CS 165 Lab 2 Assignment

October 7, 2012

Find a solution for the following:

- $1. \ 29 \ \bmod 3$
- 2. $51 \equiv 7 \pmod{x}$
- 3. $4x + 2 \equiv 5 \pmod{7}$
- 4. Is x = -1 a valid solution for problem 3? Why or why not?

Solve the following without calculating the initial sum/product/exponent explicitly:

- 5. $(243 + 2583) \mod 3$
- 6. $(248 \cdot 177 \cdot 299 \cdot 492 \cdot 16) \mod 7$
- 7. $(377)^5 \mod 11$
- 8. $(1056)^{27} \mod 13$

Solve:

- 9. gcd(48,84)
- 10. gcd(17,3214)
- 11. gcd(51,36)
- 12. gcd(87,51)
- 13. gcd(138,87)
- 14. gcd(215,138)
- 15. gcd(353,215)
- 16. gcd(568,353)

1	D		_	٠.		
	Г	1.	()	1/	-	٠.

17. There exists exactly one even prime.

18. If x|a and x|b, then x|(a+b)

19. $a * b \mod n = (a \mod n)(b \mod n)$

Note: I $highly\ recommend$ that you re-write every proof from class. Ensure that you understand it and can reproduce it on an exam.