
Midterm 1

CS 14 - Data Structures

May 13, 2013

By taking this exam, I affirm that all work is entirely my own. I have not cheated in any way.

Signature:

Printed Name:

1

1. (3 pt) What does f = Θ(g) mean? Give an exact definition.

2. (2 pt) What is the difference between a data structure and an ADT?

3. (5 pt) State the solutions to these recurrence relations using Θ notation. There is no need to
show work.

(a) T (n) = T
(
n
2

)
+ 1; T (1) = 1

(b) T (n) = 2T
(
n
2

)
+ 1; T (1) = 1

(c) T (n) = 2T
(
n
2

)
+ n; T (1) = 1

(d) T (n) = T (n− 1) + 1; T (1) = 1

(e) T (n) = T (n− 1) + n; T (1) = 1

2

4. (2 pt) Solve the bitwise equations. All numbers are in binary.

(a) 10100011 ˆ 00001111

(b) ˜11110011

5. (4 pt) List four example uses of the Map ADT. You must explicitly state what the keys and
values are.

(a)

(b)

(c)

(d)

6. (3 pt) List three example uses of the Set or Multiset ADT.

(a)

(b)

(c)

7. (3 pt) List three example uses of the Priority Queue ADT.

(a)

(b)

(c)

3

8. (4 pt) State precisely the invariants maintained by an AVL tree. Use pseudocode if needed.

9. (4 pt) State precisely the invariants maintained by a binary heap. Use pseudocode if needed.

10. (3 pt) Define the load factor. State which data structure it is used for and the consequences
of a high and low load factor.

11. (3 pt) Define a perfect hash function a describe when you can use it.

4

12. (10 pt) Fill out the table of run times for each function.

data structure function best case run time worst case run time

binary search tree

insert

delete

search

AVL tree

insert

delete

search

hash table
separate chaining (linked lists)

insert

delete

search

hash table
separate chaining (AVL trees)

insert

delete

search

hash table
open addressing

insert

delete

search

binary heap

insert

delete

find min/max

5

13. (4 pt) Draw the binary search tree structure that is created from the following code.

BST t ; // c r e a t e s an empty BST
f o r (i n t i =0; i <5; i++)

t−>i n s e r t (i) ;

14. (4 pt) Given this binary search tree:

50

45

12 46

75

Draw the resulting tree after deleting the number 75.

6

15. (4 pt) Given this AVL Tree:

50

45

12 46

75

Draw the resulting tree after inserting the number 47.

16. (4 pt) Using the original AVL tree structure before inserting, draw the resulting tree after
deleting the number 50.

7

17. (4 pt) Given this Binary Heap:

100

95

-12 46

-45 -1000

-20

-100 -21

Draw the resulting tree after inserting the number 47.

18. (4 pt) Using the original binary heap structure before inserting, draw the resulting tree after
deleting the number -20.

8

19. (10 pt) Given this code for a tree structure:

template<typename T> s t r u c t Tree
{

T val ;
Tree<T> ∗ l e f t , ∗ r i g h t ;

}

Write a search function that returns true if searchVal is contained within the tree, false
otherwise. You must use a breadth first search. You may not make any assumptions about
the tree’s structure. For example, the tree might not obey the binary search tree property.

template<typename T>
bool breadthFi r s tSearch (Tree<T> ∗ root , T searchVal)
{

}

9

20. (10 pt) The following binary heap class has been implemented. It stores the smallest values
on top.

c l a s s BinHeap
{

i n t va l ;

pub l i c :
BinHeap () ;
void i n s e r t (i n t) ;
void d e l e t e (i n t) ;
i n t deleteMin () ;
i n t peekMin () ;

}

Use this class to implement a heap sort function. The variable v is both the output and the
input to your function. When it is output, it must be sorted from highest to lowest. That is,
v[0] should be the largest element in the vector.

void heapSort (vector<int> &v)
{

}

10

21. (10 pt) Given the AVL tree structure:

template <typename V>
s t r u c t AVLTree
{

V val ;
AVLTree<V> ∗ l e f t , ∗ r i g h t ;

}

Write a function that returns the height of the tree. You must use the provided function
prototype.

template <typename V>
i n t he ight (AVLTree<V> ∗ t)
{

}

11

Extra credit

22. (2 pt) Name a binary search tree besides AVL trees that is guaranteed to be balanced.

23. (2 pt) What does AVL stand for? (You don’t have to know exactly, just the general idea.)

24. (2 pt) Google, Microsoft, IBM, and every major company have specific rules their programmers
must follow. These rules cover how to format code, how to comment, which libraries to ues,
etc. What are these rules called?

25. (2 pt) What is your TA’s name?

12

