
Algorithm 1 Dijkstra’s Algorithm

1: Input: Graph G = (V,E), source s ∈ V , target t ∈ V
2: Output: Shortest path from s to t
3:

4: // Initialize weights
5: Construct a map distance whose keys are nodes and values are distances
6: Construct a map previous whose keys are nodes and values are nodes
7: for v ∈ V do
8: distance[v]←∞
9: previous[v]← undefined

10: end for
11: distance[s]← 0
12:

13: // Initialize priority queue
14: Construct an empty priority queue Q
15: for v ∈ V do
16: Add v to Q with priority distance[v]
17: end for
18:

19: // Calculate paths
20: while |Q| > 0 do
21: Let u = Q.getMin()
22: Q.deleteMin()
23: if distance[u] =∞ then
24: // TODO: What should happen here?
25: end if
26: for v ∈ neighbors(u) do
27: Let altDistance = distance[u] + edgeWeight(u, v)
28: if altDistance < distance[v] then
29: distance[v]← altDistance
30: previous[v]← u;
31: Q.updateWeight(v,distance[v])
32: end if
33: end for
34: end while
35:

36: // Return shortest path from s to t
37: Construct an empty stack of vertices called path
38: path.push(t)
39: while path.top() 6= s do
40: path.push(previous[path.top()])
41: end while
42: return path

1

