In class notes - trees 1

CS 14 - Data Structures
April 22, 2013

Given this code for a tree structure:

template<typename T> struct Tree

{

T val;
Tree<T> xleft , *xright;

}

We can perform a depth first search like this:

depthFirstSearch (Tree<T> xt)

{
it (t) {
// do something with t—>val
depthFirstSearch (t—>left );
depthFirstSearch (t—right );
}
}

When we do this, we are implicitly creating a stack using the stack in memory. We can make this
stack explicit by removing the recursion from our algorithm:

depthFirstSearch (Tree<T> xt)
{
stack<Tree<I>%> search;
search .push(t);

while (!search.isEmpty()) {
Tree s#tmpTree = search.pop();
if (tmpTree != NULL) {
// do something with tmpTree—>val
search .push (tmpTree—>left );
search .push (tmpTree—>right );
}
}
}




We can also perform a “breadth first search” by replacing the explicit stack with a queue:

breadthFirstSearch (Tree<T> xt)
{
queue<Tree<IT>%> search;
search .enqueue(t);

while (!search.isEmpty()) {
Tree #tmpTree = search.dequeue ();
if (tmpTree != NULL) {
// do something with tmpTree—>val
search.enqueue (tmpTree—>left );
search .enqueue (tmpTree—>right );

}
}
}

There is no way to use an implicit queue on modern computers.



