
Midterm 1

CS 141 - Intermediate Data Structures and Algorithms

October 23, 2013

By taking this exam, I affirm that all work is entirely my own. I understand what constitutes cheating, and

that if I cheat I may be expelled from UC Riverside.

Signature:

Printed Name:

1

1. (5pt) For each problem below, circle the expression that is asymptotically larger (for example, using Θ

notation). If they are the same, then circle equal. Each correct answer results in +1 point, each

incorrect answer in -1 point, and each blank answer in 0 points.

(i) n log2 n n log3 n equal

(ii) n! 2n equal

(iii) (log n)lognn
n

log n
equal

(iv) n0.5 5log2 n equal

(v)

n∑
i=1

ik nk+1 equal

2. (5pt) For each statement below, circle whether it is true or false. Each correct answer results in +1

point, each incorrect answer in -1 point, and each blank answer in 0 points.

(i) True False Strassen’s algorithm is the asymptotically fastest known method for matrix

multiplication.

(ii) True False If a and b are even integers, then gcd(a, b) = 2gcd(a/2, b/2)

(iii) True False If a and b are relatively prime, then gcd(a, b) = 1.

(iv) True False 0 divides every number.

(v) True False a mod b can be calulated in time O(n4), where n is the number of bits in

both a and b.

2

3. (10pt) For each function below, give a recurrence equation for the number T (n) of letters it prints and

the asymptotic value (using big-O notation) of T (n). You do not need to show your work.

function PrintXs (n : integer)

// assume n is a power of 2

if n > 1

for i← 1 to 3n do print(“X”)

PrintXs(n/2)

PrintXs(n/2)

Recurrence equation:

T (n) =

Solution:

T (n) =

function PrintYs (n : integer)

// assume n is a power of 2

if n > 1

for i← 1 to 3n do print(“Y”)

PrintYs(n/2)

Recurrence equation:

T (n) =

Solution:

T (n) =

function PrintZs (n : integer)

// assume n is a power of 2

if n > 1

for i← 1 to 3n do print(“Z”)

PrintZs(n/2)

PrintZs(n/2)

PrintZs(n/2)

Recurrence equation:

T (n) =

Solution:

T (n) =

3

4. (10pt) Give pseudocode for the fast modular exponentiation algorithm.

modexp (x, y, N):

4

5. (15 pt) In each row of the table below you are given three parameters of the RSA crypto-system: p, q,

and e. For each row, determine whether these parameters are correct. If they are correct, in the last

two columns choose the correct values of the public key (N, e) and secret key d. If they are not correct,

indicate why.

To discourage guessing, if you select the wrong public key or secret key, then -1 points will

be given. If you do not answer, then 0 points will be given.

p q e Correct? If not, why? Public key Secret Key

7 13 5 (91, 5) 73

(72, 5) 23

(91, 7) 29

11 11 7 (121, 7) 7

(100, 7) 43

(11, 7) 3

5 11 7 (55, 11) 23

(55, 7) 11

(40, 7) 8

5 21 11 (105, 3) 86

(105, 11) 51

(80, 11) 17

5 13 3 (115, 3) 77

(115, 13) 31

(48, 13) 37

5

6. (5pt) For his private RSA key, Professor Bo Zo chooses two primes p and q, where p has 1000 bits, but q

has only 20 bits. Given just his public key (N, e), describe how you could compute Bo Zo’s private key

d in just a few minutes.

7. (5pt) Professor Bo Zo chooses new RSA keys by the standard method and reveals his public key (N, e).

But then he teases his class by revealing the sum p + q of the two prime factors of N . Describe an

efficient algorithm for calculating Bo Zo’s private key d.

6

8. (15pt) Suppose you have k sorted arrays, each with n elements. Give an efficient divide and conquer

algorithm for merging these arrays into a new sorted array with nk elements.

Note: If you use any helper functions, you must explicitly define them.

function mergek(list of vectors L)

// base case

if number of vectors = 1 then

return L[0]

end if

// recursion

let L1 = first half of L

let L2 = second half of L

return merge2(mergek(L1), mergek(L2))

end function

function merge2(arrays A1, A2)

Let i,j,k = 0

Let R = array of size A1 + size A2

while i < size of A1 and j < size of A2 do

if A1[i] < A2[i] then

R[k] = A1[i]

i++

else

R[k] = A2[j]

j++

end if

k++

end while

while i < size of A1 do

R[k]=A1[i]

i++

end while

while j < size of A2 do

R[k]=A2[j]

j++

end while

return R

end function

7

9. (15pt) You are given two sorted vectors A and B. Write an algorithm that computes the kth largest

element in the union of A and B. For example, if A = [1, 2, 3, 4, 5, 6, 7, 8], B = [0, 3, 9], and k = 2, then

your algorithm should return the number 1. It must run in time O(log |A|+ log |B|).

Note: If you use any helper functions, you must explicitly define them.

function FindK(vectors A,B; integer k)

// base case

if A[k/2] = B[k/2] then

return A[k/2]

end if

// recursion

if A[k/2] < B[k/2] then

let A’ = A[k/2..k]

let B’ = B[0..k/2]

return FindK(A’,B’)

else

let A’ = A[0..k/2]

let B’ = B[k/2..k]

return FindK(A’,B’)

end if

end function

8

10. (15pt) You are given a monotonic increasing function f . This means that f obeys the property:

x1 > x2 =⇒ f(x1) ≥ f(x2)

At some point a, f(a) = 10. Write an efficient algorithm that calculates bac. For example, if the input

function is f(x) = 4x, then f(2.5) = 10, so your function should return the number 2.

Hint: First figure out how you could solve the problem if you already knew numbers x and y such that

x ≤ a ≤ y. Then, figure out how to find the bounds x and y.

Note: If you use any helper functions, you must explicitly define them.

function FindBounds(f)

x← −1

while f(x) > 10 do

x← 2x

end while

y ← 1

while f(y) < 10 do

y ← 2y

end while

return (x, y)

end function

function BinarySearch(f ,x,y)

// base case

if bxc = byc then
return bxc

end if

// recursion

let m = x+y
2

if f(m) < 10 then

return BinarySearch(f, x,m)

else

return BinarySearch(f,m, y)

end if

end function

function FindA(f)

let (x, y) = FindBounds(f)

return BinarySearch(f ,x,y)

end function

9

