
Algorithm 1 Prim’s algorithm with edge priority queue

1: Input: Graph G = (V,E)
2: Output: Minimum spanning tree of G
3:

4: // Initialization
5: Select an arbitrary vertex s ∈ V
6: Construct a tree mst that contains only the vertex s
7: Construct an empty priority queue Q that will contain edges ordered by their weights // We

will maintain the invariant that for every edge (u, v) ∈ Q, at least one of u or v is in mst
8: for v ∈ neighbors(s) do
9: Add edge (v, s) to Q

10: end for
11:

12: // Construct mst
13: while Q is not empty do
14: Let edge (u, v) = Q.findMin()
15: Q.removeMin()
16: if node u ∈ mst and node v ∈ mst then
17: // TODO: What goes here?
18: else
19: // TODO: What about here?
20: end if
21: end while
22: return mst

Algorithm 2 Prim’s algorithm with node priority queue

1: Input: Graph G = (V,E)
2: Output: Minimum spanning tree of G
3:

4: // Initialization
5: Select an arbitrary vertex s ∈ V
6: Construct an empty tree mst
7: Construct an empty priority queue Q that will contain nodes ordered by their “distance” from

mst // If v 6∈ mst, then the distance of v is defined as the weight of the minimum cost edge
(u, v) such that u ∈ mst

8: Insert s into Q with priority 0
9:

10: // Construct mst
11: while there exists a vertex v s.t. v ∈ V and v 6∈ mst do
12: Let v = Q.findMin()
13: Q.removeMin()
14: for vertex u ∈ neighbors(v) do
15: if v 6∈ mst then
16: if weight(u, v) < Q.getPriority(u) then
17: //TODO: What goes here?
18: end if
19: end if
20: end for
21: end while
22: return mst

1

Algorithm 3 Kruskal’s algorithm: high level

1: Input: Graph G = (V,E)
2: Output: Minimum spanning forest of G
3: Create a forest msf , initialized so that every vertex v ∈ V is a singleton tree in msf
4: Create a set remainingedges containing all the edges in the graph
5: while remainingedges 6= ∅ and msf is not spanning do
6: Remove an edge (u, v) with minimum weight from remainingedges
7: if (u, v) connects two different trees in msf then
8: Add (u, v) to msf , combining the two trees
9: end if

10: end while

Algorithm 4 Kruskal’s algorithm: with priority queue over edges

1: Input: Graph G = (V,E)
2: Output: Minimum spanning forest of G
3:

4: // initialize forest
5: Create an empty map msf whose keys are nodes and values are trees
6: for vertex v ∈ V do
7: msf [v]← tree with v as only node
8: end for
9:

10: // initialize priority queue
11: Create an empty priority queue Q whose elements are edges and priorities are weights
12: for edge (u, v) ∈ E do
13: Insert (u, v) into Q
14: end for
15:

16: // main loop
17: while |Q| > 0 and msf is not spanning do
18: (u, v)← Q.findMin()
19: Q.removeMin()
20: if msf [u] 6= msf [v] then
21: // TODO: What goes here?
22: end if
23: end while
24: return msf

2

