minimum.
An example is that of minimizing (x1 − 1)2 + x2, where x2 can be made as negative
as we want.

31. Right-inverse yields concise solution: Let x = v be any solution to the consistent
system Ax = b with n × d matrix A containing linearly independent rows. Let vr =
AT (AAT )−1b be the solution given by the right inverse. Then, show the following:

‖v‖2 = ‖v − vr‖2 + ‖vr‖2 + 2vTr (v − vr) ≥ ‖vr‖2 + 2vTr (v − vr)

Now show that vTr (v − vr) = 0 and therefore ‖v‖2 ≥ ‖vr‖2.
The norm ‖v‖2 can be written as [vr+(v−vr)]

T [vr+(v−vr)], which can be expanded
using the distributive property to obtain the first result. Note that the first inequality
‖v‖2 ≥ ‖vr‖2 + 2vTr (v − vr) is obtained by dropping of the squared terms. Next, we
substitute for vr in the expression vTr (v − vr) to obtain the following:

vTr (v − vr) = [AT (AAT )−1b]T (v − vr) = b
T
(AAT )−1[ Av︸︷︷︸

b

−Avr︸︷︷︸
b

]

It is easy to see that the right-hand side evaluates to 0.

32. Show that any 2×2 Givens rotation matrix is a product of two Householder reflection
matrices. Think geometrically before wading into the algebra. Now generalize the proof
to d× d matrices.

Geometrically, if two mirrors facing each other (and intersecting at the origin) are
aligned at an angle of θ/2 or 90 − θ/2, then after two reflections in the mirrors, the
angle of an object will change by a multiple of θ or 90−θ. The exact angle depends on
the order of reflection among the two mirrors, because it will not yield the same result.
First, let us examine the Householder reflection matrix in which we want to compute
H1 = (I − vvT ), where v = [sin(θ/2), cos(θ/2)]T . After computing the Householder
reflection matrix, we obtain the following:

H1 =

[
1− 2sin2(θ/2) −2cos(θ/2)sin(θ/2)

−2cos(θ/2)sin(θ/2) 1− 2cos2(θ/2)

]
Using some trigonometric identities on the expressions for twice the angles, we obtain
the following Householder reflection matrix:

H1 =

[
cos(θ) −sin(θ)
−sin(θ) −cos(θ)

]
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This is already very close to a Givens matrix except that the handedness of the data
is wrong. Therefore we choose the following matrix:

H2 =

[
1 0
0 −1

]
It is easy to see thatH2H1 is a Givens rotation at counter-clockwise angle θ for column
vectors:

H2H1 =

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
The result can be directly generalized to d × d Givens rotations, since Givens rota-
tions are performed in 2 dimensions, and we only need to select out the relevant two
dimensions in both the rotations and reflections. This is achieved by selecting the four
non-zero entries in the Givens matrix by using the relevant two dimensions. Further,
one can set all except two entries in the vector v to 0. The entries that are set to 0
correspond to irrelevant dimensions. The other two entries are sin(θ/2) and cos(θ/2).
The matrix H2 is also set by setting one dimension of the identity matrix to −1 so
that a Givens rotation is created.

33. Show that if two tall matrices of full rank have the same column space, then they have
the same projection matrix.

If two matrices A and C have the same column space, then a non-singular matrix B
exists so that AB = C. Now show that the projection matrix of AB and A are the
same. In fact, this proof is explicitly shown in the text.

34. Construct 4×3 matrices A and B of rank 2 that are not multiples of one another, but
with the same four fundamental subspaces of linear algebra.

We should select any 2-dimensional subspace of R4 and put two possible basis sets
in the columns of the 4 × 2 matrices U1 and U2. Similarly, we should select any 2-
dimensional subspace of R3, and create two possible basis sets in the rows of V1 and
V2. Then, the matrices U1V1 and U2V2 will have the same four fundamental subspaces
of linear algebra.

35. Show that any Householder reflection matrix (I − 2v vT ) can be expressed as follows:

(I − 2v vT ) =

[
cos(θ) sin(θ)
sin(θ) −cos(θ)

]
Relate v to θ geometrically.

Select v = [−sin(θ/2), cos(θ/2)]T , and show that (I − 2v vT ) turns out to the matrix
in the statement of the problem by using standard trigonometric identities. Note that
the reflection is performed on a line making a counter-clockwise angle of θ/2 about
the X-axis.

36. Show how any vector v ∈ Rn can be transformed to w ∈ Rn as w = cHv, where c is
a scalar and H is an n× n Householder reflection matrix.

First, the vectors v and w are scaled to unit norm to create v1 and w1, respectively.
Then, the Householder reflection matrix is created using (v1 − w1) as (I − 2((v1 −
w1)(v1−w1)

T ). The scalar c simply adjusts for the varying length of the two vectors,
and is chosen to be ||w||/||v||.
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37. A block upper-triangular matrix is a generalization of a block diagonal matrix that
allows nonzero entries above the square, diagonal blocks. Consider a block upper-
triangular matrix with invertible diagonal blocks. Make an argument why such a matrix
is row equivalent to an invertible block diagonal matrix. Generalize the backsubstitu-
tion method to solving linear equations of the form Ax = b when A is block upper-
triangular. You may assume that the diagonal blocks are easily invertible.

One should reduce the rows from bottom to top. The goal is to reduce all non-diagonal
elements to zero. The lowest block of diagonal elements is left alone. The non-zero
elements of the block of diagonal elements can be reduced it by using the fact that
a basis exists for that subspace in the diagonal block just below it. Similarly we
can reduce two non-diagonal blocks just above it, and continue the process until all
diagonal blocks are reduced.

One can generalize backsubstitution in a relatively simple manner by first solving
for the variables in the lowest block by an inversion. Next, we can substitute this
variables and solve for the next higher block. The process is repeated to solve for all
the variables.

38. If P is a projection matrix, show that (P + λI) is invertible for any λ > 0.

This can be easily shown by expressing P as QQT . The idea is to show that xT (P +
λI)x = ‖QTx‖2 + λ‖x‖2 > 0 for all x and therefore (P + λI)x 
= 0. This means that
P + λI has an empty null space.

39. If R is a Householder reflection matrix, show that (R+ I) is always singular, and that
(R+ λI) is invertible for any λ 
∈ {1,−1}.
Note that (R+ I)v is zero, when v is the unit vector used for constructing the House-
holder reflection matrix.

Now we will provide non-singularity of R + λI. Decompose the vector x to cv + v2,
where cv is parallel to v and v2 is perpendicular to v. The value of (R+ λI)x can be
shown to be c(λ− 1)v+ v2(λ+1). Note that this vector is always non-zero when λ is
not equal to either +1 or −1.

40. Length-preserving transforms are orthogonal: We already know that if A is an
n× n orthogonal matrix, then ‖Ax‖ = ‖x‖ for all x ∈ Rn. Prove the converse of this
result that if ‖Ax‖ = ‖x‖ for all x ∈ Rn, then A is orthogonal.

Let the columns of A be a1 . . . an. By the pre-condition of the lemma, we know that
the length of Aei is the same as the length of ei where ei has a single 1 in the ith
position and 0 otherwise. In other words, the length of Aei is 1, or in other words, the
length of ai is 1. Furthermore, the squared length of aTi A is the same as that of ai.
This means the following:

‖ai‖4︸ ︷︷ ︸
1

+
∑
j:j �=i

(ai · aj)2 = ‖ai‖2︸ ︷︷ ︸
1

Therefore, we obtain the following:∑
j:j �=i

(ai · aj)2 = 0

This is possible only if the dot product of ai with each vector aj is 0. In other words,
each column of A is orthogonal to every other column. We have already proven that
each column has unit length. Therefore, A is an orthogonal matrix.
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41. Let A be a square n×n matrix so that (A+ I) has rank (n− 2). Let f(x) be the poly-
nomial f(x) = x3+x2+x+1. Show that f(A) has rank at most (n−2). Furthermore,
show that f(A) has rank exactly (n− 2) if A is symmetric.

The polynomial function f(A) can be represented as follows:

f(A) = (A+ I)(A2 + I)

The rank of f(A) is at most that of (A + I) (by the matrix multiplication rule of
ranks), which is (n − 2). Furthermore, when A is symmetric the other factor (I +
A2) = (I + ATA) is non-singular. This is because for any non-zero vector x we have
xT (I +ATA)x = ‖x‖2 + ‖Ax‖2 > 0. This means that (I +ATA)x is non-zero for any
x, and therefore the matrix is non-singular. Since the factor (I +A2) is non-singular,
the rank of f(A) = (I +A)(A+A2) is exactly equal to that of (I +A).

42. Suppose that a d × d matrix A exists along with d vectors x1 . . . xd so that xT
i Axj is

zero if and only if i 
= j. Show that the vectors x1 . . . xd are linearly independent. Note
that A need not be symmetric.

Suppose that the vectors are linearly dependent. Then scalars β1 . . . βd exist so that∑d
i=1 βixi = 0. Left-multiplying both sides with xT

1 A, we obtain β1 (x
T
1 Ax1)︸ ︷︷ ︸
�=0

= 0.

This means that β1 is zero. We can use a similar approach to prove each βi to be 0.
Therefore, the vectors are linearly independent.

43. Suppose that a d× d symmetric matrix S exists along with d vectors x1 . . . xd so that
xT
i Sxj is zero when i 
= j and positive when i = j. Show that 〈x, y〉 = xTSy is a valid

inner product over all x, y ∈ Rd.

The main point is to show the axioms for inner products. The commutative ax-
iom follows from the symmetric nature of S. The multiplicative and distributive
axioms follows from the simple algebra of xTSy. For the positive definite axiom,
we need to express an arbitrary vector x =

∑d
i=1 αixi. This is possible only be-

cause x1 . . . xd are linearly independent and span all of Rd. Then, one can show that
xTSx =

∑d
i=1 α

2
ix

T
i Sxi +

∑
i

∑
j �=i αiαjx

T
i Sxj . The first term is positive and the

second term is zero. The result follows.

44. Cauchy-Schwarz and triangle inequality for general inner products: Let u
and v be two vectors for which 〈u, u〉 = 〈v, v〉 = 1. Show using only the inner-product
axioms that |〈u, v〉| ≤ 1. Now show the more general Cauchy-Schwarz inequality by
defining u and v appropriately in terms of x and y:

|〈x, y〉| ≤
√
〈x, x〉〈y, y〉

Now use this result to show the triangle inequality for the triangle formed by x, y, and
the origin: √

〈x, x〉+
√
〈y, y〉〉 ≥

√
〈x− y, x− y〉

The first part can be shown by using the fact that both 〈u+v, u+v〉 and 〈u−v, u−v〉
are non-negative by the positive definiteness axiom. Note that these values can be zero,
if u = ±v. Therefore, we are not using strict inequality for the positive definiteness
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axiom. Now, distributing the expressions for 〈u + v, u + v〉 and 〈u − v, u − v〉, we
obtain 2 + 2〈u, v〉 and 2− 2〈u, v〉, which can both be nonnegative only when we have
|〈u, v〉| ≤ 1. Next, for arbitrary vectors x and y, we define u and v as follows:

u = x/
√
〈x, x〉

v = y/
√
〈y, y〉

These two vectors can be verified to have unit norm, and therefore, we have |〈u, v〉| ≤ 1.
By substituting the values of u and v in terms of x and y, we obtain the Cauchy-
Schwarz inequality.

Starting with twice the Cauchy Schwarz inequality, we can add the sum of squared
norms of x and y from both sides to obtain the following:

2|〈x, y〉|+ 〈x, x〉+ 〈y, y〉 ≤ 2
√
〈x, x〉〈y, y〉+ 〈x, x〉+ 〈y, y〉

We can remove the modulus without affecting the inequality while using −〈x, y〉 in
lieu of |〈x, y〉|. Therefore, we have the following:

−2〈x, y〉+ 〈x, x〉+ 〈y, y〉 ≤ 2
√
〈x, x〉〈y, y〉+ 〈x, x〉+ 〈y, y〉

Using the distributive axiom of inner products, we have shown the following:

〈x− y, x− y〉 ≤ 2
√
〈x, x〉〈y, y〉+ 〈x, x〉+ 〈y, y〉

≤ (
√
〈x, x〉+

√
〈y, y〉)2

Taking the square-root of both sides, we obtain the desired result.

45. If the matrix computed by the polynomial function f(A) =
∑d

i=0 ciA
i has rank strictly

greater than that of A, is there anything you can say about the coefficients c0 . . . cd?

The value of c0 must be non-zero, or else A becomes a factor of the polynomial
expression. In the latter case, the rank is bounded above by that of A.

46. Let S be a symmetric matrix and g(S) = S3 − S2 + S. Without using the results of
the next chapter, show that g(S) has the same rank as S.

We write g(S) as the product of S and f(S) = S2 − S + I. The function f(S) can be
written as f(S) = (S − I/2)2 + 3I/4 = (S − I/2)T (S − I/2) + 3I/4. Therefore, one
can show that xT f(S)x = ‖(S − I/2)x‖2 + 3‖x‖2/4. This value is always positive for
non-zero x. This also means that f(S)x is always non-zero for non-zero x. In other
words, f(S) has an empty null space and is non-singular. The product of S and a
non-singular matrix has the same rank as S.

47. Let A be an n ×m matrix and B be a k × d matrix. Show that the column space of
AXB is always a subspace of the column space of A, and the row space of AXB is a
subspace of the row space of B for any m× k matrix X.

Note that each column of AXB is a linear combination of the columns of A, by setting
Y = XB and using the columns of Y as the linear combination coefficients. The same
holds true for the row space.
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48. Suppose that A is an n×m matrix and B is a k × d matrix, both of full rectangular
rank. You want to find the m × k matrix X so that AXB = C, where C is a known
n×d matrix. What should the shapes of each of A and B be (i.e., tall, square, or wide)
for the system of equations to be guaranteed to have at least one consistent solution?
Derive an expression for one solution, X, in terms of A, B, and C in this case. When
is this solution unique?

A should be wide and B should be tall. This ensures that the column space of A
spans all of Rn and the row space of B spans all of Rd. Therefore, the column space
of C is a subspace of A and the row space of C is a subspace of B. Therefore, by
using the construction of the previous exercise, at least one solution X exists to this
system of equations. In fact, we can even get a closed-form solution because of the
full rank of the rectangular matrices in this particular case. A possible solution is
X = AT (AAT )−1C(BTB)−1BT . Note that we are left-multiplying C with the right
inverse of A, and right multiplying with the left-inverse of B. It is easy to verify that
AXB = C by plugging in the expression for X. The solution will not be unique unless
A and B are both square. In such a case, the solution simplifies to X = A−1CB−1.

49. Suppose that A is an n×m matrix and B is a k × d matrix, both of full rectangular
rank. A is tall and B is wide. The system of equations is inconsistent. You want to
find the best-fit m× k matrix X so that ‖C −AXB‖2F is as small as possible, where
C is a known n × d matrix. So you set Y ≈ XB, and first find the best-fit solution
to ‖C −AY ‖2F and then find the best-fit solution to ‖Y −XB‖2F . You use the normal
equations to derive closed-form expressions for X and Y . Show that the closed-form
solution for X and the best-fit C ′ to C are as follows:

X = (ATA)−1AT︸ ︷︷ ︸
Left Inverse

C BT (BBT )−1︸ ︷︷ ︸
Right inverse

, C ′ = A(ATA)−1AT︸ ︷︷ ︸
Project columns

C BT (BBT )−1B︸ ︷︷ ︸
Project rows

Note that the problem of optimizing ‖C−AY ‖2F can be decomposed into vanilla least-
squares problems ‖ci − Ayi‖ using the columns of C and Y , respectively. Therefore,
we get yi = (ATA)−1AT ci by using the normal equations. Note that ATA is invertible
because it is tall and of full rank. This yields Y = (ATA)−1ATC. Next, we decompose
the problem of minimizing ‖Y −XB‖2F using the rows of Y and B. Therefore, we get
X = CBT (BBT )−1. Combining the two, we get the desired result. The best-fit C ′ is
AXB.

50. Challenge Problem: Let A be an n × m matrix and B be a k × d matrix. You
want to find the m × k matrix X so that C = AXB, where C is a known n × d
matrix. Nothing is known about the linear independence of rows or columns of A, B,
and C. Propose a variation of the Gaussian elimination method to solve the system
of equations C = AXB. How can you recognize inconsistent systems of equations or
systems with an infinite number of solutions?

This can be achieved by using row reduction of A and column reduction of B. Note
that the echelon form of A is a row-centric echelon form, and the echelon form of
B is a column-centric echelon form. The transpose of a row-centric echelon form is
a column-centric echelon form. Every time a row operation is performed on A it is
performed on C, and every time a column operation is performed on B, it is performed
on C. At the end of the process, we will obtain the following system:

A′XB′ = C ′
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Here A′ is in row echelon form and B′ is in column echelon form. The system is
inconsistent if and only if (i) the ith row in A′ in zero, but the ith row in C ′ is not
zero, or (ii) the jth column in B′ is zero, but the jth column in C ′ is non-zero.

Assume that the system is consistent with matching zero rows and columns. We first
get rid of the matching zero rows and columns from A′, B′ and C ′. The system has
an infinite number of solutions if there are free columns in A′ or if there are free rows
in B′. One can write the reduced form of the equations as follows:

[UAFA]

[
X11 XF

12

XF
21 XF

22

] [
LB

FB

]
= C ′

Here, UA is a square, invertible upper-triangular matrix, FA are the free columns of
A, LB is a square, invertible lower triangular matrix, and FB are the free columns
of B. Similarly, the matrix X has been partitioned into one block X11 of non-free
variables, and three blocks of free variables, each of which is super-scripted by F . We
can expand the above equation as follows:

UAX11LB + UAX12FB + FAX21LB + FAX22FB = C ′

UAX11LB = C ′ − UAX12FB − FAX21LB − FAX22FB

The free variables blocks for X can be set to any values we want to matrices Λ, Σ and
Γ:

UAX11LB = C ′ − UAΛFB − FAΣLB − FAΓFB

Then, X11 can be found using two application of back substitution. Alternatively, if a
closed form is desired, we can invert the upper and lower triangular matrices UA and
LB to obtain the following:

X11 = U−1
A {C ′ − UAΛFB − FAΣLB − FAΓFB}L−1

B

51. Use the limit-based definition of the Moore-Penrose pseudoinverse to show that
ATAA+ = AT and B+BBT = BT .

We only show the first of the two results, because the second is very similar. We have
the following:

ATAA+ = limλ→0+A
TA(ATA+ λI)−1AT

= limλ→0+(A
TA+ λI − λI)(ATA+λI)−1AT

= limλ→0+(A
TA+ λI)(ATA+ λI)−1AT − λ(ATA+ λI)−1AT

= AT − limλ→0+λ(A
TA+ λI)−1AT

= AT − [limλ→0+λ] [limλ→0+(A
TA+ λI)−1AT ]︸ ︷︷ ︸
A+

= AT −A+limλ→0+λ = AT

Note that this proof is very simple if we are allowed to use singular value decomposition
and substitute A = QΣPT and A+ = PΣ+QT . However, this method is not used,
since it is not covered in this chapter. Nevertheless, it would be a useful exercise to
prove this using SVD, for those who are familiar with the technique.
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52. We know that the best-fit solution to Ax = b is given by x∗ = A+b. Therefore, we have
Ax∗ = AA+b. Show that the matrix AA+ is both symmetric and idempotent (which is
an alternative definition of a projection matrix). What type of projection does AA+

perform here?

The matrix AA+ is idempotent because we have (AA+)2 = (AA+A)A+. Now, one can
use the limit-based definition of the Moore-Penrose pseudoinverse in order to show
that AA+A = A. The proof of this is very similar to that of the previous exercise.
Therefore, the idempotent property is satisfied.

In order to show the symmetric property, note that we have:

(AA+)T = limλ→0+ [AA
T (AAT + λI)−1]T = limλ→0+ [(AA

T + λI)−1]TAAT

Now note that (AAT + λI) is symmetric, and the inverse of a symmetric matrix is
a symmetric matrix as well (see Exercise 22 of Chapter 1). Therefore, applying the
transposition to this inverse does not matter. Therefore, we can remove the transpo-
sition condition on this inverse to simplify the above as follows:

(AA+)T = limλ→0+(AA
T + λI)−1AAT

Now, based on Exercise 41 of Chapter 1, the matrix (AAT +λI)−1 and AAT commute,
because they are polynomial functions of the same matrix AAT . Therefore, we can
further simplify the above to the following:

(AA+)T = limλ→0+AA
T (AAT + λI)−1 = Alimλ→0+A

T (AAT + λI)−1 = AA+

Therefore, AA+ is symmetric as well. This makes AA+ a projection matrix. Note that
this proof is very simple if we are allowed to use singular value decomposition and
substitute A = QΣPT and A+ = PΣ+QT .

This projection matrix projects the vector b into the column space of A, and it works
even when the columns of A are not linearly independent. The basic idea is that the
best fit of b is always its projection into the column space of A irrespective of whether
or not A is of full rank. The Moore-Penrose pseudoinverse provides a way to compute
the projection matrix even for matrices that do not have linearly independent columns.
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Chapter 3

Diagonalizable Matrices and
Eigenvectors

1. Any d × d matrix A can be decomposed into O(d2) Givens rotations and at most
one elementary reflection. Discuss how the sign of the determinant of A determines
whether or not a reflection is needed.

The sign of the determinant flips when a reflection is needed.

2. Any d × d matrix A can be decomposed into at most O(d) Householder reflections.
Discuss the effect of the sign of the determinant on the number of Householder reflec-
tions.

An odd number of Householder reflections will be performed when the sign of the
determinant flips.

3. Show that if a matrix A satisfies A2 = 4I, then the eigenvalues of A include at least
one of the values 2 and −2.
It is easy to show that (A + 2I)(A − 2I) = 0. Then, for any vector x, we know that
(A+ 2I)(A− 2I)x = 0. One of the two cases must hold:

(A− 2I)x = 0 : In this case, it is clear that the matrix A has eigenvalue 2.

(A − 2I)x 
= 0 : In this case, we can set this nonzero vector to y. It is evident
that (A+ 2I)y = 0. Therefore, A has eigenvalue of −2.

4. You are told that a 4×4 symmetric matrix has eigenvalues 4, 3, 2, and 2. You are given
the values of eigenvectors belonging to the eigenvalues 4 and 3. Provide a procedure
to reconstruct the entire matrix.

Since the matrix is symmetric, its eigenvectors must be orthogonal. Furthermore,
the eigenspace for eigenvalue 2 has dimensionality 2. Therefore, one can pick any
pair of orthogonal vectors that are also orthogonal to the known eigenvectors as the
eigenvectors of eigenvalue 2. These four eigenvectors can then be used to construct
the eigenvector matrix V . The reconstructed matrix is then VΔV T .

5. Suppose that A is a square d× d matrix. The matrix A′ is obtained by multiplying the
ith row of A with γi and dividing the ith column of A with γi for each i. Discuss how
the eigenvectors of A are related to those of A′.
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The ith component of the eigenvector will get multiplied with γi. This is because we
have A′ = ΔAΔ−1, and the two matrices are similar. Here, Δ is a diagonal matrix in
which the ith entry is γi. It can be shown that if x is an eigenvector of A, then Δx is
an eigenvector of A′.

6. For a 4×4 matrix A with the following list of eigenvalues obtained from the character-
istic polynomial, state in each case whether the matrix is guaranteed to be diagonaliz-
able, invertible, both, or neither: (a) {λ1, λ2, λ3, λ4} = {1, 3, 4, 9} (b) {λ1, λ2, λ3, λ4} =
{1, 3, 3, 9} (c) {λ1, λ2, λ3, λ4} = {0, 3, 4, 9} (d) {λ1, λ2, λ3, λ4} = {0, 3, 3, 9} (e)
{λ1, λ2, λ3, λ4} = {0, 0, 4, 9}.—
(a) both, (b) invertible (c) diagonalizable (d) neither (e) neither

In each case, distinct eigenvalues are necessary to guarantee diagonalizability. Nonzero
eigenvalues ensure invertibility.

7. Show that any real-valued matrix of odd dimension must have at least one real eigen-
value. Show the related fact that the determinant of a real-valued matrix without any
real eigenvalues is always positive. Furthermore, show that a real-valued matrix of
even dimension with a negative determinant must have at least two distinct real-valued
eigenvalues.

Note that the expression det(A−λI) is a polynomial of odd degree, which has at least
one real root. Furthermore, for the case when the determinant of a real matrix does not
have real eigenvalues, the degree must be even. Furthermore, the value of det(A−λI)
is a polynomial of odd degree in which the highest (even) degree of the polynomial
has a positive coefficient. Therefore, for large absolute values of the polynomial, the
value of det(A − λI) is positive. Since the polynomial has no real roots, the entire
polynomial is positive for all values of λ including at λ = 0. In other words, det(A)
is positive. In the event that the determinant is negative, the polynomial is negative
at λ = 0. Therefore, it must have at least one positive root and one negative root in
order for det(A− λI) to switch to positive values at extreme values of λ.

8. Consider the Jordan normal form A = V UV −1. Show that the upper triangular matrix
U is in block diagonal form, where smaller upper-triangular matrices U1 . . . Ur are
arranged along the diagonal of U , and other entries are zeros. What is the effect of
applying a polynomial function f(U) on the individual blocks U1 . . . Ur? Use this fact
to provide a general proof of the Cayley-Hamilton theorem.

Applying a polynomial on a block diagonal matrix is equivalent to applying the poly-
nomial to each block. Now note that for a block of size r × r with eigenvalue λ, the
matrix (A−λI)r is a factor of the characteristic polynomial. The matrix (A−lambdaI)
is strictly triangular and nil potent. Therefore, its rth power is the zero matrix. In
other words, after applying the characteristic polynomial to each block, it will be set
to 0. The proof follows.

9. Provide an example of a defective matrix whose square is diagonalizable.

Consider a defective matrix A of size 2 × 2, which s strictly upper triangular with a
value of 1 as its only non-zero entry in the upper corner. This matrix has eigenvalue 0
with multiplicity of 2, and is not diagonalizable. Its square is the zero matrix, which is
diagonalizable. In fact, the matrix A is already (trivially) in Jordan normal form, and
one can use any invertible as V , so that B = V AV −1. Squaring this matrix results in
the 2×2 matrix of zeros. In general, if the only generalized eigenvectors corresponds to
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a Jordan block with zero eigenvalues, this becomes a possibility. Therefore, non-trivial
cases of this scenario can also be constructed by creating a single repeated eigenvalue
of zero and an eigenvalue of 1. Consider any matrix A of the following form with
arbitrary invertible matrix V :

A = V

⎡
⎣ 0 1 0

0 0 0
0 0 1

⎤
⎦V −1

This matrix is in Jordan normal form and is not diagonalizable. However, its square
is of the following diagonalizable form:

A2 = V

⎡
⎣ 0 0 0

0 0 0
0 0 1

⎤
⎦V −1

10. Let A and B be d× d matrices. Show that the matrix AB −BA can never be positive
semi-definite unless it is the zero matrix.

The trace of AB−BA is 0. This means that the sum of the eigenvalues is 0. The sum
of the eigenvalues of a positive semi-definite matrix is 0 if and only if all eigenvalues
are 0. This is true if and only if the matrix contains only zero entries.

11. Can the square of a matrix that does not have real eigenvalues be diagonalizable with
real eigenvalues? If no, provide a proof. If yes, provide an example.

Yes, it is possible. A matrix corresponding to a 900 rotation is not diagonalizable with
real eigenvalues. However, the square of this matrix is a 180o rotation, which is the
negative of the identity matrix. This matrix is already diagonal.

12. Let A and B be two diagonalizable matrices. Then, A and B are simultaneously di-
agonalizable if and only if AB = BA. You may assume for simplicity that algebraic
multiplicity of each eigenvalue is 1 (although the result is true in general). Further
show that if the matrices A, B, and AB are all symmetric, show that the matrices A
and B must be simultaneously diagonalizable.

If the two matrices are simultaneously diagonalizable as A = VΔ1V
−1 and B =

VΔ2V
−1, we have:

AB = VΔ1Δ2V
−1 = VΔ2Δ1V

−1 = BA

In other words, the matrices commute.

Now consider the case where the two matrices commute. It suffices to show that every
eigenvector of A is an eigenvector of B, and vice vera. If x is an eigenvector of B with
eigenvalue λ, we have:

B[Ax] = A[Bx] = λAx

In other words, Ax is an eigenvector of B with the same eigenvalue. To ensure an
algebraic multiplicity of 1 for eigenvectors of B with eigenvalue λ, Ax must be a
scalar multiple of x. In other words, x is an eigenvector of A as well.

According to the exercise mentioned in the problem hint, we must have AB = BA.
Then, according to the above result, since A and B are symmetric and AB = BA,
the matrices A and B are simultaneously diagonalizable.
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13. Suppose that the d × d matrix S is symmetric, positive semi-definite matrix, and the
matrix D is of size n× d. Show that DSDT must also be a symmetric, positive semi-
definite matrix.

It is easy to show thatDSDT is symmetric because (DSDT )T = DS(DT ). For positive
semi-definiteness, note that for any d-dimensional vector x, we have xTDSDTx =
yTSy by setting DTx = y. However, since S is positive semi-definite, we must have
yTSy ≥ 0. The result follows.

14. Let S be a positive semi-definite matrix, which can therefore be expressed in Gram
matrix form as S = BTB. Use this fact to show that the diagonal entries of a positive
semi-definite matrix can never be negative, and further show that positive definite
matrices cannot even have zero entries.

Each diagonal entry of S is of the form b
T

i bi = ||bi||2, where bi is the ith column of B.
This value can never be negative. Furthermore, this value can be 0 only when bi is 0
and B is singular. However, B cannot be singular for a positive definite matrix.

15. Show that if a matrix P satisfies P 2 = P , then all its eigenvalues must be 1 or 0.

Let (x, λ) be an eigenvector-eigenvalue pair of x. Since we have P 2−P = 0, it follows
that (P 2−P )x = 0. In other words, we have λ2x−λx = 0. This is possible only when
we have λ2 − λ = 0. In other words, we have λ ∈ {0, 1}.

16. Show that a matrix A is always similar to its transpose AT . A hint for solving this
problem is that a similar family is uniquely defined by its Jordan normal form. There-
fore, one can show that the upper triangular matrix in Jordan normal form is similar
to its transpose.

The Jordan normal form upper-triangular matrix can be shown to be similar to its
transpose, because reversing the order of the rows and columns of the Jordan blocks
yields the transpose of the Jordan upper-triangular matrix. Therefore, the two ma-
trices are similar by the use of a permutation matrix as the basis change. Since the
Jordan normal form upper-triangular matrix can its transpose are similar with the
use of a permutation matrix as the basis change, it follows that both belong to the
same family of similar matrices. However, any matrix A and AT can be shown to be
similar to the Jordan normal form upper-triangular matrix and its transpose.

17. Let x be a right eigenvector (column vector) of square matrix A with eigenvalue λr.
Let y be a left eigenvector (row vector) of A with eigenvalue λl 
= λr. Show that x and
yT are orthogonal.

y [Ax]︸︷︷︸
λrx

= [yA]︸︷︷︸
λly

x

λry x = λly x

Since the two eigenvalues are different, the above condition is possible only when
yx = 0.

18. True or False? (a) A matrix with all zero eigenvalues must be the zero matrix. (b) A
symmetric matrix with all zero eigenvalues must be the zero matrix.
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(a) False. Any nilpotent strictly triangular matrix has all zero eigenvalues, but it
is not the zero matrix. It is also not diagonalizable. (b) True. The key point is that
symmetric matrices are also diagonalizable. Therefore, it has to be in the form PΔPT ,
where Δ is the zero matrix. Therefore, the matrix is also a zero matrix.

19. Show that if λ is a non-zero eigenvalue of AB, then it must also be a non-zero eigen-
value of BA. Why does this argument not work for zero eigenvalues? Furthermore,
show that if either A or B is invertible, then AB and BA are similar.

Let x and λ be an eigenvector-eigenvalue pair of AB. Then, we have ABx = λx.
Left multiplying both sides with B we obtain BABx = λBx. One can regroup as
BA[Bx] = λBx. Therefore, Bx is an eigenvector of BA with eigenvalue λ. In the case
of zero eigenvalues we have ABx = 0. Therefore, we have BA[Bx] = 0. Unfortunately,
we have no way of knowing whether Bx is the zero vector. Eigenvectors are defined
as nonzero vectors.

When B is invertible, the two matrices are similar because we have BA = B(AB)B−1.
This is precisely the similarity relationship. A similar argument can be made when A
is invertible.

20. Is the quadratic function f(x1, x2, x3) = 2x2
1+3x2

2+2x2
3−3x1x2−x2x3−2x1x3 convex?

How about the function g(x1, x2, x3) = 2x2
1 − 3x2

2 + 2x2
3 − 3x1x2 − x2x3 − 2x1x3? In

each case, find the minimum of the objective function, subject to the constraint that
the norm of [x1, x2, x3]

T is 1.

The first quadratic function is convex because its 3 × 3 symmetric matrix can be
shown to all have positive eigenvalues, which makes its positive semi-definite. The
second quadratic function is not convex because its matrix has a negative diagonal
entry. In each case, the smallest normalized eigenvector of the corresponding matrix
provides the solution [x1, x2, x3].

21. Consider the function f(x1, x2) = x2
1 + 3x1x2 + 6x2

2. Propose a linear transforma-
tion of the variables so that the function is separable in terms of the new variables.
Use the separable form of the objective function to find an optimal solution for the
minimization problem.

One can use either eigenvectors or the generalized Gram-Schmidt method in order
to create conjugate directions. In this particular case, the expression can even be
represented as (x1 + 3x2/2)

2 + 15x2
2/4. Therefore, the variable transformations are

y1 = x1+3x2/2 and y2 = 0. As a result, one obtains y1 = y2 = 0, which in turn yields
x1 = x2 = 0.

22. Show that the difference between two similar, symmetric matrices must be indefinite,
unless both matrices are the same.

The difference between two symmetric matrices is symmetric, which makes the ma-
trices diagnolizable. The trace of the matrix is zero, which means that the sum of
eigenvalues of a diagonalizable matrix is 0. Therefore, some eigenvalues will have con-
flicting signs, unless the matrix is the zero matrix.

23. Show that an nth root of a d×d diagonalizable matrix can always be found, as long as
we allow for complex eigenvalues. Provide a geometric interpretation of the resulting
matrix in terms of its relationship to the original matrix in the case where the root is
a real-valued matrix.
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The nth root of PΔP−1 is PΔ1/nP−1. Note that the diagonal matrix might contain
complex eigenvalues. The scaling factors in the different directions are now the nth
roots along these directions.

24. Generate the equation of an ellipsoid centered at [1,−1, 1]T , and whose axes direc-
tions are the orthogonal vectors [1, 1, 1]T , [1,−2, 1]T , and [1, 0,−1]T . The ellipsoid is
stretched in these directions in the ratio 1 : 2 : 3. The answer to this question is not
unique, and it depends on the size of your ellipsoid. Use the matrix form of ellipsoids
discussed in the chapter.

Create a matrix P containing the normalized eigenvectors (axes directions in problem
statement) in its columns. Let c be the center of the ellipsoid. Let Δ be a diagonal
matrix which contains the inverse squares of the scale factors in its diagonal entries.
These factors are 1, 1/22 and 1/32. Then, the matrix A is A = PΔPT . Then, the
equation of the ellipsoid is [x− c]TA[x− c] = s2.

25. If A and B are symmetric matrices whose eigenvalues lie in [λ1, λ2] and [γ1, γ2],
respectively, show that the eigenvalues of A−B lie in [λ1 − γ2, λ2 − γ1].

Let x be a unit vector and C = P |DeltaPT . Then, we can show that xTCx =
(PTx)Δ(PTx)T = yTΔy, where y is the new unit vector in the orthogonal basis
system defined by P . The maximum value of yTΔy is the maximum entry of Δ and
the minimum value is the minimum entry of Δ. Now recognize that xT (A−B)x can
be written as xTAx − xTBx. For each of the individual terms use its minimum or
maximum value to obtain the desired result.

26. Consider a nonzero, square matrix A satisfying Ak = 0 for some k. Show that all
eigenvalues are 0 and such a matrix is defective.

Let λ be an eigenvector. Then, for any eigenvector x we have Akx = λkx. This is
possible only when λ = 0. If the matrix were to be diagonalizable, it would have a
diagonal matrix containing 0s. This is possible only when A is a zero matrix, which
is a contradiction.

27. Show that A is diagonalizable in each case if (i) it satisfies A2 = A, and (ii) it satisfies
A2 = I.

(i) In this case, the eigenvalues are either 1 or 0. Consider the case where the eigenvalue
with repeated multiplicity is 1. If the matrix is not diagonalizable because of this
eigenvalue, we can find a Jordan chain containing x and y so that Ax = x + y, and
Ay = y. Multiplying the first equation with A, we get A2x = x+ 2y. However, since
A2 = A, it follows that y must be the zero vector. One can make a similar argument
about the eigenvalue of 0.

(ii) This part is similar to (i), except that the eigenvalues are 1 or −1.
28. Elementary Row Addition Matrix Is Defective: Show that the d×d elementary

row addition matrix with 1s on the diagonal and a single nonzero off-diagonal entry
is not diagonalizable.

Let aij be the non-zero off diagonal entry. The characteristic polynomial is (1 −
λ)d, which yields a single eigenvalue of 1 with algebraic multiplicity d. However, the
geometric multiplicity of this eigenvalue is (d − 1), since aijxj = 0, and we cannot
choose any vector with xj = 1 in this eigenspace. Therefore, the matrix is defective.
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29. Show that any n × n matrix P satisfying P 2 = P and P = PT can be expressed in
the form QQT for some n × d matrix Q with orthogonal columns (and is hence a
projection matrix).

Since the matrix is symmetric, it can be diagonalized as OΣOT for some orthogonal
matrix O. Also, according to the solution to problem 27, the eigenvalues of this matrix
are either 1 or 0. Therefore, one can drop the eigenvectors with zero eigenvalues and
the diagonal entries of zero to write the matrix equivalently as QΣQT , where Q is a
rectangular matrix, and Σ is a smaller diagonal matrix containing only 1s (which is a
smaller identity matrix). Therefore, the matrix can be written as QQT .

30. Diagonalizability and Nilpotency: Show that every square matrix can be expressed
as the sum of a diagonalizable matrix and a nilpotent matrix (including zero matrices
for either part).

The Jordan normal form provides the mechanism to do this. Any matrix A can be
represented in the following form A = PJP−1. The matrix J = Δ + T , where Δ
is diagonal and T is strictly triangular (nilpotent). Furthermore, we can express the
Jordan normal form as PΔP−1 + PTP−1. The first part is diagonalizable and the
second part is nilpotent.

31. Suppose you are given the Cholesky factorization LLT of a positive definite matrix A.
Show how to compute the inverse of A using multiple applications of back substitution.

Suppose that X is the inverse of the d× d matrix A. Therefore, we have LLTX = I.
Let Y = LTX. Therefore, we have LY = I. Therefore, we have the following:

L[y1 . . . yd] = [e1 . . . ed]

Therefore, we have Lyi = ei. We can solve for yi using backsubstitution. One we have
solved for Y , we have the second system of equations:

LTX = LT [x1 . . . xd] = [y1 . . . yd]

Therefore we have LTxi = yi. Since xi is known now for each i, we can now solve for
each xi. Therefore, the inverse can be constructed as X = [x1 . . . xd].

32. Rotation with arbitrary axis: Suppose that the vector [1, 2,−1]T is the axis of a
counter-clockwise rotation of θ degrees, just as [1, 0, 0]T is the axis of the counter-
clockwise θ-rotation of the following Givens matrix:

R[1,0,0] =

⎡
⎣ 1 0 0

0 cos(θ) −sin(θ)
0 sin(θ) cos(θ)

⎤
⎦

Create a new orthogonal basis system of R3 that includes [1, 2,−1]T . Now use the
concept of similarity R[1,2,−1] = PR[1,0,0]P

T to create a 60o rotation matrix M about
the axis [1, 2,−1]T . The main point is in knowing how to infer P from the aforemen-
tioned orthogonal basis system. Be careful of the handedness of the new axis system.
Now show how to recover the axis and angle of rotation from M using complex-valued
diagonalization.

One can pick any pair of orthogonal vectors of [1, 2,−1], which are [1, 0, 1], and
[1,−1,−1], respectively. These vectors need to be normalized and put in the columns
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of P . Furthermore, to make sure that the matrix is a pure rotation without reflection,
the determinant of the matrix needs to be 1 rather than −1. Keeping the columns
in the aforementioned order ensures that their determinant is +1 rather than −1.
Therefore, we obtain the following matrix:

P =

⎡
⎣ 1/

√
6 1/

√
2 1/

√
3

2/
√
6 0 −1/√3

−1/√6 1/
√
2 −1/√3

⎤
⎦

The Givens rotation matrix for a 60o counter-clockwise rotation of column vectors is
as follows:

R60 =

⎡
⎣ 1 0 0

0 cos(60) −sin(60)
0 sin(60) cos(60)

⎤
⎦

Note that the ordering of the columns of the Givens rotation and the matrix P need
to be such that the axis column corresponds to the column [1, 0, 0]T in the rotation
matrix. This ensures that the coordinates lying on the axis of rotation do not change.
Then, the overall rotation matrix is as follows:

M = PR60P
T =

⎡
⎣ 0.58333333 0.52022006 0.62377345
−0.18688672 0.83333333 −0.52022006
−0.79044011 0.18688672 0.58333333

⎤
⎦

Just to confirm that this is indeed a 60o rotation matrix, we can pick any vector
orthogonal to the axis of rotation and check if it is rotated by 60o. For example, let
us test the unit vector x = [−3, 1,−1]T /√11. It is easy to verify that the transformed
version of this unit vector with matrix M uis the following:

Mx =
1√
11

⎡
⎣ −1.853553391.91421356

1.97487373

⎤
⎦

The dot product between x and Mx can be shown to be 0.5, which is the cosine of
60o.

Next, we show the reverse process of extracting the rotation angles and the axis of
rotation from matrix M . We first extract the eigenvectors and eigenvalues of M .

On performing the diagonalization of M (use any package such as numpy), we obtain
that the eigenvalues are 1, cos(60) + i sin(60), and cos(60)− i sin(60). The rotation is
clearly 60o, but we do not yet know whether this is clockwise or counter-clockwise. The
invariant eigenvector is returned as [−1,−2, 1]T . This is the axis of rotation, although
we note that it has been multiplied by −1 during recovery. This type of ambiguity
is natural during recovery because more than one answer is correct. Because of this
multiplication of the axis by −1, the rotation occurs 60o clockwise with respect to this
axis. This fact can be verified by creating the right-handed basis [−1,−2, 1], [1, 0, 1],
and [−1, 1, 1], and testing the final resting position Mz of the second basis vector
z = [1, 0, 1]T on performing the transformation Mz. A 60o clockwise rotation will
result in a negative dot product of Mz = [1.21,−0.71,−0.21]T with the third basis
direction [−1, 1, 1]T . It is evident that this is indeed the case here.
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33. Suppose that you are given the Jordan normal form of a matrix. Show how you can use
this form to quickly identify the rank of the matrix and all four fundamental subspaces
of the matrix.

Let the Jordan normal form be PJP−1. Then, the columns of P corresponding to
the non-zero eigenvectors (ordinary or generalized) together with the generalized zero
eigenvectors form the column space. A similar statement can be made about the row
space using rows of P−1. The orthogonal complement of the column space is the left
null space (zero ordinary eigenvectors in P ), and the orthogonal complement of the
row space is the right null space (zero left eigenvectors of P−1).

34. Consider the following quadratic form:

f(x1, x2, x3) = x2
1 + 2x2

2 + x2
3 + a x1x2 + x2x3

Under what conditions on a is the function f(x1, x2, x3) convex?

Let H be the Hessian. Then, the value of H − λI is computed as follows:

H =

⎡
⎣ 2− λ a 0

a 4− λ 1
0 1 2− λ

⎤
⎦

Let us compute the characteristic polynomial of the Hessian.

f(λ) = (2− λ)[(4− λ)(2− λ)− 1]− a2(2− λ)

= (2− λ)[(4− λ)(2− λ)− 1]− a2(2− λ)

= (2− λ)(7− 6λ+ λ2)− a2(2− λ)

= (14− 2a2)− (19− a2)λ+ 2λ2 − λ3

All roots of this equation need to be nonnegative. The constant coefficient is the
product of the roots, which needs to be non-negative. Therefore, we have 14−2a2 ≥ 0,
which implies that |a| ≤ √7. Second, the pairwise product of the roots must be
positive. Therefore, we have 19−a2 ≥ 0. Therefore, we have |a| ≤ √19. This inequality
is subsumed by the first one. Therefore, we need |a| ≤ √7.

35. Consider an n × n non-singular matrix A = BBT , which is the left Gram Matrix of
B. Propose an algorithm that takes B as input and generates 100 different matrices,
B1 . . . B100, such that A is the left Gram matrix of each Bi. How many such matrices
exist? Is it possible to obtain a Bi that is also symmetric like A? Is any Bi triangular?

Any matrix Bi = BP for orthogonal matrix P would be such that A is a left Gram
matrix of Bi. One can therefore generate 100 different orthogonal matrices by using
Gram-Schmidt orthogonalization on random vectors. One of the possible matrices is
the square-root matrix, which is symmetric. Cholesky factorization yields a triangular
B.

36. Let P be an n × n nonnegative stochastic transition matrix of probabilities, so that
the probabilities in each row sum to 1. Find a right eigenvector with eigenvalue 1 by
inspection. Prove that no eigenvalue can be larger than 1.

The vector of 1s, is an eigenvector with eigenvalue 1. Because of the fact that each
row of P sums to 1, the result of Px creates a vector y, so that each yi is a weighted
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average of the various xi. Therefore, none of the yi can be strictly greater than the
largest xi. However, if we have an eigenvalue greater than 1, this condition will be
violated.

37. Suppose that A = VΔV −1 is a diagonalizable matrix. Show that the matrix
limn→∞(I +A/n)n exists with finite entries.

This limit is equivalent to the following:

B = V limn→∞(I +Δ/n)nV −1

The limit would then be applied to each diagonal entry, which does exist. The resulting
diagonal entries are exp(λ1) . . . exp(λd).

38. Eigenvalues are scaling factors along specific directions. Construct an example of a
2× 2 diagonalizable matrix A and 2-dimensional vector x, so that each eigenvalue of
A is less than 1 in absolute magnitude and the length of Ax is larger than that of x.
Prove that any such matrix A cannot be symmetric. Provide an intuitive geometric
explanation of both phenomena.

The matrix A and vector x is defined as follows:

A =

[
0.9 0
0.9 0

]
, x =

[
0.9
0

]
, Ax =

[
0.9
0.9

]

The eigenvalues of A are 0.9 and 0.

Now consider the symmetric matrix PΔPT . We have the following:

‖Ax‖ = ‖P (ΔPTx)‖ = ‖Δ(PTx)‖ [Orthogonality of P ]

< ‖PTx‖ [Diagonal Δ with each value less than 1]

= ‖x‖ [Orthogoality of PT ]

The reason that eigenvalue can be less than 1 in asymmetric matrix but particular
vectors are scaled at factors greater than 1 is that the directions of scaling are non-
orthogonal. Therefore, the coordinates of a point can have larger norm than in the
standard basis. Therefore, the overall scaling factor in an arbitrary direction is not
guaranteed to be less than 1 even after reducing the lengths of individual components.
On the other hand, in the case of symmetric matrix the directions of scaling are
orthogonal; the coordinates of a point have the same norm as the point. Therefore,
if x is represented in the basis of P , both components reduce. Therefore, the vector
length will always decrease.

39. Mahalanobis distance: Let C = DTD/n be the covariance matrix of an n×d mean-
centered data set. The squared Mahalanobis distance of the ith row Xi of D to the
mean of the data set (which is the origin in this case) is given by the following:

δ2i = XiC
−1X

T

i

Let C = PΔPT be the diagonalization of C, and each row of Xi be transformed
to Zi = XiP . Normalize each attribute of the transformed data by dividing with
the standard derivation (of the transformed data) to make its variance 1 along each
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dimension and to create the new rows Z
′
1 . . . Z

′
n. Show that the Mahalanobis distance

δi is equal to ‖Z ′
i‖.

The value δ2i can be written as follows:

δ2i = XiC
−1X

T

i = Xi(PΔPT )−1X
T

i = (XiP )Δ−1(XiP )T = ZiΔ
−1Z

T

i = ‖ZiΔ
−1/2‖

The key point is to understand that ZiΔ
−1/2 contains the data after normalization

with standard deviation. This is because Δ contains the variances of the transformed
data. Therefore, ZiΔ

−1/2 is the same as Z
′
i.

40. Non-orthogonal diagonalization of symmetric matrix: Consider the following
diagonalization of a symmetric matrix:⎡

⎣ 3 0 1
0 4 0
1 0 3

⎤
⎦ =

⎡
⎣ 1/

√
2 0 1/

√
2

0 1 0

1/
√
2 0 −1/√2

⎤
⎦
⎡
⎣ 4 0 0

0 4 0
0 0 2

⎤
⎦
⎡
⎣ 1/

√
2 0 1/

√
2

0 1 0

1/
√
2 0 −1/√2

⎤
⎦

Find an alternative diagonalization VΔV −1 in which the columns of V are not or-
thogonal.

The key point here is that one can choose any basis of tied eigenvectors to construct
V and then calculate V −1 after the fact. For example, one can modify the above
diagonalization by adding columns 1 and 2 of the orthogonal matrix to create V with
a new column 1. Then, the diagonalization is as follows:⎡

⎣ 3 0 1
0 4 0
1 0 3

⎤
⎦ =

⎡
⎣ 1/

√
2 0 1/

√
2

1 1 0

1/
√
2 0 −1/√2

⎤
⎦
⎡
⎣ 4 0 0

0 4 0
0 0 2

⎤
⎦
⎡
⎣ 1/

√
2 0 1/

√
2

−1/√2 1 −1/√2
1/
√
2 0 −1/√2

⎤
⎦

Note that this type of non-orthogonal diagonalization is not possible if there are no
tied eigenvalues.

41. Power method with Gram matrix: Suppose that you have a 100000× 100 sparse
matrix D, and you want to compute the dominant eigenvector of the left Gram matrix
DDT . Unfortunately, DDT is of size 100000 × 100000, and it might not even be
sparse. This can cause computational problems. Show how you can implement the
power method using only sparse matrix-vector multiplications.

While implementing the power iterations, perform the updates as follows:

x⇐ D(DTx)

‖D(DTx)‖
Note the nesting of the brackets, which makes sure that DDT is never materialized.

42. Multiple choice: Suppose xT
i Axi > 0 for d vectors x1 . . . xd and d × d symmetric

matrix A. Then, A is positive definite if the different xi’s are (i) linearly independent,
(ii) orthogonal, (iii) A-orthogonal, (iv) any of the above, or (v) none of the above?
Justify your answer.

The correct answer is choice (iii). This is because if the vectors are A-orthogonal
and each xT

i Axi > 0, then the vectors x1 . . . xd are linearly independent. This follows
from the solution of Exercise 43 of the previous chapter. One can express any vector
x =

∑d
i=1 αixi. Plugging this value of x in xTAx, we obtain

∑d
i=1 α

2
ix

T
i Axi, which is

greater than 0.
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43. Convert the diagonalization in the statement of Exercise 40 into Gram matrix form
A = BTB and then compute the Cholesky factorization A = LLT = RTR using the
QR decomposition B = QR.

For a diagonalization A = QΔQT , we can convert it into a symmetric factorization
A = BTB using B = (Q

√
Δ)T . In this case, the matrix B turns out to be the following:

B =

⎡
⎣
√
2 0

√
2

0 2 0
1 0 −1

⎤
⎦

Next, we perform the QR decomposition of B as follows:

B =

⎡
⎣
√
2 0

√
2

0 2 0
1 0 −1

⎤
⎦ = QR =

⎡
⎣

√
2/3 0 −√1/3
0 1 0√
1/3 0

√
2/3

⎤
⎦
⎡
⎣
√
3 0

√
1/3

0 2 0

0 0 −√8/3

⎤
⎦

The matrix L is simply the transpose of R, which is the following:

L =

⎡
⎣
√
3 0 0
0 2 0√
1/3 0 −√8/3

⎤
⎦

The Cholesky factorization is simply LLT . Note that the Cholesky factorization can
be derived from any symmetric decomposition of a matrix by simply using the QR
method on the factor matrix. This point is also made in one of the practice problems
in the section on Cholesky factorization.

46



Chapter 4

Optimization Basics: A Machine
Learning View

1. Find the saddle points, minima, and the maxima of the following functions:

(a) F (x) = x2 − 2x+ 2

(b) F (x, y) = x2 − 2x− y2

For (a) x = 1 is a minimum, as it satisfies both first-order and second-order condition.
(b) x = 1 and y = 0 is a critical point with an indefinite Hessian.

2. Suppose that y is a d-dimensional vector with very small norm ε = ||y||2. Consider a
continuous and differentiable objective function J(w) with zero gradient and Hessian
H at w = w0. Show that yTHy is approximately equal to twice the change in J(w) by
perturbing w = w0 by ε in direction y/||y||.
This result can be shown by using the second-order Taylor series expansion about w.

3. Suppose that an optimization function J(w) has a gradient of 0 at w = w0. Further-
more, the Hessian of J(w) at w = w0 has both positive and negative eigenvalues. Show
how you would use the Hessian to (i) find a vector direction along which infinitesi-
mal movements in either direction from w0 decrease J(w); (ii) find a vector direction
along which infinitesimal movements in either direction from w0 increase J(w). Is w0

is maximum, minimum, or saddle-point?

The point is a saddle point. Positive eigenvectors correspond to directions along which
the point is a local minimum, whereas negative eigenvectors correspond to directions
along which the point is a local maximum.

4. We know that the maximum of two convex functions is a convex functions. Is the min-
imum of two convex functions convex? Is the intersection of two convex sets convex?
If the union of two convex sets convex? Justify your answer in each case.

Minimum is not convex. For example, the minimum of |x| and |x+2| is not convex with
two global minima and x = 0,−2. Intersection is convex and can be shown by using
the convexity condition. Union of two convex functions is not convex. For example,
the union of all the points lying on two straight lines in 2 dimensions is not a convex
set.
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5. Either prove each statement or give a counterexample: (i) If f(x) and g(x) are convex,
then F (x, y) = f(x)+ g(y) is convex. (ii) If f(x) and g(x) are convex, then F (x, y) =
f(x) · g(y) is convex.

The first statement is true. It is very similar to the proof that the sum of convex
functions is convex (although this is a bivariate function created out of two univariate
functions). The second statement is not true. For example, f(x) = x and g(x) = x are
convex, but F (x, y) = xy is not convex.

6. Hinge-loss without margin: Suppose that we modified the hinge-loss by removing
the constant value within the maximization function as follows:

J =

n∑
i=1

max{0, (−yi[W ·XT

i ])}+
λ

2
||W ||2

This loss function is referred to as the perceptron criterion. Derive the stochastic
gradient descent updates for this loss function.

The stochastic gradient descent updates are identical to the perceptron, except that we
perform updates for any point lying on the wrong side of the decision boundary (and
not worrying about the correctly classified points that are too close to the decision
boundary).

7. Compare the perceptron criterion of the previous exercise to the hinge-loss in terms
of its sensitivity to the magnitude of W . State one non-informative weight vector W ,
which will always be an optimal solution to the optimization problem of the previous
exercise. Use this observation to explain why a perceptron (without suitable modifica-
tions) can sometimes provide much poorer solutions with an SVM when the points of
the two classes cannot be separated by a linear hyperplane.

A zero weight vector provides a loss value of 9. Therefore, when the points are insep-
arable, the perceptron algorithm will focus too much on reducing the magnitude of
the weight vector.

8. Consider an unconstrained quadratic program of the form wTAw+ b
T
w+ c, where w

is a d-dimensional vector of optimization variables, and the d× d matrix A is positive
semi-definite. The constant vector b is d-dimensional. Show that a global minimum
exists for this quadratic program if and only if b lies in the column space of A.

The gradient of this objective function is 2Aw + b. In other words, the system Aw =
−b/2 needs to have a solution. This is possible if and only if b lies in the column space
of A.

One can show an unbounded solution more explicitly by using a variable transforma-
tion that creates a separable objective function (as discussed in section 3.3.3). With
this type of variable transformation, the linear part ends up having variables that are
not present in the quadratic part, and therefore those unmatched variables can be
set to extremely large positive or negative values to create an unbounded objective
function value. Let A = QΔQT be the diagonalization of A. We only need to consider
the case where A is not of full rank, and therefore some of the eigenvalues of A will be
0. In such a case, one can perform the transformation as A = PΔPT , and define the
new set of variables v = PTw. Then, the objective function can written as follows:

J = vTΔv + b
T
Pv + c

48



Note that the column space of A is defined by the nonzero eigenvectors of A. Therefore
d = PT b will be a vector in which there will be at least one nonzero entry dj at j = j1
for which Δjj = 0. The linear part of the objective function is of the form

∑
r drvr,

and the quadratic part is of the form δrr‖vr‖2. Depending on whether dj1 is positive
or negative we can set vj1 to unboundedly negative or positive values.

9. The text of the book discusses a stochastic gradient descent update of the Weston-
Watkins SVM, but not a mini-batch update. Consider a setting in which the mini-
batch S contains training pairs of the form (X, c), where each c ∈ {1, . . . , k} is the
categorical class label. Show that the stochastic gradient-descent step for each separator
W r at learning rate α:

W r ⇐W r(1− αλ) + α
∑

(X,c)∈S,r=c

X
T
[
∑
j �=r

δ(j,X)]− α
∑

(X,c)∈S,r �=c

X
T
[δ(r,X)] (4.1)

Here, W r is defined in the same way as the text of the chapter.

Let J(S) be the objective function defined only over the mini-batch S as follows:

J(S) =
∑

(X,c)∈S

∑
r:r �=c(i)

max(W
T

r ·X −W
T

c ·X + 1, 0) +
λ

2

k∑
r=1

||W r||2

The loss for each training instance can be decomposed into its loss from the different
separators. On working out the details of the gradient with respect to the parameters
in rth separator W r, we obtain the following:

∂J(S)

∂W r

= λW r −
∑

(X,c)∈S,r=c

X
T
[
∑
j �=r

δ(j,X)] +
∑

(X,c)∈S,r �=c

X
T
[δ(r,X)] (4.2)

This results in the following stochastic gradient-descent step for each separator W r

at learning rate α:

W r ⇐W r(1− αλ) + α
∑

(X,c)∈S,r=c

X
T
[
∑
j �=r

δ(j,X)]− α
∑

(X,c)∈S,r �=c

X
T
[δ(r,X)] (4.3)

10. Consider the following function f(x, y) = x2 + 2y2 + axy. For what values of a (if
any) is the function f(x, y) concave, convex, and indefinite?

The Hessian of this function is as follows:

H =

[
2 a
a 4

]

The characteristic polynomial of this matrix is (2 − λ)(4 − λ) − a2. This polynomial
simplifies to λ2 − 6λ+ 8− a2. Both roots of this equation can never be non-positive,
since the sum of the roots is 6. So the Hessian is never negative semi-definite, and the
function is not concave. However, the product of the roots is 8− a2. Therefore, both
roots are positive if and only if 8− a2 > 0. In other words, the function is convex for
a ∈ [−√8,√8], and it is indefinite otherwise.
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11. Consider the bivariate function f(x, y) = x3/6 + x2/2 + y2/2 + xy. Define a domain
of values of the function, at which it is convex.

The Hessian of this function is as follows:

H =

[
1 + x 1
1 1

]

The characteristic polynomial is λ2 − (2 + x)λ. Therefore the roots are λ = 0 and
λ = 2+x. In order for the function to be convex all eigenvalues have to be nonnegative.
Therefore, we have x ≥ −2. Therefore, restricting the domain of this function to
x ≥ −2 yields a convex function.

12. Consider the L1-loss function for binary classification, where for feature-class pair
(Xi, yi) and d-dimensional parameter vector W , the point-specific loss for the ith
instance is defined as follows:

Li = ||yi −W ·XT

i ||1
Here, we have yi ∈ {−1,+1}, and Xi is a d-dimensional row vector of features. The
norm used above is the L1-norm instead of the L2-norm of least-squares classification.
Discuss why the loss function can be written as follows for yi{−1,+1}:

Li = ||1− yiW ·XT

i ||1
Show that the stochastic gradient descent update is as follows:

W ⇐W (1− αλ) + αyiX
T

i sign(1− yiW ·XT

i )

Here, λ is the regularization parameter, and α is the learning rate. Compare this
update with the hinge-loss update for SVMs.

Since, y2i = 1, the loss function can be written as follows:

Li = ||yi − y2iW ·X
T

i ||1 = |yi|︸︷︷︸
1

||1− yiW ·XT

i ||1 = ||1− yiW ·XT

i ||1

The differentiation of the modulus is the sign operator. Therefore, we have the fol-
lowing:

∂Li

∂W
= −yiXT

i sign(1− yiW ·XT

i )

This results in the following regularized stochastic gradient descent update:

W ⇐W (1− αλ)− α
∂Li

∂W

The result follows. The hinge-loss can be viewed as a “repair” of this function, where

overperformance is not penalized. Therefore, when the value of 1− yiW ·XT

i < 0, the
update is not performed for hinge-loss SVM. However, in this case, the update will
still be performed in the case of L1-loss. This is the only difference from the hinge-loss
SVM. This is similar to the relationship between least-squares classification and the
L2-SVM.
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13. Let x be an n1-dimensional vector, and W be an n2 × n1-dimensional matrix. Show
how to use the vector-to-vector chain rule to compute the vector derivative of (Wx)�
(Wx) with respect to x. Is the resulting vector derivative a scalar, vector, or matrix?
Now repeat this exercise for F ((Wx)� (Wx)), where F (·) is a function summing the
elements of its argument into a scalar.

Let o = h� h and h = Wx. Then, the vector derivative is as follows:

∂o

∂x
=

∂h

∂x

∂o

∂h
= WT (2Δ)

Here, Δ is a diagonal matrix in which the kth diagonal entry contains the kth entry
of h.

In the second case, the final scalar value is J = F (o). In such a case, the chain rule
tells us the following:

∂J

∂x
=

∂h

∂x

∂o

∂h

∂J

∂o
= WT (2Δ)1 = 2WTh = 2WTWx

14. Let x be an n1-dimensional vector, and W be an n2×n1-dimensional matrix. Show how
to use the vector-to-vector chain rule to compute the vector derivative of W (x�x�x)
with respect to x. Is the resulting vector derivative a scalar, vector, or matrix? Now
repeat this exercise for G(W (x � x � x) − y), where y is a constant vector in n2-
dimensions, and G(·) is a function summing the absolute value of the elements of its
argument into a scalar. You may find it helpful to express G(·) as a composition of
functions.

The derivative is a matrix. One can first create the vector-to vector function F (x) =
x� x� x. Now define H(x) = WF (x). The vectored derivative of F (x) is a diagonal
matrix Δ of size n1×n1, in which the (i, i)th entry is 3x2

i . By using the vectored chain
rule, the derivative of H(x) with respect to x is ΔWT . Note the derivative of G(·)
with respect to its argument is a column vector containing the sign of its argument.
By further using the chain rule, one obtains the derivative of the function G(·) with
respect to x as ΔWT sign[W (x � x � x) − y]. Here, the sign function is applied in
element-wise fashion to its vector argument.

15. Show that if scalar L can be expressed as L = f(Wx) for m × d matrix W and
d-dimensional vector x, then ∂L

∂W will always be a rank-1 matrix or a zero matrix
irrespective of the choice of function f(·).
Let h = Wx =

∑
i xiwi, where wi is the ith column of W . Then, using the vector-to-

vector chain rule, we obtain the following:

∂L

∂wi
=

∂h

∂wi

∂L

∂h
= xiIm

∂L

∂h
= xi

∂L

∂h

Note that ∂h
∂wi

is an m×m diagonal matrix in which every diagonal entry is xi, and
can therefore be expressed as xiIm, where Im is an m×m identity matrix. The partial
derivative of L with respect to W can be obtained by stacking up all these derivatives
in the d columns. This leads to the outer-product form:

∂L

∂W
=

∂L

∂h
xT
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An outer-product matrix is either a rank-1 matrix or the zero matrix. The result
follows.

16. Incremental linear regression with added points: Suppose that you have a data
matrix D and target vector y in linear regression. You have done all the hard work to
invert (DTD) and then compute the closed-form solution W = (DTD)−1DT y. Now
you are given an additional training point (X, y), and are asked to compute the updated
parameter vector W . Show how you can do this efficiently without having to invert a
matrix from scratch. Use this result to provide an efficient strategy for incremental
linear regression.

Whenever a row vector X is appended to the bottom of matrix D, the corresponding

matrix DTD has the same size, but the matrix XX
T

gets added to it. This is a
rank-1 matrix. The efficient incremental inversion of such a matrix can be done using
the matrix inversion lemma of Chapter 1.

17. Incremental linear regression with added features: Suppose that you have a
data set with a fixed number of points, but with an ever-increasing number of di-
mensions (as data scientists make an ever-increasing number of measurements and
surveys). Provide an efficient strategy for incremental linear regression with regular-
ization.

The solution to linear regression with regularization can be expressed equivalently as
either (DTD + λId)

−1DT y or is DT (DDT + λIn)
−1y. The matrix DDT + λIn gets

updated by c cT whenever a column vector is added to D. This is a rank-1 update
that can be handled with the matrix inversion lemma.

18. Frobenius norm to matrix derivative: Let A be an n× d constant matrix and V
be a d× k matrix of parameters. Let vi be the ith row of V and V j be the jth column
of V . Show the following:

(a) The matrix ∂J
∂V be written by stacking up the row vectors ∂J

∂vi
into a matrix. How

would you do this using columns of V ? These tricks enable the use of scalar-to-
vector identities in the chapter for scalar-to-matrix derivatives.

(b) Let J = ‖V ‖2F . Show that ∂J
∂V = 2V . You may find it helpful to express the Frobe-

nius norm as the sum of vector norms and then use scalar-to-vector identities.

(c) Let J = ‖AV ‖2F . Express J using vector norms and the columns of V . Show that
∂J
∂V = 2ATAV by using the scalar-to-vector identities discussed in the chapter.
Now show that the derivative of J = ‖AV + B‖2 is 2AT (AV + B), where B is
an n × k matrix. What you just derived is useful for gradient descent in matrix
factorization.

The full solution is given in Chapter 8, where the derivative is computed using matrix
calculus.

19. Consider an additively separable multivariate function of the form J(w1, w2, . . . w100) =∑100
i=1 Ji(wi). Each Ji(wi) is a univariate function, which has one global optimum and

one local optimum. Discuss why the chances of coordinate descent to reach the global
optimum with a randomly chosen starting point are likely to be extremely low.

This problem has 2100 local optima, by using the combinations of the local optima on
different dimensions. Furthermore, once coordinate descent reaches a local optimum
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on even one dimension, it cannot escape from it. Therefore, it is highly likely for
coordinate descent to get stuck in one of the local optima.

20. Propose a computational procedure to use single-variable coordinate descent in or-
der to solve the L2-loss SVM. You may use line search for each univariate problem.
Implement the procedure in a programming language of your choice.

This is an implementation exercise.

21. Consider a bivariate quadratic loss function of the following form:

f(x, y) = a x2 + b y2 + 2c xy + d x+ e y + f

Show that f(x, y) is convex if and only if a and b are non-negative, and c is at most
equal to the geometric mean of a and b in absolute magnitude.

The Hessian of this function is a constant everywhere since it is quadratic, and is as
follows:

H =
2a 2c
2c 2b

This matrix needs to be positive semi-definite. Therefore, the trace is non-negative,
which means that a+ b ≥ 0. Also the determinant is non-negative, which means that
ab − c2 ≥ 0. The latter also implies that ab ≥ 0. Therefore, the sum and product of
a and b are nonnegative, which means that a and b are non-negative. Furthermore,
since ab ≥ c2, it means that c is at most equal to the geometric mean of a and b in
absolute magnitude. It is possible for c to be negative.

22. Show that the functions f(x) =
√〈x, x〉 and g(x) = 〈x, x〉 are both convex. With

regard to inner products, you are allowed to use only the basic axioms, and the Cauchy-
Schwarz/triangle inequality.

We first show that f(x) is convex.

f(λx+ (1− λ)y) =
√
〈λx+ (1− λ)y, x+ (1− λ)y〉

≤
√
〈λx, λx〉+

√
〈−(1− λ)y,−(1− λ)y〉 [Triangle Inequality]

=
√
λ2〈x, x〉+

√
(1− λ)2〈y, y〉 [Multplicative axiom]

= λ
√
〈x, x〉+ (1− λ)

√
〈y, y〉

= λf(x) + (1− λ)f(y)

Therefore, the function f(x) is convex. Furthermore, g(x) = f(x)2, where f(x) is
non-negative because of the positive definite axiom. Therefore, g(x) is convex as well.

23. Two-sided matrix least-squares: Let A be an n × m matrix and B be a k × d
matrix. You want to find the m×k matrix X so that J = ‖C−AXB‖2F is minimized,
where C is a known n × d matrix. Derive the derivative of J with respect to X and
the optimality conditions. Show that one possible solution to the optimality conditions
is X = A+CB+, where A+ and B+ represent the Moore-Penrose pseudo-inverses of
A and B, respectively.

One can express the objective function by decomposing it into the individual terms:

J =
∑
i

∑
j

(cij −
∑
k

∑
l

aikxklblj)
2
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Therefore, we have the following:

∂J

∂xpq
= −2

∑
i

∑
j

aip(cij −
∑
k

∑
l

aikxklblj)bqj = −2aTp (C −AXB)b
T

q

Here, ap is the pth column of A and bq is the qth row of B. One can write this in
matrix calculus form:

∂J

∂X
= −2AT (C −AXB)BT

Note that this is the derivative of X, and one can perform the optimization by per-
forming the following updates after absorbing the factor of 2 in the learning rate:

X ⇐ X + αAT (C −AXB)BT

Alternatively, one may obtain the optimality conditions by setting the derivative to
0:

AT (C −AXB)BT = 0

Note that this system of equations may not have a unique solution. The unique solution
exists of A is tall with linearly independent columns and B is wide with linearly
independent rows. In such a case, the unique solution is shown in Exercise 49 of
Chapter 2:

X = (ATA)−1AT︸ ︷︷ ︸
Left Inverse

C BT (BBT )−1︸ ︷︷ ︸
Right inverse

However, in the general case, when nothing can be assumed on linear independence,
one possible solution is X∗ = A+CB+, and there might be alternative solutions. The
fact that X∗ is one possible solution can be proven by showing that this solution
satisfies the optimality conditions:

AT (C −AX∗B)BT = ATCBT −ATAX∗BBT

= ATCBT −ATAA+︸ ︷︷ ︸
AT

C
BT

B+BBT︸ ︷︷ ︸
= ATCBT −ATCBT = 0

Note that we used the result of Exercise 51 of Chapter 2 in order to simplify the above
equation.

24. Suppose that you replace the sum-of-squared-Euclidean objective with a sum-of-
Manhattan objective for the k-means algorithm. Show that block coordinate descent
results in the k-medians clustering algorithm, where the each dimension of the “cen-
troid” representative is chosen as the median of the cluster along that dimension and
assignment of points to representatives is done using the Manhattan distance instead
of Euclidean distance.

The basic strategy for block coordinate descent is the same, where the assignment
variables define one block and the representative variables form the other block. The
argument for this is that the assignment step does not change by the change in ob-
jective function, since a point is always assigned to its closest representative. The
only difference is that Manhattan distance is used to choose closest representatives
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for for assignment of points to representatives, whereas the k-means algorithm uses
the Euclidean distance in order to choose closest representatives to data points. The
determination of representatives is more fundamentally affected by the change in the
objective function. In each cluster, the representative minimizing the Manhattan dis-
tance is the dimension-wise median.

25. Consider the cubic polynomial objective function f(x) = ax3 + bx2 + cx + d. Under
what conditions does this objective function not have a critical point? Under what
conditions is it strictly increasing in [−∞,+∞]?

The derivative of this expression is 3ax2 + 2bx + c. This quadratic does not have a
zero when its discriminant is negative. This occurs when 4b2 − 12ac < 0. In other
words, we must have b2 − 3ac < 0. The function is strictly increasing only when this
condition is true and we have 3ax2 + 2bx+ c > 0. This occurs when a > 0.

26. Consider the cubic polynomial objective function f(x) = ax3 + bx2 + cx + d. Under
what conditions does this objective have exactly one critical point? What kind of critical
point is it? Give an example of such an objective function.

By a similar argument as the previous exercise the derivative must have exactly one
root. Therefore, we must have b2 − 3ac = 0. This type of critical point is a saddle
point because the sign of the derivative is the same on both sides of the critical point.
An example of such a function is f(x) = x3.

27. Let f(x) be a univariate polynomial of degree n. What is the maximum number of
critical points of this polynomial? What is the maximum number of minima, maxima,
and saddle points?

The derivative of f(x) is a polynomial of degree (n − 1), which has at most (n − 1)
roots according to the fundamental theorem of algebra. Of these, only alternate roots
can be minima or maxima. Therefore, at most �(n− 1)/2� = �n/2� roots are minima
or maxima. Furthermore, a saddle point requires a repeated root, of the degree (n−1)
polynomial. Therefore, there are at most �(n− 1)/2� = �n/2� − 1 saddle points.

28. What is the maximum number of critical points of a polynomial of degree n in d
dimensions? Give an example of a polynomial where this maximum is met.

The maximum number of critical points is (n−1)d. This maximum is met for linearly
separable functions in which each univariate function has (n− 1) critical points.

29. Suppose that h and x are column vectors, and W1, W2, and W3 are matrices satisfying

h = W1W2x−W 2
2W3x+W1W2W3x. Derive an expression for ∂h

∂x .

In this case, one can use the relationship that if h = Cx, then the vector-to-
vector derivative of h with respect to x is CT . In this case, we can set C =
W1W2 − W 2

2W3 + W1W2W3 in order to obtain the final expression as WT
2 WT

1 −
WT

3 WT
2 WT

2 +WT
3 WT

2 WT
1 .

30. Consider a situation in which hi = WiWi−1hi−1, for i ∈ {1 . . . n}. Here, each Wi

is a matrix and each hi is a vector. Use the vector-centric chain rule to derive an

expression for ∂hi

∂h0
.

It is easy to show that ∂hi

∂hi−1
= WT

i−1W
T
i . Then, by using the vector-centric chain

rule, we obtain the expression WT
0 (

∏n−1
i=1 WT

i WT
i )WT

n .
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Chapter 5

Optimization Challenges and
Advanced Solutions

1. Consider the loss function L = x2+y10. Implement a simple steepest-descent algorithm
to plot the coordinates as they vary from the initialization point to the optimal value
of 0. Consider two different initialization points of (0.5, 0.5) and (2, 2) and plot the
trajectories in the two cases at a constant learning rate. What do you observe about
the behavior of the algorithm in the two cases?

This is an implementation exercise.

2. As shown in this chapter, the number of steps taken by gradient descent is very sen-
sitive to the scaling of the variables. In this exercise, we will show that the Newton
method is completely insensitive to the scaling of the variables. Let x be the set of
optimization variables for a particular optimization problem (OP). Suppose we trans-
form x to y by the linear scaling y = Bx with invertible matrix B, and pose the same
optimization problem in terms of y. The objective function might be non-quadratic.
Show that the sequences x0, x1 . . . xr and y0, y1 . . . yr obtained by iteratively applying
Newton’s method will be related as follows:

yk = Bxk ∀k ∈ {1 . . . r}

A function f(x) becomes f(B−1y). The gradient of the objective function is

B−1∇f(B−1y). The Hessian is B−1H(B−1y)B−1T . Let us assume that xi = yi for
i = 1 . . . t. On substituting these values in the Newton update, we obtain the desired
result.

3. Write down the second-order Taylor expansion of each of the following functions about
x = 0: (a) x2; (b) x3; (c) x4; (d) cos(x).

(a) x2, (b) 0, (c) 0, (d) 1− x2/2

4. Suppose that you have the quadratic function f(x) = ax2+bx+c with a > 0. It is well
known that this quadratic function takes on its minimum value at x = −b/2a. Show
that a single Newton step starting at any point x = x0 will always lead to x = −b/2a
irrespective of the starting point x0.
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The gradient is 2ax0 + b and the second derivative is 2a. The Newton update is:

x← x0 − (2ax0 + b)/2a = −b/2a

5. Consider the objective function f(x) = [x(x− 2)]2 + x2. Write the Newton update for
this objective function starting at x = 1.

The first derivative ar x = 1 is 2. The second derivative is 12x2−24x+8+2 = −2. The
Newton update is therefore x⇐ x−2/(−2) = x+1 = 2. Note that The Newton update
increases the objective function value, and this objective function is not convex.

6. Consider the objective function f(x) =
∑4

i=1 x
i. Write the Newton update starting at

x = 1.

The first derivative is 4 + 3 + 2 + 1 = 10. The second derivative is 12 + 6 + 2 = 20.
The update is x← x− 10/20 = 1− 0.5 = 0.5.

7. Is it possible for a Newton update to reach a maximum rather than a minimum?
Explain your answer. In what types of functions is the Newton method guaranteed to
reach either a maximum or a minimum?

The Newton update can reach any type of critical point. For concave functions, the
Newton method will always be able to reach a maximum.

8. Consider the objective function f(x) = sin(x)− cos(x), where the angle x is measured
in radians. Write the Newton update starting at x = π/8.

The first derivative is cos(π/8) + sin(π/8) = 0.924 + 0.383 = 1.307. The second
derivative is cos(π/8) − sin(π/8) = 0.924 − 0.383 = 0.541. The update is x ⇐ x −
1.307/0.541 = π/8− 1.307/0.541 = −2.02.

9. The Hessian H of a strongly convex quadratic function always satisfies xTHx > 0
for any nonzero vector x. For such problems, show that all conjugate directions are
linearly independent.

Suppose that the conjugate directions are not linearly independent. Without loss of
generality, assume that qd can be expressed in terms of q1 . . . qd−1.

qd =

d−1∑
i=1

λiqi (5.1)

Then, we have qTd Hqd = 0 by expanding one of the two qd in the above expression in
terms of its linear dependents. However, this is in contradiction to the fact that H is
positive definite.

10. Show that if the dot product of a d-dimensional vector v with d linearly independent
vectors is 0, then v must be the zero vector.

Let x1 . . . xd be the d linearly independent vectors. These vectors form a basis for
d-dimensional space, and therefore the vector v must be expressed as a linear combi-
nation of x1 . . . xd. Therefore, we have v =

∑d
i=1 αixi. By taking the dot product of

both sides with v we get the following:

||v||2 =

d∑
i=1

αi(v · xi) =

d∑
i=1

αi(0) = 0 (5.2)

The modulus of a vector is zero, when the vector is itself zero.
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11. The chapter uses steepest descent directions to iteratively generate conjugate direc-
tions. Suppose we pick d arbitrary directions v0 . . . vd−1 that are linearly independent.
Show that (with appropriate choice of βti) we can start with q0 = v0 and generate
successive conjugate directions in the following form:

qt+1 = vt+1 +

t∑
i=0

βtiqi (5.3)

Discuss why this approach is more expensive than the one discussed in the chapter.

Pre-multiply both sides of Equation 5.3 with the row vector qTi H and use the conju-
gacy condition to set the LHS to 0. This results in the following value of βti:

βti = −qTi Hvt+1

qTi Hqi
(5.4)

This approach requires us to maintain all previous directions, and also requires us to
compute O(d) values of βti for varying i. Therefore, the approach is not as time- and
space-efficient.

12. The definition of βt ensures that qt is conjugate to qt+1. This exercise systematically
shows that any direction qi for i ≤ t satisfies qTi Hqt+1 = 0.

(a) Recall that Hqi = [∇L(W i+1)−∇L(W i)]/δi for quadratic loss functions, where
δi depends on ith step-size. Show the following for all i ≤ t:

δi[q
T
i Hqt+1] = −[∇L(W i+1)−∇L(W i)]

T [∇L(W t+1)] + δiβt(q
T
i Hqt)

Also show that [∇L(W t+1)−∇L(W t)] · qi = δtq
T
i Hqt.

(b) Show that ∇L(W t+1) is orthogonal to each qi for i ≤ t. [The proof for the case
when i = t is trivial because the gradient at line-search termination is always
orthogonal to the search direction.]

(c) Show that the loss gradients at W 0 . . .W t+1 are mutually orthogonal.

(d) Show that qTi Hqt+1 = 0 for i ≤ t. [The case for i = t is trivial.]

Since Hqi = [∇L(W i+1) −∇L(W i)]/δi, we can use the transpose of the vector con-
dition while keeping in mind that H is symmetric:

qTi H = [∇L(W i+1)−∇L(W i)]
T /δi (5.5)

Now note that successive conjugate directions are generated as qt+1 = −∇L(W t+1)+
βtqt. Pre-multiplying both sides with qTi H for i ≤ t, we get the following:

qTi Hqt+1 = −qTi H[∇L(W t+1)] + βtq
T
i Hqt (5.6)

Now substituting for only the first qTi H in the right-hand side of Equation 5.6 using
Equation 5.5, we get the desired result.

Also since we have Hqt = [∇L(W t+1)−∇L(W t)]/δt, we can pre-multiply both sides
with the row vector qTi to get the second result of (a). Note that the right-hand side
can also be written as a dot product, since it is the product of a row vector and a
column vector.
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Joint proof of (b), (c), (d): We will make the inductive assumption that all the
statements of (b), (c), and (d) are true for values of t that are less than or equal to
k − 1, and we will show the results at t = k.

First, from (a), we have already proved that ∇L(W k+1) ·qi = ∇L(W k) ·qi+δkq
T
i Hqk

for i < k. Both the terms on the right-hand side are zero because of the inductive
assumption in the case where i < k − 1. For the case when i = k − 1 both terms are
also zero because of the line-search condition ∇L(W k) · qk−1 = 0 and also because of
the fact that qTk−1Hqk = 0 by definition. Therefore, we have shown the induction for
(b).

Next, we will examine the orthogonality of gradient ∇L(W k+1) with gradient of
∇L(W i). In the case where i = k, we know that ∇L(W k+1) · qk = 0 because of the
line-search condition. Now expanding qk = βk−1qk−1 − ∇L(W k) and taking the dot

product of both sides with ∇L(W k+1), we get 0 = ∇L(W k+1) · [βk−1qk−1−∇L(W k)].
Note that we have used the line-search condition to set the LHS to 0. Now note that
the first of the two terms on the RHS sets to 0 because of the inductive assumption,
which leaves only the term involving successive gradients. Therefore, we get the result
that immediately successive gradients ∇L(W k) and ∇L(W k+1) are orthogonal.

Next, we will show the result that ∇L(W i) is orthogonal to ∇L(W k+1) for i < k.
By rearranging the recursive definition of qi in terms of gradient at W i and qi−1,

the gradient ∇L(W i) can be expressed as a linear combination of qi and qi−1. Both

qi and qi−1 are orthogonal to ∇L(W k+1) based on the inductive assumption, and

therefore any linear combination of them must also be orthogonal to ∇L(W k+1). In
other words, ∇L(W i) is orthogonal to ∇L(W k+1) for i < k. Therefore, we have shown
the induction for (c).

Next, we will show the induction for (d) only for the case when i < k. This is because
conjugacy between immediately successive directions follows from the way in which
qk+1 is defined as a function of qk and how βk is chosen. We restate the result we
showed in (a) using the inductive index k.

δi[q
T
i Hqk+1] = −[∇L(W i+1)−∇L(W i)]

T [∇L(W k+1)] + δiβk(q
T
i Hqk)

Now observe that the first term on the RHS is 0 because of what we proved in (c).
The second term on the RHS is 0 because of the inductive assumption. Therefore, we
have shown that the LHS is 0 as well. This completes the induction for (d), which is
the conjugacy condition.

The initialization conditions of the induction can be shown in a relatively simple way
by using the fact that the gradient at the optimal point found by line search is always
orthogonal to the original direction, and also the fact that immediately successive
directions are always conjugate (by definition).

13. Consider a setting in which your data set has a smaller number of points than the
number of dimensions, and you are using the Newton method in conjunction with a
regularized L2-loss SVM. Discuss how you can use this fact to make the update more
efficient.

Note that the solution (DTΔwD+ λId)
−1DTΔwy can also be written as (DTΔwD+

λId)
−1DT

√
Δwy because of the binary nature of the diagonal matrix. Set Dw =√

ΔwD. Then, the above matrix is (DT
wDw + λId)

−1DT
wy, which is equivalent to
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DT
w(DwD

T
w + λIn)

−1y by the Woodbury identity. The latter inverts a smaller ma-
trix, since n is much less than d.

14. Saddle points are ubiquitous in high dimensions: Consider the function f(x) =
x3 − 3x with a minimum at x = −1 and a maximum at x = 1. Define the following
multivariate function:

F (x1 . . . xd) =

d∑
i=1

f(xi)

Show that this function has one minimum, one maximum, and 2d − 2 saddle points.
Argue why high-dimensional functions have proliferating saddle points.

The single minimum is a vector containing only the values of −1, and the single
maximum is a vector containing only the values of +1. Any combination of +1 and
−1 for the variables is a saddle point. High-dimensional functions have proliferating
saddle points because all directions must be either increasing or decreasing at a given
critical point for it to be a minimum or a maximum. This is exponentially less likely
than the different directions to be a combination of increasing or decreasing directions.

15. Give a proof of the unified Newton update for machine learning.

The first step is to show that the first gradient is of the form DTΔ11+λW . Note that
the point specific gradient for the loss term is given by L′(y, zi)X)Ti y the use of the
chain rule. After adding the point specific gradients and the regularization gradient,
we get the following overall gradient:

∇J = λW +

n∑
i=1

L′(y, zi)X)Ti = DTΔ11 + λW

Similarly, the point specific Hessian of the loss component can be shown to b

L′′(yi, zi)XiX
T

i . After adding the point-specific Hessians and the effect of regular-
ization, we get the following overall Hessian:

H = DTΔ2D + λI

Therefore, by combining the Hessians and gradient we obtain the overall Newton
update as follows:

W ⇐W − αH−1∇J
The result follows.

16. Consider a directed-acyclic graph G (i.e., graph without cycles) with source node s and
sink t. Each edge is associated with a length and a multiplier. The length of a path from
s to t is equal to the sum of the edge lengths on the path and the multiplier of the path
is the product of the corresponding edge multipliers. Devise dynamic programming
algorithms to find (i) the longest path from s to t, (ii) the shortest path from s to t,
(iii) the average path length from s to t, and (iv) the sum of the path-multipliers of
all paths from s to t.

In each case, nodes are visited starting from the source. A node is visited only when
all its incoming nodes have been visited. If all incoming nodes have been visited for
multiple nodes then ties are broken arbitrarily. Each visited node maintains the value
of interest. When the sink is reached, its value of interest is automatically computed.
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(i) Each visited node maintains its longest path length, with the source being initial-
ized to 0. For a visited node we set the longest path length of the node as the longest
of all possibilities among all incoming edges by adding incoming edge length to the
length label on incoming node.

(ii) This is the same as (i), except that we select the shortest path rather than the
longest path.

(iii) We maintain two separate values with nodes corresponding to the number of
paths and the sum of path lengths. The sum of path lengths at a node is equal to
the sum of incoming edge length and all the path length values at incoming nodes.
The source is initialized to 1. The number of paths at a node is equal to sum of the
number of paths at incoming nodes, with the source being initialized to 1. At the sink,
we divide the sum of path lengths with the number of paths to yield the average path
length.

(iv) We maintain the sum of path multipliers at the nodes. The value at a visited
node is obtained by multiplying each incoming edge length with the value on the
corresponding incoming node and adding all these values.

17. Give an example of a univariate cubic along with two possible starting points for
Newton’s method, which terminate in maxima and minima, respectively.

Consider the following cubic function:

f(x) = x3 − 6x2 + 9x− 10

It is easy to set the derivative to 0 and find that the critical points are x = 1 and
x = 3. The former is a maximum, whereas the latter is a minimum. Furthermore, the
second derivative is 6x − 12, which is negative for x > 2 and positive for x < 2. It
can be shown that starting the Newton method at any point x < 2, where the 1 × 1
Hessian is positive definite will converge to the minimum solution. On the other hand,
starting the Newton method at x > 2, where the Hessian is negative definite, will
converge to the maximum solution.

18. Linear regression with L1-loss minimizes ‖DW − y‖1 for data matrix D and target
vector y. Discuss why the Newton method cannot be used in this case.

The function is not twice differentiable. Therefore, the Hessian cannot be computed.
This is a similar reason to why the L1-loss SVM cannot be used in this case.
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Chapter 6

Lagrangian Relaxation and
Duality

1. Suppose you want to find the largest area of rectangle that can be inscribed in a circle
of radius 1. Formulate a 2-variable optimization problem with constraints to solve this
problem. Discuss how you can convert this problem into a single-variable optimization
problem without constraints.

Let x be length of the rectangle and y be its width. The diagonal of the rectangle is the
diameter of the circle, and therefore be have x2+ y2 = 4, which is the constraint. The
objective function is xy. One can eliminate y in order to create the area x

√
4− x2.

2. Consider the following optimization problem:

Minimize x2 + 2x+ y2 + 3y

subject to:

x+ y = 1

Suppose that (x0, y0) is a point satisfying the constraint x + y = 1. Compute the
projected gradient at (x0, y0).

The unconstrained gradient at (x0, y0) is [2x0 + 2, 2y0 + 3]T . Here, the matrix A is
[1, 1]. Therefore, we need to compute the matrix (I − AT (AAT )−1A). One can show
that this is a 2 × 2 matrix with 0.5 on each diagonal and −0.5 on each off-diagonal.
Pre-multiplying the unconstrained gradient with this matrix, we obtain the fact that
the projected gradient is [2x0 − 2y0 − 1,−2x0 + 2y0 + 1]T . Note that the gradient is
such that increasing x by a particular amount with decrease y by the same amount,
and vice versa.

3. Use the method of variable transformation to eliminate both the constraint and variable
y in Exercise 2. Compute the optimal solution of the resulting unconstrained problem.
What is the optimal objective function value?

We simply substitute y = 1−x in order to obtain a modified objective function, which
is x2 + 2x+ (1− x)2 + 3(1− x) = 2x2 − 3x+ 4. This function takes on its minimum
at x = 3/4. The optimum objective function value is 23/4.
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4. Compute the dual of the objective function in Exercise 2. Compute the optimal solution
as well as the resulting objective function value.

The dual of the objective function is given by x2 + 2x+ y2 + 3y + α(x+ y − 1). The
gradient with respect to x results in 2x+ 2 + α = 0 and the gradient with respect to
y results in 2y + 3 + α = 0. Eliminating α, we obtain 2(x − y) = 1. Combining with
the condition x+ y = 1, we obtain 4x = 3 or x = 3/4. The value of α is −7/2, and y
is 1/4. Note that the dual has a single feasible point in this case. The dual objective
function can be written as follows:

L(α) = α2/2− 13/4

This relaxation has a single feasible point at α = −7/2. The optimal dual objective
function value for this single feasible point is 49/8− 13/4 which is equal to 23/8. One
can easily verify that the optimal primal solution also evaluates to the same value.

5. Implement a gradient-descent algorithm for linear regression with box constraints. Use
Python or any other programming language of your choice.

This is an implementation algorithm.

6. Linear programming dual: Consider the following linear programming optimization
problem with respect to primal variables w = [w1, w2, . . . wd]

T :

Minimize

d∑
i=1

ciwi

subject to:

Aw ≤ b

Here, A is an n× d matrix, and b is an n-dimensional column vector. Formulate the
dual of this optimization problem by using the Lagrangian relaxation. Are there any
conditions under which strong duality holds?

Let α be the column vector of Lagrange multipliers. Then, the Lagrangian relaxation
is
∑d

i=1 ciwi+αT (Aw−b). Differentiating with respect to w and using matrix calculus,
we obtain ATα + c = 0. This is the primal dual-constraint, and in addition we have
α ≥ 0. One can also eliminate w in the objective function setting c = ATα, and simply

obtaining the objective function −bTα. Therefore, the linear programming dual is that

of minimizing b
T
α subject to ATα+ c = 0 and α ≥ 0. Strong duality always holds for

this relaxation.

7. Quadratic programming dual: Consider the following quadratic programming op-
timization problem with respect to primal variables w = [w1, w2, . . . wd]

T

Minimize
1

2
wTQw +

d∑
i=1

ciwi

subject to:

Aw ≤ b
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Here, Q is a d × d matrix, A is an n × d matrix, and b is an n-dimensional column
vector. Formulate the dual of this optimization problem by using the Lagrangian re-
laxation. Assume that Q is invertible. Are there any conditions under which strong
duality holds?

In this case, the Lagrangian relaxation is wTQw/2 +
∑d

i=1 ciwi + αT (Aw − b). Com-
puting the gradient with respect to w we obtain Qw + c+ATα = 0. Therefore, αTA
in the objective function can be replaced with −(Qw+c)T . Furthermore, we also have
w = −Q−1[c+ATα]. Therefore, the objective function is the following:

J = wTQw/2 +

d∑
i=1

ciwi + αT (Aw − b)

= wTQw/2 + cTw − (wTQ+ cT )w − αT b

= −wTQw/2− αT b

= −(c+ATα)TQ−1(c+ATα)/2− αT b

Therefore, one wants to minimize (c + ATα)TQ−1(c + ATα)/2 + αT b subject to the
constraint that α is nonnegative.

8. Consider the SVM optimization problem where we explicitly allow a bias variable b.
In other words, the primal SVM optimization problem is stated as follows:

J =

n∑
i=1

max{0, (1− yi[W ·XT

i ] + b)}+ λ

2
||W ||2

Compute the dual of this optimization formulation by using analogous steps to those
discussed in the chapter. How would you handle the additional constraint in the dual
formulation during gradient descent?

The dual objective function turns out to be exactly the same, except that we have
the equality constraint

∑
i λiyi = 0. For gradient descent, we can use the ideas for

gradient-descent with equality constraints.

9. The primal formulation for least-squares regression can be recast in terms of similar-
ities sij between pairs of data points as follows:

J =
1

2

n∑
i=1

(yi −
n∑

p=1

βpspi)
2 +

λ

2

n∑
i=1

n∑
j=1

βiβjsij

Here, sij is the similarity between points i and j. Convert this unconstrained opti-
mization problem into a constrained problem, and evaluate the dual of the problem
in terms of sij .

10. Let z ∈ Rd lie outside the ellipsoid xTAx+ b
T
x+ c ≤ 0, where A is a d× d positive

semi-definite matrix and x ∈ Rd. We want to find the closest projection of z on this
convex ellipsoid to enable projected gradient descent. Use Lagrangian relaxation to
show that the projection point z0 must satisfy the following:

z − z0 ∝ 2Az0 + b

Interpret this condition geometrically in terms of the tangent to the ellipsoid.
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The objective function is ||z− z0||2/2, and the constraint zT0 Az0+ b
T
z0+ c = 0 is sat-

isfied with equality since the point lies on the surface of the ellipsoid. The Lagrangian
relaxation is as follows:

L(z0, λ) = ||z − z0||2/2− λ(zT0 Az0 + b
T
z0 + c)

There is no constraint of λ because the problem is equality constrained. Note that z is
treated as a constant vector. Setting the gradient with respect to z0 to 0, we obtain:

z − z0 = λ(2Az0 + b)

Therefore, the result follows with λ as the proportionality constant.

Note that z− z0 is the vector joining z and z0. The RHS is the normal to the tangent
surface of the ellipsoid. In other words, the line joing z and z0 must be perpendicular
to the tangent surface of the ellipsoid.

11. Consider the following optimization problem:

Minimize x2 − y2 − 2xy + z2

subject to:

x2 + y2 + z2 ≤ 2

Imagine that we are using coordinate descent in which we are currently optimizing the
variable x, when y and z are set to 1 and 0, respectively. Solve for x. Then, solve for y
by setting x and z to their current values. Finally, solve for z in the same way. Perform
another full cycle of coordinate descent to confirm that coordinate descent cannot
improve further. Provide an example of a solution with a better objective function
value. Discuss why coordinate descent was unable to find an optimal solution.

In the first iteration, we try to minimize x2 − 2x, subject to x2 ≤ 1, which yields the
optimum at x = 1. In the next iteration, we obtain y = 1 as the optimum, and in the
third we obtain z = 0. This is the final solution that does not change. However, the
solutions [0,

√
2, 0] and [0.5,

√
1.75, 0] are two examples of better optima. This problem

is not convex, and therefore, coordinate descent might not be successful.

12. Consider the dual objective function in Lagrangian relaxation, as a function of only
the dual variables:

L(α) = Minimizew [F (w) +
m∑
i=1

αifi(w)]

Show that L(α) is always concave in α, irrespective of the convexity structure of the
original optimization problem.

L(α) is obtained as the minimum of an infinite number of linear functions in α at fixed
values of w. A linear function is trivially concave. The minimum of a set of concave
functions is concave even if there are infinite number of them.

13. Nonnegative box regression: Formulate the dual optimization problem for reg-
ularized linear regression with n × d data matrix D, regressand vector y, and with
nonnegativity constraints on the parameter vector.
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Consider the linear regression problem of minimizing ||Dw − y||2/2 + ||w||2/2. One
can use the solution of Exercise 7 after setting Q = DTD + λId, and ci = −[DT y]i.
The constant term of yT y/2 should be added to the dual objective function to ensure
that the primal and dual have the same objective function value. Furthermore, the
nonnegativity constraints can be expressed in the form Aw ≤ b by setting A = −I
and b = 0. Therefore, let us rewrite the dual objective function of Exercise 7 in
maximization form:

J = −(c+ATα)TQ−1(c+ATα)/2− αT b

= −(−DT y − α)T (DTD + λId)
−1(−DT y − α)/2 + yT y/2

= −(DT y + α)T (DTD + λId)
−1(DT y + α) + yT y/2

One can also write this optimization function in minimization form:

Jmin = −J = (DT y + α)T (DTD + λId)
−1(DT y + α)− yT y/2

In addition, we have the dual constraint that α ≥ 0.

14. Hard Regularization: Consider the case where instead of Tikhonov regularization,
you solve the linear regression problem of minimizing ‖Ax−b‖2 subject to the spherical
constraint ‖x‖ ≤ r. Formulate the Lagrangian dual of the problem with variable α ≥ 0.
Show that the dual variable plays the same role as the regularization parameter in
Tikhonov regularization:

x = (ATA+ αI)−1AT b

Under what conditions is α equal to 0? In the latter case, show that the optimal dual
variable α is the solution to the secular equation:

b
T
A(ATA+ αI)−2AT b = r2

This optimization problem becomes ‖Ax− b‖+α(||w||2− r2). On setting the gradient
to zero one obtains AT (Ax− b) + αx = 0. This yields the same closed form as least-
squares regression:

x = (ATA+ αI)−1AT b

Note that the value of α is zero according to the complementary slackness conditions
when the constraint is not satisfied tightly at equality. This happens when uncon-
strained least-squares regression already gives a solution whose norm is less than r2.
On the other hand, if α is not zero, the bound ||x||2 = r2 is satisfied tightly. Substi-
tuting for x = (ATA+ αI)−1AT b in this equal, we obtain the secular equation.

15. Propose a (primal) gradient-descent algorithm for the hard regularization model of
the previous exercise. Use the projected gradient-descent method. The key point is in
knowing how to perform the projection step.

One performs the same updates as unconstrained least-squares regression. However,
the parameter vector is scaled to w ⇐ r w/‖w‖, whenever one moves outside the
feasible region. This is the projection step.

67



16. Best subset selection: Consider an n× d data matrix D in which you want to find
the best subset of k features that are related to the n-dimensional regressand vector y.
Therefore, the following mixed integer program is formulated with d-dimensional real
vector w, d-dimensional binary vector z, and an a priori (constant) upper bound M
on each coefficient in w. The optimization problem is to minimize ‖Dw− y‖2 subject
to the following constraints:

z ∈ {0, 1}d, w ≤Mz, 1
T
z = k

The notation 1 denotes a d-dimensional vector of 1s. Propose an algorithm using
block coordinate descent for this problem, where each optimized block contains just
two integer variables and two real variables.

This algorithm is performed by using repeated interchange. We first select k features
at random and set those values of zi to 1. In each iteration, we pick pairs of zi so
that one of them is 1 and the other is 0. We test an interchange effect on objective
function while keeping all other variables fixed. The resulting optimization problem
is a box regression problem using k variables.

17. Duality Gap: Suppose that you are running the dual gradient descent algorithm for
the SVM, and you have the (possibly suboptimal) dual variables α1 . . . αn in the current
iteration. Propose a quick computational procedure to estimate an upper bound on how
far this dual solution is from optimality.

The weight vector can be estimated from the dual variables as W =
∑n

i=1 αiyiXi. The
primal solution can be used to compute the primal objective function value and the
dual solution can be used to estimate the dual objective function value. The difference
between the two is referred to as the duality gap, and provides an upper bound on
the difference between the primal and dual solutions.

18. State whether the following minimax functions f(x, y) satisfy John von Neumann’s
strong duality condition, where x is the minimization variable and y is the maxi-
mization variable: (i) f(x, y) = x2 + 3xy − y4, (ii) f(x, y) = x2 + xy + y2, (iii)
f(x, y) = sin(y − x), and (iv) f(x, y) = sin(y − x) for 0 ≤ x ≤ y ≤ π/2.

In order to satisfy strong duality, the function needs to be convex in the minimization
variable and concave in the maximization variable. Therefore, we simply find the
second derivative with respect to each of x and y in order to check for concavity or
convexity. Using this approach we find that (i) and (iv) satisfy strong duality, whereas
others do not.

19. Failure of coordinate descent: Consider the problem of minimizing x2+y2, subject
to x+y ≥ 1. Show using Lagrangian relaxation that the optimal solution is x = y = 0.5.
Suppose that you start coordinate descent for this problem at x = 1 and y = 0. Discuss
why coordinate descent will fail.

The Lagrangian relaxation is x2+y2−λ(x+y−1) and its gradient is [2x−λ, 2y−λ].
Setting the gradient to 0, we obtain x = y = λ/2. Therefore, we can eliminate y
from the original optimization problem by substituting y = x and recast it as that
of minimizing 2x2 subject to 2x ≥ 1. The minimum value is achieved at x = 0.5.
Therefore y = x = 0.5. Coordinate descent fails in this case because all feasible
directions of movement worsen the objective function.
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20. Propose a linear variable transformation for Exercise 19, so that coordinate descent
will work on the reformulated problem.

Consider the new set of variables w1 = x+ y and w2 = x− y. Then, the reformulated
problem is to minimize 1

2 (w
2
1+w2

2) subject to w1 ≥ 1. Using coordinate descent yields
w1 = 1 and w2 = 0. Upon transforming back to the original variables, we obtain
x = y = 0.5.

21. Formulate a variation of an SVM with hinge loss, in which the binary target (drawn
from −1 or +1) is known to be nonnegatively correlated with each feature based on
prior knowledge. Propose a variation of the gradient descent method by using only
feasible directions.

The optimization formulation is the same as the hinge-loss SVM, except that the
weights are constrained to be nonnegative. One can use the same gradient descent
approach except that any negative weight is reset to a zero.
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Chapter 7

Singular Value Decomposition

1. Use SVD to show the push-through identity for any n× d matrix D:

(λId +DTD)−1DT = DT (λIn +DDT )−1

We substitute the SVD of D = QΣPT on the left-hand side to show that it is equal
to P (λId +ΣTΣ)−1PTPΣQT . This is equal to P (λId +ΣTΣ)−1ΣQT .

On making the same substitution, the right-hand side is equal to PΣTQT (λIn +
QΣΣTQT )−1. This can be shown to be equal to PΣT (λIn +ΣΣT )−1QT .

In order to show that the above two results are equal, we need to show the following:

(λId +ΣTΣ)−1Σ = ΣT (λIn +ΣΣT )−1

Here, the key point is that Σ is an n×d diagonal matrix. Furthermore, ΣΣT and ΣTΣ
are diagonal matrices with σii

2 on the diagonal. The difference is in terms of the sizes
of the two matrices and the number of trailing zeros on the diagonal. The diagonal
matrices help in showing the result. Both matrices can be shown to be diagonal d×n
matrices which have σii/(λ+ σ2

ii) on the ith diagonal entry.

2. Let D be an n×d data matrix, and y be an n-dimensional column vector containing the
dependent variables of linear regression. The Tikhonov regularization solution to linear
regression predicts the dependent variables of a test instance Z: using the following
equation:

Prediction(Z) = ZW = Z(DTD + λI)−1DT y

Here, the vectors Z and W are treated as 1 × d and d× matrices, respectively. Show
using the result of Exercise 1, how you can write the above prediction purely in terms
of similarities between training points or between Z and training points.

One can use the result of the previous exercise to show that

Prediction(Z) = ZW = ZD(DDT + λI)−1y

One can write the above result as the product of ZD and (DDT + λI)−1. Note that
ZD is a row vector containing the dot product between the test and training instances
and DDT contains similarities between pairs of training instances.
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3. Suppose that you are given a truncated SVD D ≈ QΣPT of rank-k. Show how you can
use this solution to derive an alternative rank-k decomposition Q′Σ′P ′T in which the
unit columns of Q (or/and P ) might not be mutually orthogonal and the truncation
error is the same.

First, we express the decomposition as UV T by absorbing Σ in Q. Then, we take any
non-singular matrix Z of size d× d and express UV T as UZ−1ZV T . Then we define
U ′ = UZ−1 and V ′ = V ZT . It is easy to show that UV T = U ′V ′T . Subsequently, we
can convert this two-way decomposition into a three-way decomposition by using the
procedure described in the book.

4. Suppose that you are given a truncated SVD D ≈ QΣPT of rank-k. Two of the non-
zero singular values are identical. The corresponding right singular vectors are [1, 0, 0]T

and [0, 1, 0]T . Show how you can use this solution to derive an alternative rank-k SVD
Q′Σ′P ′T for which the truncation error is the same. At least some columns of matrices
Q′ and P ′ need to be non-trivially different from the corresponding columns in Q and
P (i.e., the ith column of Q′ should not be derivable from the ith column of Q by
simply multiplying with either −1 or +1). Give a specific example of how you might
manipulate the right singular vectors to obtain a non-trivially different solution.

The two columns containing these two singular vectors can be replaced with any or-
thonormal basis of these columns. Examples of such columns include [1/

√
2, 1/
√
2, 0]T

and [1/
√
2,−1/√2, 0]T . Once these right singular vectors have been found, the

(changed) left singular vectors can be found using the formula q = Dp/σ. Here, p
is a changed right-singular vector, σ is the singular value, and D is the data matrix.

5. Suppose that you are given a particular solution x = x0 that satisfies the system of
equations Ax = b. Here, A is an n×d matrix, x is a d-dimensional vector of variables,
and b is an n-dimensional vector of constants. Show that all possible solutions to this
system of equations are of the form x0+ v, where v is any vector drawn from a vector
space V. Show that V can be found easily using SVD. [Hint: Think about the system
of equations Ax = 0.]

The vector v must be drawn from the null space of A. Ant linear combination of right
singular vectors with zero singular values provides the null space of A.

6. Consider the n× d matrix D. Construct the (n+ d)× (n+ d) matrix B as follows:

B =

[
0 DT

D 0

]
Note that the matrix B is square and symmetric. Show that diagonalizing B yields all
the information needed for constructing the SVD of D. [Hint: Relate the eigenvectors
of B to the singular vectors of SVD.]

If q and p are left and right singular vectors of D with singular value σ, we know
that Dp = σq and we know that DT q = σp. Using these facts, it is not difficult to
show that [pT , qT ]T is an eigenvector of B with eigenvalue σ. Therefore, by finding
the (d + n)-dimensional eigenvectors of B, we can chop them up into left and right
singular vectors of D and use the eigenvalues of B as singular values of D. One issue is
that [pT ,−qT ]T might also be an eigenvector of B, and such eigenvectors will not add
to the information about singular vectors of D. In general any linear combination of
this pair of eigenvectors will be an eigenvector. Therefore, each left and right singular
vector pair in D will define a 2-dimensional eigenspace in B.
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7. Consider the following matrix A whose SVD is given by the following:

A =

[ −1/√2 1/
√
2

1/
√
2 1/

√
2

] [
4 0
0 2

] [
1 0
0 1

]T
Compute the inverse of A without explicitly materializing A.

The inverse of A is given by the following:

A−1 =

[
1 0
0 1

] [
1/4 0
0 1/2

] [ −1/√2 1/
√
2

1/
√
2 1/

√
2

]T
We are simply using the fact that the inverse of QΣPT is PΣ−1QT .

8. Consider the following 2-way factorization of the matrix A:

A = UV T =

[
4 1
3 2

] [
1 2
1 1

]T
Convert this factorization into a 3-way factorization QΣPT in each of the following
ways:

(a) The L2-norm of each column of Q and P is 1.

(a) The L1-norm of each column of Q and P is 1.

The second form of decomposition is used for nonnegative factorizations with proba-
bilistic interpretability.

The two factorizations are as follows:

A =

[
4/5 1/

√
5

3/5 2/
√
5

] [
5
√
2 0

0 5

] [
1/
√
2 2/

√
5

1/
√
2 1/

√
5

]T

A =

[
4/7 1/3
3/7 2/3

] [
7 ∗ 2 0
0 3 ∗ 3

] [
1/2 2/3
1/2 1/3

]T
9. Suppose that you add a small amount of noise to each entry of an n × d matrix

D with rank r � d and n � d. The noise is drawn from a Gaussian distribution,
whose variance λ > 0 is much smaller than the smallest non-zero singular value of D.
The nonzero singular values of D are σ11 . . . σrr. What do you expect the rank of the
modified matrix D′ to become?

The rank of the modified matrix will become the smaller of n and d, which is d. In
fact, the matrix formed by using any d rows of D (after perturbation) will have a
nonzero determinant because the volume formed by the perturbed parallelopiped will
be nonzero.

10. Consider the unconstrained optimization problem of minimizing the Frobenius norm
||D−UV T ||2F , which is equivalent to SVD. Here, D is an n× d data matrix, U is an
n× k matrix, and V is a d× k matrix.

(a) Use differential calculus to show that the optimal solution satisfies the following
conditions:

DV = UV TV

DTU = V UTU
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(b) Let E = D − UV T be a matrix of errors from the current solutions U and V .
Show that an alternative way to solve this optimization problem is by using the
following gradient-descent updates:

U ⇐ U + αEV

V ⇐ V + αETU

Here, α > 0 is the step-size.

(c) Will the resulting solution necessarily contain mutually orthogonal columns in U
and V ?

(a) The gradients with respect to U and V are −DV +UV TV and −DTU + V UTV .
We are ignoring a factor of 2 for simplicity. Setting these gradients to zero, we obtain
the desired result.

(b) Note that we can use E = D − UV T , and express the gradients as −EV and
−ETU . Therefore, gradient-descent yields the above updates.

(c) The resulting solution will not necessarily contain mutually orthogonal vectors,
because an infinite number of alternate optima exist.

11. Suppose that you change the objective function of SVD in Exercise 10 to add penalties
on large values of the parameters. This is often done to reduce overfitting and improve
generalization power of the solution. The new objective function to be minimized is as
follows:

J = ||D − UV T ||2F + λ(||U ||2F + ||V ||2F )
Here, λ > 0 defines the penalty. How would your answers to Exercise 10 change?

(a) The new gradients have λU and λV added to them (ignoring a factor of 2). Setting
the new gradients to 0, we obtain:

DV = UV TV + λU

DTU = V UTU + λV

(b) The updates are as follows:

U ⇐ U(1− αλ) + αEV

V ⇐ V (1− αλ) + αETU

(c) The columns are not necessarily mutually orthogonal.

12. Recall from Chapter 3 that the determinant of a square matrix is equal to the product
of its eigenvalues. Show that the determinant of a square matrix is also equal to the
product of its singular values but only in absolute magnitude. Show that the Frobenius
norm of the inverse of a d×d square matrix A is equal to the sum of squared inverses
of the singular values of A.

The determinant of QΣPT is the product of the determinants of the three matrices.
Orthogonal matrices have determinants of either 1 or -1, and the determinant of Σ is
the product of the singular values. The result follows.
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13. Show using SVD that a square matrix A is symmetric (i.e., A = AT ) if and only if
AAT = ATA.

If A = AT then, AAT = ATA = A2.

Conversely, if AAT = ATA, then the right singular vectors of A (eigenvectors of ATA)
are the same as the left singular vector vectors A (eigenvectors of AAT ). Furthermore,
the corresponding eigenvalues are also the same. Therefore, the SVD of A = QΣPT

satisfies Q = P . Any matrix of the form PΣPT is symmetric.

14. Suppose that you are given the following valid SVD of a matrix:

D =

⎡
⎣ 1 0 0

0 1/
√
2 1/

√
2

0 1/
√
2 −1/√2

⎤
⎦
⎡
⎣ 2 0 0

0 1 0
0 0 1

⎤
⎦
⎡
⎣ 1 0 0

0 1/
√
2 −1/√2

0 1/
√
2 1/

√
2

⎤
⎦

Is the SVD of this matrix unique? You may ignore multiplication of singular vectors
by −1 as violating uniqueness. If the SVD is unique, discuss why this is the case. If
the SVD is not unique, provide an alternative SVD of this matrix.

We will use the notations D = QΣPT to refer to the above matrices. The SVD is not
unique, because two of the singular values are the same. One can change P to P1 by
using any orthonormal basis of the subspace defined by the last two columns of P .
With the new matrix P1, the new matrix Q1 can be reconstructed as DP1Σ

−1. The
resulting SVD is Q1ΣP

T
1 .

15. State a simple way to find the SVD of (a) a diagonal matrix with both positive and
negative entries that are all different; and (b) an orthogonal matrix. Is the SVD unique
in these cases?

(a) Q is sat to the identity matrix, and then the kth column is multiplied with −1, if
the kth diagonal matrix is multiplied with −1. Σ is set to the diagonal matrix and all
its entries are flipped to positive sign. The matrix P is the identity matrix. This SVD
is unique to the extent of multiplying columns of Q or P with −1. (b) Q can be set to
the given orthogonal matrix, and Σ, P are set to the identity matrix. Alternatively,
Q,Σ can be set to the identity matrix, and P can be set to the transpose of the given
matrix. Therefore, the SVD is obviously not unique.

16. Show that the largest singular value of (A + B) is at most the sum of the largest
singular values of each of A and B. Also show that the largest singular value of AB is
at most the product of the largest singular values of A and B. Finally, show that the
largest singular value of a matrix is a convex function of the matrix entries.

The largest singular value of a matrix is equal to the largest value of ||Ax|| for any unit
vector x. This is the norm-constrained optimization problem. Therefore, for any unit
vector x, the value of ||(A+B)x|| is at most ||Ax||+ ||Bx|| by the triangle inequality,
which in turn is equal to the sum of the singular values. Note that multiplying a
unique vector x with AB scales up its length twice, once by B and then by A, and
each scaling is the largest singular value of either matrix. Therefore, the product of
the two matrices has a maximum singular value that is the corresponding product of
their singular values. The maximum singular value is linear to scaling all entries of a
matrix. In combination with the additive identity, it can be shown that the maximum
singular value is convex.
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17. If A is a square matrix, use SVD to show that AAT and ATA are similar. What
happens when A is rectangular?

Let A = QΣPT . Here, Σ is square. We can show that ATA = PΣ2PT and AAT =
QΣ2QT . Since both have the same diagonal matrix, they are similar. This approach
will not work for rectangular matrices since Σ will no longer be square, and the two
matrices AAT and ATA will have differing number of zero eigenvalues is ΣΣT and
ΣTΣ, respectively.

18. The Frobenius norm of a matrix A is defined as the trace of either AAT or ATA. Let
P be a d × k matrix with orthonormal columns. Let D be an n × d data matrix. Use
properties of the trace to show that the squared Frobenius norm of DP is the same as
that of DPPT . Interpret the matrices DP and DPPT in terms of their relationship
with D, when P contains the top-k right singular vectors of the SVD of D.

||DPPT ||2F = tr(DPPT (DPPT )T ) = tr(DP (PTP )︸ ︷︷ ︸
I

(DP )T ) = tr(DP (DP )T ) = ||DP ||2F

19. Consider two data matrices D1 and D2 that share the same scatter matrix DT
1 D1 =

DT
2 D2 but are otherwise different. We aim to show that the columns of one are rotre-

flections of the other and vice versa. Show that a partially shared (full) singular value
decomposition can be found for D1 and D2, so that D1 = Q1ΣP

T and D2 = Q2ΣP
T .

Use this fact to show that D2 = Q12D1 for some orthogonal matrix Q12.

Since the scatter matrix is the same, we will have the same right eigenvectors and corre-
sponding eigenvalues in the two cases. We can use these eigenvectors and eigenvalues in
order to construct Σ and P in the two cases. The values of Q1 and Q2 will be obtained
as Q1Σ = D1P and Q2Σ = D2P . Note that it is possible that some of the columns of
Q corresponding to tied and zero singular values might not be unique, but it does not
affect the result as long as the same eigenvectors are chosen in the two cases. Because of
the nature of the SVD, it is evident that D2 = Q2ΣP

T = Q2Q
T
1 (Q1ΣP

T ) = Q2Q
T
1 D1.

Therefore, Q12 is chosen as Q2Q
T
1 .

20. Let A = ab
T
be a rank-1 matrix for vectors a, b ∈ Rn. Find the nonzero eigenvectors,

eigenvalues, singular vectors, and singular values of A.

The left and right singular vectors are the unit normalized vectors a and b, respectively.
The only nonezero singular values is the product of the lengths of a and b. Interestingly,
the right eigenvector is the left singular vector and the left eigenvector is the right
singular vector. For example, when a is used is the right eigenvector, we obtain Aa =
(a · b)a. Therefore, the only nonzero eigenvalue s a · b.

21. What are the singular values of (i) a d × d Givens rotation matrix, (ii) a d × d
Householder reflection matrix, (iii) a d × d projection matrix of rank r, (iv) a 2 × 2
shear matrix with 1s along the diagonal, and a value of 2 in the upper right corner.

(i) and (ii) All singular values are 1 for orthogonal matrices, (iii) There are r singular
values of 1 and the remaining D − r) singular values are 0, (iv) One can compute
ATA as a matrix with 1 and 5 on the diagonal entries, and values of 2 on each of the
off-diagonal entries. The characteristic polynomial is λ2 − 6λ + 1, which yields roots
of 3 ± 2

√
2. These are the squares of the singular values. The actual singular values

are therefore
√

3± 2
√
2.
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22. Consider an n × d matrix A with linearly independent columns and nonzero singu-
lar values σ1 . . . σd. Find the nonzero singular values of AT (AAT )5, AT (AAT )5A,
A(ATA)−2AT , and A(ATA)−1AT . Do you recognize the last of these matrices? Which
of these matrices have economy SVDs with (additional) zero singular values?

The results can be shown by substituting the economy SVD QΣPT in each case. Note
that Q is an n× d matrix in the economy SVD. We obtain the following:

AT (AAT )5 = PΣ11QT

Singular values are 11th powers of original
No additional zero singular values

AT (AAT )5A = PΣ12PT

Singular values are 12th powers of original
No additional zero singular values

A(ATA)−2AT = QΣ−2QT

Singular values are negative second powers of the original
However, there are additional zero singular values on the diagonal as this is a larger
n×n matrix. So we will have to augment the n×d matrix Q with additional columns
to create the economy SVD. These columns are any set of orthogonal columns to the
ones already included.

A(ATA)−1AT = QQT

Nonzero singular values are 1s.
However, there are additional zero singular values on the diagonal as this is a larger
n×n matrix. So we will have to augment the n×d matrix Q with additional columns
to create the economy SVD.
This is the projection matrix.

23. Suppose that you have the n× 3 scatterplot matrix D of an ellipsoid in 3-dimensions,
whose three axes have lengths 3, 2, and 1, respectively. The axes directions of this
ellipsoid are [1, 1, 0], [1,−1, 0], and [0, 0, 1]. You multiply the scatter plot matrix D
with a 3 × 3 transformation matrix A to obtain the scatter plot D′ = DA of a new
ellipsoid, in which the axes [1, 1, 1], [1,−2, 1], and [1, 0,−1] have lengths 12, 6, and
5, respectively. Write the singular value decompositions of two possible matrices that
can perform the transformation. You should be able to write down the SVDs with very
little numerical calculation.

There are an infinite number of ways to perform the transformation, although we
will perform the axis-to-axis transform. The 3× 3 matrix Q is constructed using the
columns [1, 1, 0], [1,−1, 0], and [0, 0, 1] in that specific order. Subsequently, we map
the axes to one another, which can be done in 6 possible ways.Correspondingly the
entries of Σ are a/3, b/2, and c, where a, b, and c are 12, 6, and 5 in any order. Let
use say that we select the order 12, 5, and 6, so that the entries of Σ are 4, 2.5, and 6.
In such a case, the matrix P has columns in the order [1, 1, 1], [1, 0,−1], and [1,−2, 1].

24. Regularization impact: Consider the regularized least-squares regression problem of
minimizing ‖Ax−b‖2+λ‖x‖2 for d-dimensional optimization vector x, n-dimensional
vector b, nonnegative scalar λ, and n×d matrix A. There are several ways of showing
that the norm of the optimum solution x = x∗ is non-increasing with increasing λ (and
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this is also intuitively clear from the nature of the optimization formulation). Use SVD
to show that the optimum solution x∗ = (ATA+ λId)

−1AT b has non-increasing norm
with increasing λ.

Substitute A = QΣPT using the compact SVD, and show that the expression sim-
plifies to the norm of P (Σ2 + λI)−1ΣQT b, We can ignore the leading P because the
rotation does not affect the norm and substitute y = QT b. Therefore, the expression
simplifies to the norm of (Σ2 + λI)−1Σy. We are effectively scaling each component
of y by a fraction that reduces with increasing λ before computing its norm. The
overall expression is the same as that in the statement of Exercise 25. Therefore, the
expression has non-increasing norm with increasing λ.

25. The function f(λ) arises commonly in spherically constrained least-squares regression:

f(λ) = b
T
A(ATA+ λI)−2AT b

Here, A is an n× d matrix of rank-r, b is an n-dimensional column vector, and λ > 0
is an optimization parameter. Furthermore, A = QΣPT is the reduced SVD of A with
n× r matrix Q, d× r matrix P , and r× r diagonal matrix Σ. The diagonal elements
of Σ are σ11 . . . σrr. Show that f(λ) can be written in scalar form as follows:

f(λ) =
r∑

i=1

(
σiici

σ2
ii + λ

)2

Here, ci is the ith component of QT b.

This exercise is very similar to the previous one, because we are essentially computing
the norm of the solution to least-squares regression.

26. Pseudoinverse properties: Show using SVD that AA+A = A and A+AA+ = A+.
Also show using SVD that AA+ is a symmetric and idempotent matrix (which is an
alternative definition of a projection matrix).

In each case, we substitute A = QΣ−1PT using the compact SVD of A and simplify
the underlying expressions using PTP = QTQ = I. However, note that QQT and
PPT are not equal to I. For example, it can be shown that AA+A = QΣPT = A.
Similarly, we have A+AA+ = QΣ−1PT = A+. We can also compute AA+ = QQT ,
which is both symmetric and idempotent. In fact, QQT is the projection matrix onto
the column space of A.

27. Compute the compact SVD of the matrix A:

A =

[
2 1 3
1 2 0

]

The SVD of the matrix is as follows:

Q =

[ −0.9347217 −0.35538056
−0.35538056 0.9347217

]

Σ =

[
3.9396 0

0 1.865

]
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PT =

[ −0.56472711 −0.41767294 −0.71178129
0.12006923 0.81171587 −0.5715774

]
Note that this decomposition can be computed by first computing Q, which is smaller
that the matrix P . The matrix Q can be computed as the eigenvectors of DDT . This
yields the matrix Q and Σ. Then, the matrix DTQ yields PΣ.

The Moore-Penrose pseudo-inverse is given by QΣ+PT , which is as follows:

A+ =

⎡
⎣ 1/9 1/9
−1/18 4/9
5/18 −2/9

⎤
⎦

28. Generalized singular value decomposition: The generalized singular value de-
composition of an n × d matrix D is given by D = QΣPT , where QTS1Q = I and
PTS2P = I. Here, S1 and S2 are (given) n×n and d×d positive definite matrices, and
therefore the singular vectors are orthogonal from the perspective of the generalized def-
inition of inner products. Show how to reduce generalized singular value decomposition
to a singular value decomposition on a modified version of D.

Define D′ =
√
S1D
√
S2. As discussed in Chapter 3, a symmetric square-root matrix

can always be extracted from positive definite matrices using the same eigenvectors
and the square-roots of the eigenvalues to construct the square-root matrix. Then, the
SVD of D′ is as follows:

D′ = UΣV T

Then, we set Q and P as follows:

Q = (S1)
−1/2U, P = (S2)

−1/2V

Therefore, we have D′ = UΣV T = S
1/2
1 QΣPTS

1/2
2 . Therefore, we have QΣPT =

S
−1/2
1 D′S−1/2

2 = D.
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Chapter 8

Matrix Factorization

1. Biased matrix factorization: Consider a situation in which the incomplete n × d
matrix D is approximately factorized into an n × k matrix U and a d × k matrix V
for prediction as follows:

D ≈ UV T

Now suppose that you add the constraint that all entries of the penultimate column of
U and the final column of V are fixed to 1 during learning. Discuss the similarity of
this model with the addition of bias to classification models. How is gradient-descent
modified?

The values of the penultimate columns of U and V represent the biases for the cor-
responding factors. For example, in a recommendation application, some users are
more likely to give high ratings and some items are likely to get rated highly. The
bias values correspond to these differences. The updates are the same as traditional
gradient descent, except that we reset the corresponding columns of U and V after
each update to 1.

2. In the scenario of Exercise 1, will the Frobenius norm on observed ratings be better
optimized with or without constraints on the final columns of U and V ? Why might it
be desirable to add such a constraint during the estimation of missing entries?

The error on the observed entries of the matrix will be higher by adding constraints.
However, the approach will generalize better to unseen entries.

3. Suppose that you have a symmetric n×n matrix D of similarities, which has missing
entries. You decide to recover the missing entries by using the symmetric factorization
D ≈ UUT . Here, U is an n× k matrix, and k is the rank of the factorization.

(a) Write the objective function for the optimization model using the Frobenius norm
and L2-regularization.

(b) Derive the gradient-descent steps in terms of matrix-centric updates.

(c) Discuss the conditions under which an exact factorization will not exist, irrespec-
tive of how large a value of k is used for the factorization.

The objective function is J = 1
2 ||D − UUT ||2 + λ

2 ||U ||2.
The update is U ⇐ U(1− αλ) + 2αEU
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The main issue is whether D is positive semi-definite. This is because any matrix of
the form UUT must be positive semidefinite. Note that any symmetric matrix can be
made semi-definite by adding a sufficient amount to the diagonal entries.

4. Derive the gradient-descent updates for L1-loss matrix factorization in which the ob-
jective function is J = ||D − UV T ||1.
One can show using similar steps as L2-loss that the following partial derivatives are
appropriate:

∂J

∂U
= −sign((D − UV T ))V = −sign(E)V

∂J

∂V
= −sign((D − UV T )T )U = −sign(ET )U

Here, the sign function is applied in elementwise fashion to the matrix to create a
matrix of the same size, The corresponding gradient-descent updates are as follows:

U ⇐ U − α
∂J

∂U
= U + α sign(E)V

V ⇐ V − α
∂J

∂V
= V + α sign(ET )U

5. Derive the gradient-descent updates for L2-loss matrix factorization in which L1-
regularization is used on the factors.

Using the same notations as the previous exercise, the updates are as follows:

U ⇐ U − α
∂J

∂U
= U − αλ sign(U) + α (E)V

V ⇐ V − α
∂J

∂V
= V − αλ sign(V ) + α (ET )U

6. In SVD, it is easy to compute the representation of out-of-sample matrices because of
the orthonormality of the basis d× k matrix V . If the SVD factorization of the n× d
matrix D is D ≈ UV T , then one can compute the representation of an out-of-sample
m × d matrix Do as DoV . Show how you can efficiently compute a similar out-of-
sample representation of Do, when you are given a non-orthonormal factorization
D = UV T . Assume that m and k are much smaller than n and d. [Hint: This trick
has implicitly been used as a subroutine of one of the methods discussed in this chapter
for matrix factorization.]

The out-of-sample embedding is given by DoV (V TV )−1. Note that this result can be
derived by reducing the problem to a sequence of similar linear regression problems
on rows of Do and corresponding rows of U .

7. Show that the k-means formulation in Chapter 3 is identical to the formulation of this
chapter.

The matrix U contains the assignment variables of the points to each cluster, which
are the variables yij in Chapter 3. Therefore, the variables yij are equivalent to the
variables uij in this chapter. The jth column of matrix V contains the centroid of
the cluster, which is the variable vector zj in Chapter 3. Note that the columns of U
can be mutually orthogonal only when two columns in the same row never contain a
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1. In other words, each row contains a single 1 in U . This is the same constraint as
in Chapter 3. Furthermore, the objective function of aggregate mean-squared error is
the same in the two cases.

8. Orthogonal Nonnegative Matrix Factorization: Consider a nonnegative n × d
data matrix D in which we try to approximately factorize D as UV T with the Frobenius
norm as the objective function. Suppose you add nonnegativity constraints on U and
V along with the the constraint UTU = I. How many entries in each row of U will be
nonzero? Discuss how you can extract a clustering from this factorization. Show that
this approach is closely related to the k-means optimization formulation.

At most one entry in each row is nonzero. However unlike the previous exercise, that
value can be any real value. Therefore, when one is computing the squared error, one
is computing the distance of the point to a scaled version of the mean. In a sense, this
approach is a relaxed version of the k-means algorithm. Note that it is not an integer
program, and therefore it is easier to solve than the previous exercise.

9. Suppose that you use GloVe on a quantity matrix Q = [qij ] in which each count qij is
either 0 or 10000. A sizeable number of counts are 0s. Show that GloVe can discover
a trivial factorization with zero error in which each word has the same embedded
representation.

The reason for this is discussed in the text of the book. The basic point is that negative
sampling is important. GloVe does not perform negative sampling, and it is susceptible
in cases where the nonzero frequencies are very similar. In such cases, it is unable to
distinguish between nonzero and zero frequencies via negative sampling.

10. Derive the gradient update equations for using factorization machines in binary clas-
sification with logistic loss and hinge loss.

The gradient descent updates can be derived by using the same approach as the
squared loss except that the derivative of the logistic function or the hinge function
needs to be multiplied within the chain rule, instead of the difference between observed
and predicted value.

11. Suppose you want to perform the rank-k factorization D ≈ UV T of the n× d matrix
d using gradient descent. Propose an initialization method for U and V using QR
decomposition of k randomly chosen columns of D.

Let Dk be a n × k matrix obtained by sampling k columns of D. Without loss of
generality assume that these are the first k columns of D = [DkDn−k] (since we can
always shuffle columns of D after the fact along with the corresponding rows of V .
Perform the QR decomposition of Dk = QkRk. Set U = Qk. Create the matrix V T

as [Rk, Q
T
kDn−k].

12. Suppose that you have a sparse non-negative matrix D of size n×d. What can you say
about the dot product of any pair of columns as a consequence of sparsity? Use this
fact along with the intuition derived from the previous exercise to initialize U using k
randomly sampled columns of D for non-negative matrix factorization. In this case,
the initialized matrices U and V need to be non-negative.

The columns of D will be roughly orthogonal. Therefore, U can be initialized to k
randomly chosen columns of D, and then the columns can be normalized to one unit.
Subsequently, the matrix V can be initialized as DTU .

83



13. Nonlinear matrix factorization of positive matrices: Consider a nonlinear
model for matrix factorization of positive matrices D = [xij ], where D = F (UV T ),
and F (x) = x2 is applied in element-wise fashion. The vectors ui and vj represent
the ith and jth rows of U and V , respectively. The loss function is ||D− F (UV T )||2F .
Show that the gradient descent steps are as follows:

ui ⇐ ui+α
∑
j

(ui · vj)(xij −F (ui · vj))vj , vj ⇐ vj +α
∑
i

(ui · vj)(xij −F (ui · vj))ui

One can solve this problem with the use of an application of the chain rule. Here,
the key point is that the derivative of F (x2) is simply 2x, which amounts to ui · vj
when the function is applied to entry xij . The constant factor of 2 can be absorbed
in the learning rate. Therefore, the gradient descent update is identical to the update
in unconstrained matrix factorization (discussed in chapter) with an additional factor
of ui · vj within the updates. This is exactly what is shown in the update equations.

14. Out-of-sample factor learning: Suppose that you learn the optimal matrix factor-
ization D ≈ UV T of n×d matrix D, where U, V are n×k and d×k matrices, respec-
tively. Now you are given a new out-of-sample t×d data matrix Do with rows collected
using the same methodology as the rows of D (and with the same d attributes). You
are asked to quickly factorize this out-of-sample data matrix into Do ≈ UoV

T with the
objective of minimizing ‖Do − UoV

T ‖2F , where V is fixed to the matrix learned from
the earlier in-sample factorization. Show that the problem can be decomposed into t
linear regression problems, and the optimal solution Uo is given by:

UT
o = V +DT

o

Here, V + is the pseudoinverse of V . Show that the rank-k approximation of Do ≈
UoV

T is given by DoPv, where Pv = V (V TV )−1V T is the d × d projection matrix
induced by V . Propose a fast solution approach using QR decomposition of V and
back-substitution with a triangular equation system. How does this problem relate to
the alternating minimization approach?

The Frobenius norm can be decomposed into the squared norms for each of the rows
of Do. This is a linearly separable objective function in which the parameters for the
tth row of Uo are wt (which is a k-dimensional vector). The linear regression factors
wt for each of the t rows of Uo are learned using this approach. Therefore, if the tth
row of Do is yt, the problem boils down to the linear regression problem V wT

t = yTt .
The solution is based on the pseudo-inverse wT

t = V +yTt . The same condition holds
for each row of Do. Therefore, we obtain the following:

UT
o = V +DT

o

In alternating least-squares, one alternately learns U and V with this approach,
whereas we only learn one of the factor matrices here. One can use QR decompo-
sition and backsubstitution in a manner that is similar to what is described in the
text on linear regression.

15. Out-of-sample factor learning: Consider the same scenario as Exercise 14, where
you are trying to learn the out-of-sample factor matrix Uo for in-sample data matrix
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D ≈ UV T and out-of-sample data matrix Do. The factor matrix V is fixed from in-
sample learning. Closed-form solutions, such as the one in Exercise 14, are rare in
most matrix factorization settings. Discuss how the gradient-descent updates discussed
in this chapter can be modified so that Uo can be learned directly. Specifically discuss the
case of (i) unconstrained matrix factorization, (ii) nonnegative matrix factorization,
and (iii) logistic matrix factorization.

In each case, we perform only the updates for U repeatedly while keeping V fixed.

16. Suppose that you have a data set in which users have rated small subsets of items with
a numerical value. Furthermore, users also specify directed trust and distrust links to
each other in order to show their confidence in each other’s feedback.

(a) Show how you can use shared matrix factorization for estimating the rating of a
user on an item that they have not already rated.

(b) Show how you can use factorization machines to achieve similar goals as (a).

(a) We have two sets of user factors, U and Z, and one set of item vectors V . The
ratings matrix is given by R ≈ UV T and R ≈ ZV T . Furthermore, the trust matrix is
given by T ≈ ZUT . Then, we can set up an optimization problem in order to find U ,
V , and Z.

(b) In this case, we set up separate attributes for source users, destination users and
items. Each row contains exactly three 1s. The target variable is the rating.

17. Propose an algorithm for finding outlier entries in a matrix with the use of matrix
factorization.

The absolute values of residuals of the matrix factorization provide the outlier scores.
Entries with large absolute values of the residuals are reported as the outlier entries.

18. Suppose that you are given the linkage of a large Website with n pages, in which each
page contains a bag of words drawn from a lexicon of size d. Furthermore, you are
given information on how m users have rated each page on a scale of 1 to 5. The
ratings data is incomplete. Propose a model to create an embedding for each Webpage
by combining all three pieces of information.

Let A be the n× n matrix for the Web graph, D be the n× d document-term matrix
for the documents associated with pages, and R be the n×m matrix for the ratings
that the users have associated with the Web pages. Then, the following shared matrix
factorization model can be proposed:

A ≈ UV T

D ≈ UWT

R ≈ UZT

Each matrix has rank k and the sizes of the matrices are chosen to be consistent. The
matrix U is a shared factor, and its rows will provide an embedding of the various
Web pages. This embedding includes information from all the modalities. One can
set up a model that minimizes the sum of the Frobenius norms of the residuals of
the different matrix factorizations. The different terms can be weighted differently, if
different modalities are given different importance. Furthermore, only the observed
entries of R are used in the error portion of the model.

85



19. True or false: A zero error non-negative matrix factorization (NMF) UV T of an
n × d non-negative matrix D always exists, where U is an n × k matrix and V is a
d× k matrix, as long as k is chosen large enough. At what value of k can you get an
exact NMF of the following matrix?

D =

[
1 1
1 0

]

The answer is “true.” We can decompose any matrix multiplication UV T into the
sum of outer products. As long as D can be decomposed into the sum of non-negative
rank-1 matrices, one can obtain a factorization. For example, we can set U = D and
V = Id, or we can set U = In and V = DT . Therefore, at k = min{n, d}, the matrix
can be reconstructed. Therefore, we can reconstruct each row (or column) one by one
and add up the rank-1 matrices. Although this decompositions might seem trivial
and one of the factors looks like a rectangular version of the identity matrix, this
is not the only decomposition. As shown in the next exercise, alternative non-trivial
decompositions can be reconstructed from these basic decompositions.

The matrix D can be decomposed into rank-1 matrices as follows:

D =

[
1 1
1 0

]
=

[
0.5 1
0 0

]
+

[
0.5 0
1 0

]
=

[
1 0.5
2 0

] [
0.5 0
1 2

]

20. True or false: Suppose you have the exact non-negative factorization (NMF) UV T

of a matrix D, so that each column of V is constrained to sum to 1. Subject to this
normalization rule, the NMF of D is unique.

The answer is “false.” Given a factorization UV T , we can pick any k× k permutation
matrix P to create UV T = (UP )(V P )T .

21. Discuss why the following algorithm will work in computing the matrix factorization
Dn×d ≈ UV T after initializing Un×k and Vd×k randomly:

repeat; U ⇐ DV +; V ⇐ DTU+; until convergence;

This is simply the alternating least-squares algorithm (block coordinate descent),
which is implemented with the help of the Moore-Penrose pseudoinverse.

22. Derive the gradient-descent updates of unconstrained matrix factorization with L1-
regularization. You may assume that the regularization parameter is λ > 0.

U ⇐ U − α
∂J

∂U
= U + αEV − αλsign(U)

V ⇐ V − α
∂J

∂V
= V + αETU − alphaλsign(V )

Here, the sign function is applied in entry-wise fashion. Note that the only part of
the gradient-descent update that is different from the case of L2-regularization is in
terms of how the shrinkage is done.
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23. Alternating nonnegative least-squares: Propose an algorithm for nonnegative
matrix factorization using the alternating least-squares method.

This is similar to unconstrained matrix factorization, except that nonnegative box
regression needs to be applied during the alternating iterations. Nonnegative box
regression is discussed in Chapter 6.

24. Bounded matrix factorization: In bounded matrix factorization, the entries of U
and V in the factorization D ≈ UV T are bounded above and below by specific values.
Propose a computational algorithm for bounded matrix factorization using (i) gradient
descent, and (ii) alternating least-squares.

(i) Gradient descent is the same as unconstrained matrix factorization, except that
the entries of U and V need to be reset to their bounds after each iteration. (ii)
Alternating least-squares is the same as unconstrained matrix factorization, except
that box regression needs to be applied in each iteration instead of unconstrained
regression. Box regression is discussed in Chapter 6.

25. Suppose that you have a very large and dense matrix D of low rank that you cannot
hold in memory, and you want to factorize it as D ≈ UV T . Propose a method for
factorization that uses only sparse matrix multiplication.

In recommender systems, one can use the observed entries in order to perform the
following updates with sparse matrix multiplications (see text book to check how the
error matrix E is constructed):

U ⇐ U − α
∂J

∂U
= U(1− αλ) + αEV

V ⇐ V − α
∂J

∂V
= V (1− αλ) + αETU

The main point is that E contains non-zero entries for only observed data in the rec-
ommender matrix. In this case, we can repeatedly sample entries in order to create the
“observed” entries. Unlike recommender systems, the sampled entries can be different
in each iteration.

26. Temporal matrix factorization: Consider a sequence of n × d matrices D1 . . . Dt

that are slowly evolving over t time stamps. Show how one can create an optimization
model to infer a single n × k static factor matrix that does not change over time,
and multiple d× k dynamic factor matrices, each of which is time-specific. Derive the
gradient descent steps to find the factor matrices.

The matrix factorizations are as follows:

Di = UV T
i ∀i

Therefore, the objective function is
∑

i ‖Di − UV T
i ‖2. We set the error matrices to

Ei = Di − UV T
i for each i. Then, the updates are as follows:

U ⇐ U + α
∑
i

EiV

Vi ⇐ Vi + αET
i U ∀i
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In the event that regularization is used, the updates are as follows:

U ⇐ U(1− αλ) + α
∑
i

EiV

Vi ⇐ Vi(1− αλ) + αET
i U ∀i
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Chapter 9

The Linear Algebra of
Similarity

1. Suppose that you are given a 10×10 binary matrix of similarities between objects. The
similarities between all pairs of objects for the first four objects is 1, and also between
all pairs of objects for the next six objects is 1. All other similarities are 0. Derive an
embedding of each object.

One can create a 2-dimensional embedding in which the first four objects have the
embedding (1, 0) and the last six objects have the embedding (0, 1). This can also be
obtained using eigendecomposition of the underlying similarity matrix and taking the
top-2 eigenvectors.

2. Suppose that you have two non-disjoint sets of objects A and B. The set A ∩ B is a
modestly large sample of objects. You are given all similarities between pairs of objects,
one drawn from each of the two sets. Discuss how you can efficiently approximate the
entire similarity matrix over the entire set A∪B. It is known that the similarity matrix
is symmetric.

The main issue is that we know the similarities between the pairs A and B, but not
similarities between two objects from A or between two objects from B. Let U be the
nA × k matrix containing embedding of A, and V be the nB × k matrix containing
the embedding of B. Then UV T is the given matrix of similarities S. Then, we can
learn U and V by using matrix factorization S ≈ UV T . This approach is described in
Chapter 7 for recommender systems (which compute similarities between users and
items). Subsequently, one can use UUT and V V T to find the similarities within the
sets A and B, respectively.

3. Suppose that S1 and S2 are positive semi-definite matrices of ranks k1 and k2, respec-
tively, where k2 > k1. Show that S1 − S2 can never be positive semi-definite.

Since, S2 has larger rank than S1, the null space of S1 has larger dimensionality than
the null space of S2. Therefore, a vector x must exist in the null space of S1 that is not
present in the null space of S2. This vector will satisfy S2x 
= 0 and S1x = 0. Therefore,
we will have xTS1x = 0. For PSD matrices S2x 
= 0 implies that xTS2x > 0. In other
words, we will have xT (S1 − S2)x < 0. This is not possible for PSD matrices.
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We want to perform the matrix factorization S ≈ UUT with only a subset of the
entries in S. One can learn U by performing stochastic gradient descent on only the
specified entries.

4. Suppose you are given a binary matrix of similarities between objects, in which most
entries are 0s. Discuss how you can adapt the logistic matrix factorization approach
of Chapter 7 to make it more suitable to symmetric matrices.

Note that we can use the parameter sharing trick discussed in Chapter 3 and also
directly use the results in Chapter 7, where the matrix factorization UV T is assumes
and gradients are computed separately with respect to U and V . Then, we can add
the gradients with respect to U and with respect to V .

5. Suppose that you were given an incomplete matrix of similarities between objects be-
longing to two sets A and B that are completely disjoint. Discuss how you can find an
embedding for each of the objects in the two sets. Are the embeddings of the objects in
set A comparable to those in the set B?

This is simply an asymmetric matrix factorization in which one can use stochastic
gradient descent only over specified items. The setting is very similar to that of rec-
ommender systems. The embeddings U and V are not directly comparable without
additional assumptions or regularizations (e.g., magnitudes of entries in U and V are
similar). For example, one can multiply U with 2 and V with 0.5 without changing
the result.

6. A centered vector is one whose elements sum to 0. Show that for any valid (squared)
distance matrix Δ = [δ2ij ] defined on a Euclidean space, the following must be true for
any centered d-dimensional vector y:

yTΔy ≤ 0

(a) Suppose that you are given a symmetric matrix Δ in which all entries along the
diagonal are 0s, and it satisfies the condition yTΔy ≤ 0 for any centered vector
y. Show that all entries of Δ must be nonnegative by using an appropriate choice
of vector y.

(b) Discuss why a distance matrix Δ of (squared) Euclidean distances is always in-
definite, unless it is a trivial matrix of 0s.

Note that the similarity matrix S can be expressed as −(I −M/n)Δ(I −M/n)/2,
where M is a matrix of 1s. For any centered vector y one can show that yTSy is
equal to −yTΔy/2. Since we know that yTSy is nonnegative, it follows that yTΔy is
non-positive.

(a) This can be easily shown by picking a vector in which the ith and jth elements
are 1 and -1, respectively.

(b) The eigenvalues must sum to zero, which is the trace of the distance matrix. Unless
all eigenvalues are zero (trivial matrix), the matrix is indefinite.

7. You have an n×n (dot-product) similarity matrix between training points and a t×n
similarity matrix St between test and training points. The n-dimensional column vector
of class variables is y. Furthermore, the true n×d data matrix is D (i.e., S = DDT ),
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but you are not shown this matrix. The d-dimensional coefficient vector W of linear
regression is given by the following:

W = (DTD + λI)−1DT y

Here, λ is the regularization parameter. Then, show the following results:

(a) Let p be the t-dimensional vector of predictions for test instances. Show the fol-
lowing using the Woodbury identity (variation):

p = St(S + λI)−1y

(b) Show the result of (a) using the representer theorem discussed in this chapter.

(c) Take a moment to examine the coefficient vector obtained using the dual ap-
proach. What do you observe?

(a) Using the Woodbury inequality we can get the following vector:

W = DT (DDT + λI)−1y = DT (S + λI)−1y

If the unknown test matrix is Dt, the prediction for the test instances is given by the
vector DtW . Using the fact that DtD

T = St, we can derive the result.

(b) By setting the gradient of the objective function to 0, one can obtain the coefficient
of the representer parameters as follows:

β = (S + λI)−1y

Since the predictions are given by Stβ, we obtain the result.

8. Derive the gradient descent steps for the primal formulation of logistic regression using
the similarity matrix S and the representer theorem.

9. A student is given a square and symmetric similarity matrix S that is not positive
semi-definite. The student computes the following new matrix:

S′ = I − S + S2

Is the new similarity matrix S′ always positive semi-definite? If it is positive semi-
definite, provide a proof. Otherwise, provide a counterexample.

Yes, the new matrix is always PSD. Express the symmetric matrix as PΔPT . Then,
the matrix S′ can be expressed as P (Δ2 −Δ+ I)PT . The diagonal matrix only has
positive entries on the diagonal. This is because each entry is of the form x2−x+1 =
(x− 0.5)2 + 0.75. Therefore, the matrix is not only PSD, but it is positive definite.

10. A student used three different ways to estimate n× n similarity matrices S1, S2, and
S3 among a set of n objects. These similarity matrices were all positive semi-definite.
The student then computed the composite similarity matrix S as follows:

S = S1 � S2 + S2 � S3 + S3 � S1

Is the composite similarity matrix positive semi-definite?

Each matrix of the for Si � Sj is PSD based on the results discussed in the text.
Furthermore, the sum of PSD matrices is PSD.
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11. Suppose S(X1, X2) = S(X2, X1) is a symmetric similarity function between vectors
X1 and X2, which is not necessarily a valid kernel. Then, is the similarity function
K(X1, X2) = S(X1, X2)

2 a valid kernel?

Not necessarily. Consider a matrix in which the diagonal elements are 0s. Such a
matrix will always have negative eigenvalues unless it is the zero matrix, because the
trace sums to 0. On applying the above function, the diagonal entries continue to be
0s.

12. Suppose that S is a positive semi-definite kernel, and a sub-linear element-wise func-
tion f(·) is applied to each element of S to create the new matrix f(S). In each case,
either show that f(S) is positive semi-definite or provide a counter-example: (i) f(x)
is the natural logarithmic function, and S originally contains positive entries, and (ii)
f(x) is the non-negative square-root function, and S originally contains nonnegative
entries.

Neither of the above statements are true. Counter-examples of the matrix S are as
follows:

(i) Consider the following matrix S:

S =

[
1 1/e

1/e 1

]

This matrix is PSD because the sum of eigenvalues (trace) is positive and so is the
product of eigenvalues (determinant). Therefore, both eigenvalues are positive. In this
case, the matrix f(S) is as follows:

f(S) =

[
0 -1
−1 0

]
Here, the sum of eigenvalues of 0, and the product of eigenvalue is −1. Therefore, the
two eigenvalues are 1 and −1, which is indefinite.

(ii) This case is much harder. In this case, consider the matrix S as follows:

S =

⎡
⎣ 1 0 1

0 1 1
1 1 3

⎤
⎦

This matrix has eigenvalues of 1, 2 +
√
2 and 2 − √2, all of which are nonnegative.

Therefore, the matrix is PSD. Now consider what happens after applying the element-
wise function:

f(S) =

⎡
⎣ 1 0 1

0 1 1

1 1
√
3

⎤
⎦

This matrix is has a determinant (product of eigenvalues) of
√
3−2, which is negative.

Therefore, the matrix cannot be PSD.

13. Symmetric nonnegative factorization: Consider a symmetric and nonnegative
n× n matrix S that is factorized as S ≈ UUT , where U is an n× k matrix for some
k < n. The errors on the diagonal entries are ignored with the use of the objective
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function ||W � (S−UUT )||2. Here, W is an n×n binary weight matrix that is set to
1 for all entries other than the diagonal ones. Suppose that you additionally constrain
all entries in U to be nonnegative. Derive a projected gradient-descent update for
this box-constrained optimization problem. Discuss why the factor matrix U is more
interpretable in the nonnegative case.

The updates are the same as symmetric matrix factorization, except that one needs
to set each negative entry to 0 after each update.

14. Show that at least one symmetric factorization S = UUT exists of a positive semi-
definite matrix S, so that U is symmetric as well.

Diagonalize S = QΣ2QT and set U = QΣQT . This matrix is also referred to as the
square-root matrix because UUT = U2 = S.

15. Express the loss function of the regularized L2-loss SVM (cf. Chapter 5) using the rep-
resenter theorem in terms of a similarity matrix. Here, we will convert the regularized
Newton update of Chapter 5 to a representer update. The Newton update of Chapter 5
(using the same notations as the chapter) is as follows:

W ⇐ (DT
wDw + λId)

−1DT
wy

Here, the n × d matrix Dw = ΔwD is a partial copy of D, except that it has zero
rows for margin-satisfying rows of D at current values of the weight vector. Δw is a
binary diagonal matrix containing values of 1 only for margin-violating rows. Use the
Woodbury identity to show that this update is equivalent to the following:

β ⇐ Δw(Sw + λIn)
−1y

Here, Sw = DwD
T
w is a similarity matrix. Note that the update is similar to the

closed form of linear regression in the previous exercise except that it sets depen-
dent/independent variables of margin-satisfying points to 0 (and it needs to be itera-
tively repeated). Explain this similarity.

The loss function is as follows:

J =
1

2
||Δw(Sβ − y)||2 + λ

2
β
T
Sβ (9.1)

The value of yi(W ·Xi = yi(
∑

j βjsij) needs to be less than 1 for the ith point to be

margin violating. The update for W can be converted using the Woodbury identity
as follows:

W ⇐ DT
w(DwD

T
w + λIn)

−1y = DT
w(Sw + λIn)

−1y = DTΔw(Sw + λIn)
−1y

Note that the update of W can be expressed by decomposing it in the form
∑

i βiX
T

i .
The value of βi is 0 if the point is margin satisfying. Otherwise, it is equal to

∑
j yjaij ,

where aij is the (i, j)th entry of the symmetric inverse A = (Sw + λIn)
−1 of the

symmetric matrix (Sw + λIn). One can also implicitly make this update by setting βi

to
∑

j yjaij for for margin-violating points and 0 otherwise. This update is equivalent
to the following:

β ⇐ Δw(Sw + λIn)
−1y

The similarity between least-squares regression and the L2-SVM is discussed in Chap-
ter 4, where it is shown that well-separated points are ignored in the loss function,
and the loss function is otherwise identical.
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Chapter 10

The Linear Algebra of Graphs

1. Consider the n × n adjacency matrices A1 and A2 of two graphs. Suppose that the
graphs are known to be isomorphic. Two graphs are said to be isomorphic, if one
graph can be obtained from the other by reordering its vertices. Show that isomorphic
graphs have the same eigenvalues. [Hint: What is the nature of the relationship between
their adjacency matrices in algebraic form? You may introduce any new matrices as
needed.]

Two graphs are isomorphic, if one can express A2 = PA1P
T , where P is a permutation

matrix. Since these matrices are similar, they have the same eigenvalues.

2. Suppose that you were given the eigenvectors and eigenvalues of the stochastic transi-
tion matrix P of an undirected graph. Discuss how you can quickly compute P∞ using
these eigenvectors and eigenvalues.

An undirected graph has real eigenvectors and eigenvalues, and is diagonalizable with
maximum eigenvalue of 1. Therefore, it can be expressed as P = VΔV T . Therefore,
P∞ can be expressed VΔ∞V T . Any eigenvalue that is 1 gets set to 1. Any eigenvalue
less than 1 gets set to 0.

3. Let Δ be the weighted degree of matrix of the (undirected) adjacency matrix A, and
e1 . . . en be the n eigenvectors of the stochastic transition matrix P = Δ−1A. Show
that any pair of eigenvectors ei and ej are Δ-orthogonal. In other words, any pair of
eigenvectors ei and ej must satisfy the following:

eiΔej = 0

This fact can be shown by observing that the symmetric matrix Δ1/2PΔ−1/2 has
orthonormal eigenvectors. Furthermore, if x is an eigenvector of P , then Δ1/2x is
an eigenvector of the symmetric matrix. Since any pair of eigenvectors Δ1/2xi and
Δ1/2xj of the symmetric matrix are orthonormal, it follows that xT

i Δ
1xj = 0. The

result follows.

4. Show that all eigenvectors (other than the first eigenvector) of the stochastic tran-
sition matrix of a connected, undirected graph will have both positive and negative
components.
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The top eigenvector of the stochastic transition matrix P is a vector of 1s. Let Λ =
Δ1/2 be the square-root of the degree matrix. Then, the matrix S = ΛPΛ−1 is a
symmetric matrix in which the first eigenvector is Λe, where e is a vector of 1s. All
other eigenvectors of S are orthonormal to this vector with only positive components
and will therefore have both positive and negative components. Furthermore, if x is
an eigenvector of P (different from the first eigenvector), then Λx can easily be shown
to be an eigenvector of S. Since the latter has both positive and negative components,
it follows that the former does too.

5. Consider the adjacency matrix A of an n×n undirected graph, which is also bipartite.
In a bipartite graph, the n vertices can be divided into two vertex sets V1 and V2 of
respectively n1 and n2 vertices, so that all edges occur between vertices of V1 and
vertices of V2. The adjacency matrix of such a graph always has the following form
for an n1 × n2 matrix B:

A =

[
0 B
BT 0

]
Even though A is symmetric, B might not be symmetric. Given the eigenvectors and
eigenvalues of A, show how you can perform the SVD of B quickly.

Each eigenvector of A is an (n1 + n2)-dimensional vector x, in which the first n1

components are x1 and the remaining n2 components are x2. Furthermore, the first
n1 components of Ax are Bx2, and the remaining n2 components are BTx1. Therefore,
we have:

Bx2 ∝ x1

BTx1 ∝ x2

One can use the above relationships to show that BTBx2 ∝ x2, and BBTx1 ∝ x1.
In other words, x1 contains the left singular vectors, x2 contains the right singular
vectors, and the square root of the eigenvalues of BTB or BBT contains the singular
values. One can use these to construct the SVD.

6. A complete directed graph is defined on n vertices and it contains all n(n−1) possible
edges in both directions between each pair of vertices (other than self-loops). Each edge
weight is 1.

(a) Give a short reason why all eigenvalues must be real.

(b) Give a short reason why the eigenvalues must sum to 0.

(c) Show that this graph has one eigenvalue of (n − 1) and (n − 1) eigenvalues are
−1.

(a) All eigenvalues are real because the matrix is symmetric.

(b) The trace of the matrix is 0, since it has no self-loops. Therefore, the eigenvalues
must sum to 0.

(c) The matrix (A+I) has rank 1, because all rows are identical. Therefore, eigenvalues
−1 has multiplicity of (n − 1). It remains to find an eigenvalue λ so that A − λI is
singular, which corresponds to the only possible remaining eigenvector with different
eigenvalue. The matrix A− (n− 1)I has rows that sum to 0. Therefore, it is singular
and must have a null space containing the remaining eigenvector.
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7. A complete bipartite graph (see Exercise 5) is defined on 4 vertices, where 2 vertices
are contained in each partition. A edge of weight 1 exists in both directions between
each pair of vertices drawn from the two partitions. Find the eigenvalues of this graph.
Can you generalize this result to the case of a complete bipartite graph containing 2n
vertices, where n vertices are contained in each partition?

This matrix has 2 eigenvalues of 1, and (2n− 2) eigenvalues of 0.

8. Suppose you create a symmetrically normalized adjacency matrix S = Δ−1/2AΔ−1/2

for an undirected adjacency matrix A. You decide that some vertices are “important”
and they should get relative weight γ > 1 in an embedding that is similar to spectral
clustering, whereas other vertices only get a weight to 1.

(a) Propose a weighted matrix factorization model that creates an embedding in which
the “important” vertices have a relative weight of γ in the objective function.
The matrix factorization model should yield the same embedding at γ = 1 as
symmetric spectral clustering.

(b) Show how you can create an informative embedding with this approach, if some
vertices in the graph are labeled.

(c) You are given a black-box classifier that works with multidimensional data. Show
how you can select γ appropriately and use it for collective classification of the
unlabeled vertices of the graph.

The approach is a simple application of weighted matrix factorization methods dis-
cussed in Chapter 7. The only difference is that one is performing symmetric matrix
factorization in this case. The approach can be used for semi-supervised embedding
because it is possible to create a similarity graph and extract the embedding from it.
Labeled vertices can be weighted to a greater degree.

9. Propose an embedding-based algorithm for outlier detection in multidimensional data
that uses the concept of the similarity graph and the extraction of an embedding.
Discuss the choice of an appropriate dimensionality of the embedding, and how this
choice is different from the case of the clustering problem.

One can construct a similarity graph using any kernel similarity like the Gaussian
kernel. Subsequently one can extract all nonzero eigenvectors, and perform whitening
on the representation. The points with the largest distance from the centroid are
outliers. This is simply the kernel Mahalanobis method discussed in Chapter 8.

11. Provide an example of a 2× 2 adjacency matrix of a directed graph that is not diago-
nalizable.

The following graph containing a single edge between two vertices is not diagonalizable
because it has an eigenvalue of 0, which has algebraic multiplicity of 2, and geometric
multiplicity of 1:

A =

[
0 1
0 0

]
12. A bipartite graph is defined as a graph G = (V1 ∪ V2) with a partitioned vertex set

V1∪V2, so that no edges in E exist within vertices of a single partition. In other words,
for all (i, j) ∈ E, both i, j cannot be drawn from V1, and both i, j cannot be drawn
from V2. Show that if λ is the eigenvalue of the adjacency matrix of an undirected
bipartite graph, then −λ is an eigenvalue as well.
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Since the graph is bipartite, its adjacency matrix with appropriately reordered vertices
is in the following form:

A =

[
0 B
BT 0

]
The eigenvector can be expressed in the form [xT , yT ]T , where By = λx, and BTx =
λy. In such a case, [−xT , yT ]T is an eigenvector with eigenvalue −λ.

15. Let P be the stochastic transition matrix of an undirected and connected graph. Show
that all left eigenvectors of P other than the principal left eigenvector (i.e., PageRank
vector) have vector components that sum to 0. [Hint: What are the angles between left
eigenvectors and right eigenvectors of a matrix?]

As discussed in Exercise 17 of Chapter 3, the left eigenvectors and right eigenvec-
tors are orthogonal as long as they belong to distinct eigenvalues. The primary right
eigenvectors of the transition matrix is a column of 1s. Therefore, all non-primary left
eigenvectors will be orthogonal to a column of 1s. This is possible only when their
components sum to 0.

16. Let S be the symmetrically normalized adjacency matrix of spectral clustering. In
some cases, the clusters do not clearly separate out by applying the k-means algorithm
on the features obtained from eigenvector extraction on S. Use the kernel intuition
from Chapter 8 to discuss the advantages of using S � S instead of S for eigenvector
extraction in such cases.

The k-means algorithm works well with clusters that are linearly separable. When this
is not the case, the performance will be poor. One approach to improve performance
is to apply a super-linear function on the entries, which increases the dimensionality
of the embedding and promotes linear separability. A larger number of eigenvectors
would need to be used for effective results.

17. Consider two n×n symmetric matrices A and B, such that B is also positive definite.
Show that BA need not be symmetric, but it is diagonalizable with real eigenvalues.

The fact that BA is not symmetric can be shown by example, by selecting B to be
the weighted degree matrix of A, and selecting A to be the undirected 3×3 adjacency
matrix of a cycle of three vertices in which one edge is 2 and other two edges are 1.
Since B is positive definite but the square-root matrix B1/2 and the inverse square
root matrix B−1/2 exist. The square-root matrix and inverse square-root matrix are
both symmetric. Therefore, the matrix C = B1/2AB1/2 is symmetric, and has real
eigenvectors and eigenvalues. Furthermore, the matrix B1/2CB−1/2 is similar to C
and is equal to BA. Therefore C and BA have the same real eigenvalues.

18. Suppose that A is the 20×20 adjacency matrix of a directed graph of 20 nodes. Interpret
the matrix (I−A20)(I−A)−1 in terms of walks in the graph. Will this matrix have any
special properties for a strongly connected graph? Argue algebraically why the following
is true:

(I −A20)(I −A)−1 = (I −A)−1(I −A20)

This can be shown by expanding (I −A20) as follows:

I −A20 = (I −A)(I +A+ . . .+A19) = (I +A+ . . .+A19)(I −A)
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This can be interpreted as all walks of length 19 or less in the graph. For a strongly
connected graph, it will result in all entries of the matrix being positive.

19. Exercise 13 of the previous chapter introduces symmetric non-negative matrix factor-
ization, which can also be used to factorize the symmetrically normalized adjacency
matrix S ≈ UUT , which is used in spectral clustering. Here, U is an n×k non-negative
factor matrix. Discuss why the top-r components of each column of U directly provide
clustered bags of nodes of size r in the graph.

Note that outer product of a column with itself forms an important subgraph. NMF
reconstructs the graph as an additive sum of these subgraphs. The top components
of this subgraph form a relatively dense clique.

20. Find the PageRank of each node in (i) an undirected cycle of n nodes, and (ii) a single
central node connected with an undirected edge to each of (n− 1) nodes. In each case,
compute the PageRank at a restart probability of 0.

The probability is 1/n for all nodes in the cycle. The probability is 1/2 for the central
node and 1/(2n− 2) for all other nodes.

21. Signed network embedding: Suppose that you have a graph with both positive and
negative weights on edges. Propose modifications of the algorithms used to remove
“weak edges” and to symmetrically normalize the graph. Will the resulting graph be
diagonalizable with orthogonal eigenvectors and real eigenvalues? Is there anything
special about the first eigenvector?

Weak edges can be removed based on the absolute magnitudes of the edges. Similarly,
the absolute magnitudes of the edges are used to compute the sum of each row and
column for symmetric normalization. The matrix is symmetric and therefore it does
have orthogonal eigenvectors and real eigenvalues. There is nothing special about the
first eigenvector because of the presence of both negative and positive edges.

22. Heterogeneous network embedding: Consider a social network graph with di-
rected/undirected edges of multiple types (e.g., undirected friendship links, directed
messaging links, and directed “like” links). Propose a shared matrix factorization al-
gorithm to extract an embedding of each node. How would you tune the parameters?

Let us extract the adjacency matrices for each of the k different types of links and
denote them by A1 . . . Ap. Then, we perform the shared matrix factorization Ai ≈
UV T

i for each i ∈ {1 . . . p}. Here, U is the shared factor across all link types, which
provides the embedding of each node. On the other hand, Vi is the embedding of a node
that captures its behavior with respect to a particular modality. The corresponding
objective function is as follows:

J =
∑
i

βi‖Ai − UV T
i ‖2

We set the error matrices to Ei = Ai − UV T
i for each i. Then, the updates are as

follows:

U ⇐ U + α
∑
i

βiEiV

Vi ⇐ Vi + αβiE
T
i U ∀i
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In the event that regularization is used, the updates are as follows:

U ⇐ U(1− αλ) + α
∑
i

βiEiV

Vi ⇐ Vi(1− αλ) + αβiE
T
i U ∀i

The parameters are set by using out-of-sample root-mean-square-error (RMSE) of link
weight prediction. Some of the edges are held out (along with negative edges of zero
weight), and their RMSE is computed over different settings of the parameters. The
choice of parameters with lowest error is selected.
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Chapter 11

Optimization in Computational
Graphs

1. One of the problems in this chapter proposes a loss function for the L1-SVM in the
context of a computational graph. How would you change this loss function, so that
the same computational graph results in an L2-SVM?

The new loss function is max{0, 1−oô}2, while using the same notations as those used
in the book.

2. Repeat Exercise 1 with the changed setting that you want to simulate Widrow-Hoff
learning with the same computational graph. What will be the loss function associated
with the single output node? Widrow-Hoff learning is described in Chapter 3.

In this case, the loss function is (1− oô)2.

3. The book discusses a vector-centric view of backpropagation in which backpropagation
in linear layers can be implemented with matrix-to-vector multiplications. Discuss how
you can deal with batches of training instances at a time (i.e., batch stochastic gradient
descent) by using matrix-to-matrix multiplications.

In the case of vector-centric back propagation, we stack up the training instances in
columns to create a matrix. Subsequently, exactly the same operations are applied to
the matrix in both the forward and backward phases, as were originally applied to
the vector.

4. Let f(x) be defined as follows:

f(x) = sin(x) + cos(x)

Consider the the function f(f(f(f(x)))). Write this function in closed form to obtain
an appreciation of the awkwardly long function. Evaluate the derivative of this function
at x = π/3 radians by using a computational graph abstraction.

sin(sin(sin(sin(x) + cos(x)) + cos(sin(x) + cos(x))) + cos(sin(sin(x) + cos(x)) +
cos(sin(x) + cos(x))))+
+cos(sin(sin(sin(x) + cos(x)) + cos(sin(x) + cos(x))) + cos(sin(sin(x) + cos(x)) +
cos(sin(x) + cos(x))))
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Construct the following computational graph of four nodes. A single input x feeds
into a sine function node and a cosine function node. Both these nodes feed into a
single addition node. This graph can be replicated four times in order to create the full
computational graph. Then, the backpropagation algorithm can be applied in order
to compute the derivative of the output with respect to the input.

5. Suppose that you have a computational graph with the constraint that specific sets of
weights are always constrained to be at the same value. Discuss how you can compute
the derivative of the loss function with respect to these weights.

We simply compute the derivative with respect to the shared weights separately and
then we add them. This trick is also discussed at the end of section 3.4 in Chapter 3.

6. Consider a computational graph in which you are told that the variables on the edges
satisfy k linear equality constraints. Discuss how you would train the weights of such
a graph. How would your answer change, if the variables satisfied box constraints.

One can use row reduction in order to express a subset of the variables in terms of the
others. Subsequently, the chain rule can be used in order to compute the derivatives
with respect to the variables.

7. Discuss why the dynamic programming algorithm for computing the gradients will not
work in the case where the computational graph contains cycles.

This is because one always needs to find a node in the forward phase in which the
values of its incoming nodes are already defined. The same is true for the outgoing
nodes in the backward phase. This is not possible in a graph with cycles, where an
acyclic ordering of processing cannot be defined.

8. Consider the neural architecture with connections between alternate layers. Suppose
that the recurrence equations of this neural network are as follows:

h1 = ReLU(W1x)

h2 = ReLU(W2x+W3h1)

y = W4h2

Here, W1, W2, W3, and W4 are matrices of appropriate size. Use the vector-centric
backpropagation algorithm to derive the expressions for ∂y

∂h2
, ∂y

∂h1
, and ∂y

∂x in terms of

the matrices and activation values in intermediate layers.

Using the linear layer backpropagation, we obtain the following:

∂y

∂h2

= WT
4

∂y

∂y
= WT

4

Applying the vector-centric recurrence to the next layer, we obtain:

∂y

∂h1

=
∂h2

∂h1

∂y

∂h2

= WT
3 (I(h2 > 0)�WT

4 )

Here, I(·) is an element-wise indicator function, which takesn on the value of 0 or 1
for each component, depending on whether or not the condition is satisfied for that
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component. Finally, we can obtain an expression for ∂y
∂x as follows:

∂y

∂x
=

∂h2

∂x

∂y

∂h2

+
∂h1

∂x

∂y

∂h1

= WT
2 (I(h2 > 0)�WT

4 ) +WT
1 {I(h1 > 0)� [WT

3 (I(h2 > 0)�WT
4 )]}

9. Consider a neural network that has hidden layers h1 . . . ht, inputs x1 . . . xt into each
layer, and outputs o from the final layer ht. The recurrence equation for the pth layer
is as follows:

o = Uht

hp = tanh(Whp−1 + V xp) ∀p ∈ {1 . . . t}

The vector output o has dimensionality k, each hp has dimensionality m, and each
xp has dimensionality d. The “tanh” function is applied in element-wise fashion. The
notations U , V , and W are matrices of sizes k×m, m×d, and m×m, respectively. The
vector h0 is set to the zero vector. Start by drawing a (vectored) computational graph
for this system. Show that node-to-node backpropagation uses the following recurrence:

∂o

∂ht

= UT

∂o

∂hp−1

= WTΔp−1
∂o

∂hp

∀p ∈ {2 . . . t}

Here, Δp is a diagonal matrix in which the diagonal entries contain the components
of the vector 1− hp � hp. What you have just derived contains the node-to-node back-
propagation equations of a recurrent neural network. What is the size of each matrix
∂o
∂hp

?

It is easy to show that the (i, j) entry of the firs derivative is the (j, i)th entry of U
because of the linear form of the update. For the second identity, one must use the
chain rule over the tanh and the weight matrix product, which contribute Δp−1 and
WT , respectively. Note that these matrices, which have k columns and m rows.

10. Show that if we use the loss function L(o) in Exercise 9, then the loss-to-node gradient
can be computed for the final layer ht as follows:

∂L(o)

∂ht

= UT ∂L(o)

∂o

The updates in earlier layers remain similar to Exercise 9, except that each o is re-

placed by L(o). What is the size of each matrix ∂L(o)

∂hp
?

This is similar to the previous exercise, except that we need to use the chain rule to

append ∂L(o)
∂o to the end (right side) of each matrix product as an additional factor.

This change results in an m-dimensional column vector, because we are trying to find
the gradient of the loss with respect to the hidden layer.

11. Suppose that the output structure of the neural network in Exercise 9 is changed so
that there are k-dimensional outputs o1 . . . ot in each layer, and the overall loss is
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L =
∑t

i=1 L(oi). The output recurrence is op = Uhp. All other recurrences remain
the same. Show that the backpropagation recurrence of the hidden layers changes as
follows:

∂L

∂ht

= UT ∂L(ot)

∂ot
∂L

∂hp−1

= WTΔp−1
∂L

∂hp

+ UT ∂L(op−1)

∂op−1
∀p ∈ {2 . . . t}

The gradient of the final layer ht is not change. However, for p < t, the layer hp

accumulates the gradients of the loss with respect to hp.

12. For Exercise 11, show the following loss-to-weight derivatives:

∂L

∂U
=

t∑
p=1

∂L(op)

∂op
h
T

p ,
∂L

∂W
=

t∑
p=2

Δp−1
∂L

∂hp

h
T

p−1,
∂L

∂V
=

t∑
p=1

Δp
∂L

∂hp

xT
p

What are the sizes and ranks of these matrices?

A key point is that the weights are shared across different layers. The first step is
to pretend that the weights are not shared across layers and compute the derivative
separately with respect to each weight matrix. Subsequently, the chain rule can be
used to infer that these derivatives need to be added. Furthermore, the derivative
in each layer can be obtained by multiplying Δp−1 with ∂L

∂hp
to obtain derivatives

with respect to pre-activation values. Subsequently, loss to weight derivatives are
obtained by taking the outer-product of the loss-to-preactivation derivative with hp−1

(as discussed in the vector-centric backpropagation section of book).

13. Consider a neural network in which a vectored node v feeds into two distinct vectored
nodes h1 and h2 computing different functions. The functions computed at the nodes
are h1 = ReLU(W1v) and h2 = sigmoid(W2v). We do not know anything about the
values of the variables in other parts of the network, but we know that h1 = [2,−1, 3]T
and h2 = [0.2, 0.5, 0.3]T , that are connected to the node v = [2, 3, 5, 1]T . Furthermore,
the loss gradients are ∂L

∂h1
= [−2, 1, 4]T and ∂L

∂h2
= [1, 3,−2]T , respectively. Show that

the backpropagated loss gradient ∂L
∂v can be computed in terms of W1 and W2 as follows:

∂L

∂v
= WT

1

⎡
⎣ −20

4

⎤
⎦+WT

2

⎡
⎣ 0.16

0.75
−0.42

⎤
⎦

What are the sizes of W1, W2, and
∂L
∂v ?

First note that the sizes of W1 and W2 are both 3 × 4, so that they can map a 4-
dimensional vector to a 3-dimensional vector. The gradient of L with respect to v is
a 4-dimensional vectors, since v is 4-dimensional. Using the multivariable chain rule
for vectors, we obtain the following:

∂L

∂v
=

∂h1

∂v

∂L

∂h1

+
∂h2

∂v

∂L

∂h2
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Now note that because of the use of the combination of linear and ReLU to obtain h1,

the matrix ∂h1

∂v is WT
1 Δ1, where Δ1 is a diagonal matrix containing 1, 0, and 1 along

diagonal entries. Multiplying the diagonal matrix with the given values of ∂L
∂h1

yields

[−2, 0, 4]T . Similarly, because of the combination of linear and sigmoid to obtain h2,

the matrix ∂h2

∂v is the diagonal matrix containing the elements of h2 � (1− h2) on its
diagonal entries, which is 0.16, 0.25, and 0.21. Multiplying the diagonal matrix with
the given values of ∂L

∂h2
yields [0.16, 0.75,−0.42]T .

14. Forward Mode Differentiation: The backpropagation algorithm needs to compute
node-to-node derivatives of all nodes with respect to output nodes, and therefore com-
puting gradients in the backwards direction makes sense. Consequently, the pseudocode
in the chapter propagates gradients in the backward direction. However, consider the
case where we want to compute the node-to-node derivatives of all nodes with respect
to source (input) nodes s1 . . . sk. Propose a variation of the pseudocode in the book
that computes node-to-node gradients in the forward direction. Why is the backward
mode preferred for neural network training?

The pseudocode of this algorithm is as follows:

Initialize S(sr, sr) = 1 for all source nodes r ∈ {1 . . . k};
repeat
Select an unprocessed node j such that the values of S(sr, i) all of its incoming

nodes i ∈ Ain(j) are available for all r;
Update S(sr, j) ⇐

∑
i∈Ain(j) S(sr, i)z(i, j) for all r;

until all nodes have been selected;

The backward mode is preferred in neural network training because it is the loss (at
the sink) that needs to be differentiated with respect to all nodes.

15. All-pairs node-to-node derivatives: Let y(i) be the variable in node i in a directed
acyclic computational graph containing n nodes and m edges. Consider the case where

one wants to compute S(i, j) = ∂y(j)
∂y(i) for all pairs of nodes in a computational graph,

so that at least one directed path exists from node i to node j. Propose an algorithm
for all-pairs derivative computation that requires at most O(n2m) time.

For directly connected nodes we initialize S(i, j, 1) = z)i, j) for all edges. All other
S(i, j, t) are set to 0. One scans each edge one by one. The recurrence relation is as
follows for each edge (i, j) and each outgoing edge (j, k) of j:

S(i, k, t+ 1) = S(i, k, t+ 1) + S(i, j, t)z(j, k)

One repeats this process until all paths of length up to n− 1 have been processed.

There is an alternative and equivalent way to do this by changing the recurrence.
One can implement this recurrence by using the incoming edges of i rather than the
outgoing edges of i as follows. For each incoming node k of i, one could perform the
following update:

S(k, j, t+ 1) = S(k, j, t+ 1) + S(i, j, t)z(k, i)

Finally, we add up S(i, j, t) over different values of t to obtain S(i, j).
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Figure 11.1: Computational graphs for Exercises 21 and 22

16. Use the path-wise aggregation lemma to compute the derivative of y(10) with respect
to each of y(1), y(2), and y(3) as an algebraic expression. You should get the same
derivative as obtained using the backpropagation algorithm in the text of the chapter.

The paths are as follows:
From 1 to 10: 1, 4, 7, 10 and 1, 5, 8, 10
From 2 to 10: 2, 4, 7, 10, and 2, 5, 8, 10 and 2, 6, 9, 10
From 3 to 10: 3, 5, 8, 10, and 3, 6, 9, 19

Using these paths, the pathwise aggregation lemma yields the following expressions
for S(1, 10), S(2, 10) and S(3, 10):

S(1, 10) = z(1, 4)z(4, 7)z(7, 10) + z(1, 5)z(5, 8)z(8, 10)

S(2, 10) = z(2, 4)z(4, 7)z(7, 10) + z(2, 5)z(5, 8)z(8, 10) + z(2, 6)z(6, 9)z(9, 10)

S(2, 10) = z(3, 5)z(5, 8)z(8, 10) + z(3, 6)z(6, 9)z(9, 10)

We use the same notations z(i, j) and S(i, j) as in the example used in the text. Note
that the values of z(i, j) are already listed in the text. Using the listed values of z(i, j)
we obtain the following expressions:

S(1, 10) =
∂y(10)

∂y(1)
= S(4, 10) · z(1, 4) + S(5, 10) · z(1, 5)

= y(8) · y(9) · cos[y(4)] · y(2)− y(7) · y(9) · sin[y(5)] · y(2) · y(3)

S(2, 10) =
∂y(10)

∂y(2)
= S(4, 10) · z(2, 4) + S(5, 10) · z(2, 5) + S(6, 10) · z(2, 6)

= y(8) · y(9) · cos[y(4)] · y(1)− y(7) · y(9) · sin[y(5)] · y(1) · y(3)+
+ y(7) · y(8) · cos[y(6)] · w2

S(3, 10) =
∂y(10)

∂y(3)
= S(5, 10) · z(3, 5) + S(6, 10) · z(3, 6)

= −y(7) · y(9) · sin[y(5)] · y(1) · y(2) + y(7) · y(8) · cos[y(6)] · w3

These are exactly the same expressions as obtained using the backpropagation algo-
rithm in the text.

17. Consider the computational graph of Figure 11.8. For a particular numerical input

x = a, you find the unusual situation that the value ∂y(j)
∂y(i) is 0.3 for each and every

edge (i, j) in the network. Compute the numerical value of the partial derivative of the
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output with respect to the input x (at x = a). Show the computations using both the
pathwise aggregation lemma and the backpropagation algorithm.

There are 32 paths of length 6 each. Each path contributes 0.3)6 to the derivative.
Therefore, the total is 32 × 0.36. One can show a similar result with the use of the
backpropagation algorithm.

18. Consider the computational graph of Figure 11.8. The upper node in each layer com-
putes sin(x+ y) and the lower node in each layer computes cos(x+ y) with respect to
its two inputs. For the first hidden layer, there is only a single input x, and therefore
the values sin(x) and cos(x) are computed. The final output node computes the product
of its two inputs. The single input x is 1 radian. Compute the numerical value of the
partial derivative of the output with respect to the input x (at x = 1 radian). Show
the computations using both the pathwise aggregation lemma and the backpropagation
algorithm.

The forward phase activations as well as the derivatives in the backwards phase are
shown in the figure below. It is important to note that all sine and cosine values are
computed using radians rather than degrees:
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19. Matrix factorization with neural networks: Consider a neural network contain-
ing an input layer, a hidden layer, and an output layer. The number of outputs is
equal to the number of inputs d. Each output value corresponds to an input value,
and the loss function is the sum of squared differences between the outputs and their
corresponding inputs. The number of nodes k in the hidden layer is much less than
d. The d-dimensional rows of a data matrix D are fed one by one to train this neural
network. Discuss why this model is identical to that of unconstrained matrix factor-
ization of rank-k. Interpret the weights and the activations in the hidden layer in the
context of matrix factorization. You may assume that the matrix D has full column
rank. Define weight matrix and data matrix notations as convenient.
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Let W1 be the d × k weight matrix between the input and hidden layer. Let W2

be the k × d weight matrix between the hidden and output layer. Let D be the
n × d data matrix whose rows are fed to the neural network one by one. Then, the
computational graph computes the matrix DW1W2 by passing the rows of D through
the two layers. Therefore, the overall error is given by ‖D − DW1W2‖2F . We can
show the equivalence to unconstrained matrix factorization by means of a variable
transformation. We simply use the new variables U = DW1 and V = WT

2 in order
to show that the optimization problem is equivalent to minimizing ||D − UV T ||2F .
Note that this is the same optimization model as unconstrained matrix factorization.
Furthermore, since D has full column rank, one can always find a W1 exactly satisfying
DW1 = U once U has been optimized.

20. SVD with neural networks: In the previous exercise, unconstrained matrix factor-
ization finds the same k-dimensional subspace as SVD. However, it does not find an
orthonormal basis in general like SVD. Provide an iterative training method for the
computational graph of the previous section by gradually increasing the value of k so
that an orthonormal basis is found.

The training is performed by first performing the learning for k = 1, then fixing the
weights for what has already been learned. Then, we perform the learning at k = 2,
while training only the new weights. This process is repeated until the desired value
of k has been reached. By training, the weights iteratively in this fashion, we ensure
that that the k-dimensional subspace found is the same as SVD is for any k less than
the desired threshold.

21. Consider the computational graph shown in Figure 11.1(a), in which the local deriva-

tive ∂y(j)
∂y(i) is shown for each edge (i, j), where y(k) denotes the activation of node k.

The output o is 0.1, and the loss L is given by −log(o). Compute the value of ∂L
∂xi

for
each input xi using both the path-wise aggregation lemma, and the backpropagation
algorithm.

The derivatives with respect to each node are shown in the diagram below. The
backpropagated values are shown along with each node. On the right-hand side, the
pathwise values are also shown.
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-90 Pathwise derivative with respect to  x1 
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Pathwise derivative with respect to  x2 
-10(-1)(3)(3)+ (-10)(-1)(-2)(-1)
+(-10)(1)(1)(-1)+(-10)(1)(1)(2)
+(-10)(2)(-1)(2)= 140

Pathwise derivative with respect to  x3
-10(-1)(-2)(1)+ (-10)(1)(1)(1)
+(-10)(1)(1)(-3)+(-10)(2)(-1)(-3)=-60

22. Consider the computational graph shown in Figure 11.1(b), in which the local deriva-

tive ∂y(j)
∂y(i) is shown for each edge (i, j), where y(k) denotes the activation of node k.

The output o is 0.1, and the loss L is given by −log(o). Compute the value of ∂L
∂xi

for
each input xi using both the path-wise aggregation lemma, and the backpropagation
algorithm.
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The derivatives with respect to each node are shown in the diagram below. The
backpropagated values are shown along with each node. On the right-hand side, the
pathwise values are also shown.
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23. Convert the weighted computational graph of linear regression into an unweighted
graph by defining additional nodes containing w1 . . . w5 along with appropriately de-
fined hidden nodes.

We need to add 5 input nodes containing w1 . . . w5, and five hidden nodes containing
the multiplication function, creating a new hidden layer. Each node in the hidden
layer computes wi ∗ xi for all i. Subsequently, the output node adds these five values.

24. Multinomial logistic regression with neural networks: Propose a neural net-
work architecture using the softmax activation function and an appropriate loss func-
tion that can perform multinomial logistic regression.

It assumed that the input to the model is a training data set containing pairs of the
form (Xi, c(i)), where c(i) ∈ {1 . . . k} is the index of the class of d-dimensional row
vector Xi. As in the case of the previous two models, the class r with the largest value

of W r ·XT

i is predicted to be the label of the data point Xi. There is an additional

probabilistic interpretation of W r ·XT

i in terms of the posterior probability P (r|Xi)
that the class r is predicted given the data point Xi. This estimation can be naturally
accomplished with the softmax activation function:

P (r|Xi) =
exp(W r ·XT

i )∑k
j=1 exp(W j ·XT

i )
(11.1)

Note that large values of W r · XT

i map to large probabilities, and the probabilities
over all classes always sum to 1. The loss function Li for the ith training instance is
defined by the cross-entropy, which is the negative logarithm of the probability of the
true class. The neural architecture of the softmax classifier is illustrated below:
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The cross-entropy loss may be expressed in terms of either the input features or in

terms of the softmax pre-activation values vr = W r ·XT

i as follows:

Li = −log[P (c(i)|Xi)] (11.2)

= −W c(i) ·XT

i + log[

k∑
j=1

exp(W j ·XT

i )] (11.3)

= −vc(i) + log[
k∑

j=1

exp(vj)] (11.4)

25. Weston-Watkins SVM with neural networks: Propose a neural network archi-
tecture and an appropriate loss function that is equivalent to the Weston-Watkins
SVM.

it is assumed that the ith training instance is denoted by (Xi, c(i)), where Xi contains
the d-dimensional feature variables, and c(i) contains the class index drawn from
{1, . . . , k}. One wants to learn d-dimensional coefficients W 1 . . .W k of the k linear

separators so that the class index r with the largest value of W r · XT

i is predicted
to be the correct class c(i). The Weston-Watkins loss function Li for the ith training
instance (Xi, c(i)) is defined as follows:

Li =
∑

r:r �=c(i)

max(W r ·XT

i −W c(i) ·XT

i + 1, 0) (11.5)

The neural architecture of the Weston-Watkins SVM is illustrated below:
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