Quiz 10 - Heaps and Priority Queues

CS 14 - Data Structures

$\mathrm{May}~8,~2013$

\sim	
()	uestions:
- να	accounts.

1.	 What are the two invariants of a binary heap? (a) 	
	(b)	
2.	2. What is the best and worst case depth of a binary	heap with n elements?
3.	3. Given a binary heap, write the best and worst case best	e run times for each of these functions worst
	(a) insert	
	(b) delete	
	${\rm (c)\ delete-min}$	

4. Given this binary heap t:

Draw the binary heap created by the following code:

t->insert (71); t->delete (19); t->delete (1); t->delete (7); t->insert (77); t->insert (78); t->insert (79); t->insert (80);

5. What is the difference between a priority queue and a queue?

6. Assuming we use a binary heap to implement our priority queue, what are the runtimes of these functions:

best worst

- (a) enqueue
- (b) dequeue

What if we used an AVL tree? What if we used a linked list? What if we used a *sorted* vector?