1. In the MULTIPROCESSORSCHEDULING problem, we are given n tasks and p processors. Each task has a time associated with it t_i . The goal of the problem is:

minimize:
$$\max \left\{ \sum_{i=1}^{n} t_i \delta_{ij} : j \in 1..p \right\}$$

where $\delta_{ij} = 1$ if task i is in bin j and 0 otherwise. In picture form, the goal is to minimize the processing time of the worst processor as shown below:

(a) Write a greedy algorithm for this problem.

(b) Is your algorithm optimal? (That is, does it *really* find the minimum solution?) If yes, justify why; otherwise, find a counterexample.

2. In the BINPACKING problem, we are given n items and a fixed bin size S. Each item has an associated weight w_1 . The goal of the problem is:

minimize:
$$\sum_{i=1}^{n} y_{i}$$
 subject to: $\forall j \sum_{i=1}^{n} w_{i} \delta_{ij} \leq Sy_{j}$

Where δ_{ij} is defined as above, and y_i equals one if bin i is being used and 0 otherwise. In picture form, the goal is to arrange each item in a bin so that the minimum number of bins is used:

(a) Write a greedy algorithm for this problem.

(b) Is your algorithm optimal? (That is, does it *really* find the minimum solution?) If yes, justify why; otherwise, find a counterexample.