Algorithm 1 Prim’s algorithm with edge priority queue
Input: Graph G = (V, E)
Output: Minimum spanning tree of G

// Initialization

Select an arbitrary vertex s € V

Construct a tree mst that contains only the vertex s

Construct an empty priority queue @ that will contain edges ordered by their weights // We
will maintain the invariant that for every edge (u,v) € @, at least one of u or v is in mst
for v € neighbors(s) do

9: Add edge (v, s) to Q

10: end for

11:

12: // Construct mst

13: while @ is not empty do

14: Let edge (u,v) = Q.findMin()

15: @.removeMin()

16: if node u € mst and node v € mst then

17: // TODO: What goes here?

®

18: else
19: // TODO: What about here?
20: end if

21: end while
22: return mst

Algorithm 2 Prim’s algorithm with node priority queue
Input: Graph G = (V, E)
Output: Minimum spanning tree of G

// Initialization

Select an arbitrary vertex s € V

Construct an empty tree mst

Construct an empty priority queue @ that will contain nodes ordered by their “distance” from
mst // If v & mst, then the distance of v is defined as the weight of the minimum cost edge
(u,v) such that u € mst

8: Insert s into @ with priority 0

10: // Construct mst

11: while there exists a vertex v s.t. v € V and v ¢ mst do
12: Let v = Q.findMin()

13: Q.removeMin()

14: for vertex u € neighbors(v) do

15: if v € mst then

16: if weight(u,v) < Q.getPriority(u) then
17: //TODO: What goes here?

18: end if

19: end if

20: end for
21: end while
22: return mst

Algorithm 3 Kruskal’s algorithm: high level

=
=

Input: Graph G = (V, E)
Output: Minimum spanning forest of G
Create a forest msf, initialized so that every vertex v € V is a singleton tree in msf
Create a set remainingedges containing all the edges in the graph
while remainingedges #) and msf is not spanning do

Remove an edge (u,v) with minimum weight from remainingedges

if (u,v) connects two different trees in msf then

Add (u,v) to msf, combining the two trees

end if

end while

Algorithm 4 Kruskal’s algorithm: with priority queue over edges

NN NN = e e e e
L S T R R S A S i el

Input: Graph G = (V, E)
Output: Minimum spanning forest of G

// initialize forest
Create an empty map msf whose keys are nodes and values are trees
for vertex v € V do
msf[v] < tree with v as only node
end for

// initialize priority queue

: Create an empty priority queue Q whose elements are edges and priorities are weights
: for edge (u,v) € E do

Insert (u,v) into @

: end for

: // main loop
: while |Q| > 0 and msf is not spanning do

(u,v) + Q.findMin()
Q.removeMin()
if msflu] # msf[v] then

// TODO: What goes here?
end if

: end while
: return msf

