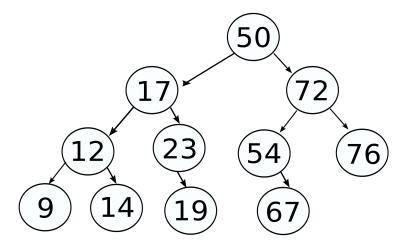
Quiz 8 - AVL Trees

CS 14 - Data Structures

$\mathrm{May}\ 1,\ 2013$

\sim	, •
(uestions:
VQ!	acouons.

1.	State precisely the two invariants that every AVL tree must hold. Also give a sentence justifying why that particular invariant is useful.
	(a)
	(b)
2.	Name an advantage and a disadvantage of AVL trees compared to binary search trees.
3.	If you're using a Map ADT implemented by someone else, would you prefer they implemented it with a BST or AVL tree? Why?


4. Write the best, worst, and average case run times for each of these functions.

best average worst

- (a) insert
- (b) delete
- (c) search

Note: For an exam, you MUST be able to give code/pseudocode for all of these functions. You should also be able to write a recursive function that checks to see if a Tree is a valid AVL tree.

5. Given this tree structure:

- (a) Assuming the tree is a binary search tree, and not an AVL tree, draw the tree structure created by the following code. Hint: Don't try to do it all at once in your head. Draw each insertion/deletion as an entirely separate tree.
 - t->insert (71); t->delete (19);
 - $t \rightarrow delete(23);$
 - t->delete(50);
 - $t \rightarrow insert(77);$
 - $t \rightarrow insert(78);$
 - $t \rightarrow insert(79);$
 - $t \rightarrow insert(80);$
- (b) Repeat part (a) assuming the tree is an AVL tree.

Note: You will need a lot of extra paper to complete this question. On an exam, you will be given half a page to complete each intermediate diagram.