
1. The edit distance between two strings a and b is defined as

d(i, j) =


max(i, j) if min(i, j) = 0

min


d(i, j − 1),

d(i− 1, j),

d(i− 1, j − 1) + [ai = bi]

otherwise

where ai indicates the ith character of a and [ai 6= bi] is equal to 1 if ai 6= bi and 0 otherwise. Write
an efficient, memoized function for calculating the edit distance of two strings.

1



2. Given two strings x = x1x2...xn and y = y1y2...ym, a common substring consists of positions i, j and a
length k such that xixi+1...xi+k = yjyj+1...yj+k. Let LCS(i, j) denote the size of the longest common
substring ending at positions i in x and j in y. Write a dynamic programming recursion for LCS(i, j).

3. Given the recursion above, write pseudocode for finding the longest common substring of two strings.

2



4. Given two strings x = x1x2...xn and y = y1y2...ym, a common subsequence consists of indices i1 < i2 <
... < ik and j1 < j2 < ... < jk such that xi1xi2 ...xik = yi1yi2 ...yik . Let LCS(i, j) denote the size of
the longest common subsequence contained within the strings x1x2...xi and y1y2...yj . Write a dynamic
programming recursion for LCS(i, j).

5. Given the recursion above, write pseudocode for finding the longest common subsequence of two strings.

3



6. A contiguous subsequence of a list S is a subsequence made up of consecutive elements of S. For
instance, if S is

5, 15,−30, 10,−5, 40, 10

then 15,−30, 10 is a contiguous subsequence but 5, 15, 40 is not. Let D(i) denote the sum of the largest
contiguous subsequence ending at position i. Write a dynamic programming recursion for D(i).

4


