CS 165 Lab 4 Assignment

October 21, 2012

1. Our LCG spits out 8-bit random values. The first four are: DE AD BE EF. Determe the values a,b,n.

Heads up: Your first homework assignment will be passed out this week. You will be required to write a program that can break a 16-bit LCG. If you write that program during the lab, you can use it to solve this problem.

Primitive Roots

- Primitive roots are those values α for which the smallest value $i \geq 1$ for which $\alpha^i \equiv 1 \pmod{n}$ is $i = \phi(n)$. That is, $\forall \alpha^i$ where $1 \leq i < \phi(n)$, $\alpha^i \not\equiv 1 \pmod{n}$.
- So, we can think of α as being any value which, raised to successive powers, allows us to go through *every* value in the multiplicative group \mathbb{Z}_n^* .
- That is, if α is a primitive root, then for any number g coprime with n, there exists a value $1 \le i \le \phi(n)$ such that $\alpha^i \equiv g \pmod{n}$.
- 2. For n=11, $\alpha=2$ is a primitive root. Find the value i at which $2^i\equiv 9\pmod n$. Finding this i is known as taking the discrete logarithm.

3. For n = 11, find two values in \mathbb{Z}_n^* , other than 2, where one is a primitive root, and the other is not. Write out the set of unique values obtained by raising each to successive powers mod n.

4. For any modulus n, there are $\phi(\phi(n))$ primitive roots. List the primitive roots for n=11. What does this set have in common with $\mathbb{Z}_{\phi(n)}^*$ and what is different?