In fact, the ix will have aninverse 1 i In the degree of the recurrence used
to generate the keystream (see the Exercises for i P
Let’s illustrate with an example.

Example 1.14 Suppose Oscar obtains the ciphertext string
101101011110010

corresponding to the plaintext string
011001111111000.

Then he can compute the keystream bits:
110100100001010.

Suppose also that Oscar knows that the keystream was generated using a 5-stage
LFSR. Then he would solve the following matrix equation, which is obtained
from the first 10 keystream bits:

Lot d) g O
Lt 0o 00
Aog 1 s O“ 9 S = A««:, C1yC2,C3, @Av Ol o 0 0 1
1.6 0 1 0
0 0 1 0 0
It can be verified that
bl Bl ™ (AN 1
1,001 00 100 1 0
b Ll =1 0 0 0 0 1
10 0 1 0 0 1.0 1 1 :
0 0 1 00 Lodli ol 10
by checking that the product of the two matrices, computed modulo 2, is the

identity matrix. This yields

01001

- 110010
(0,1,0,0,0) | 0000 1
01011

10110

Il

AOQJ C1,C2, C3, QAV

= (1,0,0,1,0).
Thus the recurrence used to generate the keystream is

Zi4s5 = (2i + z43) mod 2.

Hauer [9] ipher Systems, The Protection of Communications” by Beker and
Piper [13]; “Cryptology” by Beutelspacher [32]; “Cryptography and Data Secu-
ity by Denning [ 109]; “Code Breaking, A History and Exploration” by Kippen-

hahn [ 192]; “Cryptography, A Primer” by Konheim [203]; and “Basic Methods
ul Cryptography” by van der Lubbe [222].

We have used the statistical data on frequency of English letters that is reported
in Beker and Piper [13].

A pood reference for elementary number theory is “Elementary Number The-
ory and its Applications” by Rosen [284]. Background in linear algebra can be
1d in “Elementary Linear Algebra” by Anton [4].

'Iwo very enjoyable and readable books that provide interesting histories of
cryptography are “The Codebreakers” by Kahn [185] and “The Code Book” by
Singh [307].

Iixercises

|.1 Evaluate the following:
(a) 7503 mod 81
(b) (—7503) mod 81
(c) 81 mod 7503
(d) (—81) mod 7503.
1.2 Suppose thata, m > 0, and a # 0 (mod m). Prove that
(—a) mod m = m — (a mod m).
1.3 Prove that a mod m = b mod m if and only if a = b (mod m).
1.4 Prove that e mod m = a — | 2 |m, where |¢| = max{y € Z:y < z}.
1.5 Use exhaustive key search to decrypt the following ciphertext, which was encrypted
using a Shift Cipher:
BEEAKFYDJXUQYHYJIQRYHTYJIQFBQDUYJIIKFUHCQD.

1.6 If an encryption function ek is identical to the decryption function dx, then the key
K is said to be an involutory key. Find all the involutory keys in the Shift Cipher
over Zse.

1.7 Determine the number of keys in an Affine Cipher over Zn, for m = 30, 100 and
1225. ¢

1.8 List all the invertible elements in Z,, for m = 28,33 and 35.

1.9 For1< a < 28, determine =" mod 29 by trial and error.

1.10 Supposethat K = (5, 21) is a key in an Affine Cipher over Zzs.
(a) Express the decryption function dx (y) in the form dx(y) = o'y -+b', where
Qﬁ mu\ € Nww.




(b) Prove that dge (e qe () = w forall w ¢ B
L.11 (@) Suppose that X' = (a,b) is a key in an Al L Cipher oye

e Prove that

K is an involutory key if and onl ik nom g and bia«1) =m0
{mod n).

(b) Determine all the involutory keys in the Affine Cipher ove 1

(¢) Suppose that n = pg, where p and g are distinct odd primes. Prove that the

number of involutory keys in the Affine Cipher over Zy is n + p + q + 1.
1.L12  (a) Letp be prime. Prove that the number of 2 x 2 matrices that are invertible
over Zypis (p* — 1)(p* — p).

HINT  Since p is prime, Z, is a field. Use the fact that a matrix over a field
is invertible if and only if its rows are linearly independent vectors (i.e., there

does not exist a non-zero linear combination of the rows whose sum is the
vector of all 0’s).

(b) For p prime and m > 2 an integer, find a formula for the number of m x m
matrices that are invertible over Z .
1.13 Forn = 6,9 and 26, how many 2 x 2 matrices are there that are invertible over 7 ,,?
114 (a) Prove that det A = +1 (mod 26) if A is a matrix over Zsg such that A —
A
(b) Use the formula given in Corollary 1.4 to determine the number of involutory
keys in the Hill Cipher (over Z¢) in the case m = 2.
I.15 Determine the inverses of the following matrices over Zog:

(a) A .t“ ” v

g e

(h) fly. 287 2

17 15 9
1,16 (a) Suppose that 7 is the following permutation of {1, . .. ,8}:

vz ||1]2]3]4]5]|6]|7]8
) [[a]1]6 27385
Compute the permutation 7!,

(b) Decrypt the following ciphertext, for a Permutation Cipher with m = 8§,
which was encrypted using the key

TGEEMNELNNTDROEOAAHDOETCSHAEIRLM.

1.I7  (a) Prove that a permutation 7 in the Permutation Cipher is an involutory key if
and only if 7 (i) = j implies 7(5) = 4, forall 7, j € {100, ml
(b) Determine the number of involutory keys in the Permutation Cipher for m =
2,3,4,5 and 6.
1.18 Consider the following linear recurrence over 7 2 of degree four:

Zita = (2i +2i41 + 2iq2 + zi13) mod 2,

¢ > 0. For each of the 16 possible initialization vectors (20,21, 22, 23) € (Z2)*,
determine the period of the resulting keystream.
1.19 Redo the preceding question, using the recurrence

Zitq = AN~ +Ns.+mv mod wa
1> 0.

oi= f(ori=1,K),
y M. Also, for all ¢ > 1, the keystream element z; is computed
lowing rule:
zi = g(oi, K),

¢ Y K = L. Prove that any keystream produced by this method has
t |

In cach case, the task is to determine the plaintext. .
Give a clearly written description of the steps you followed to m@.oa\? each ci-
phertext. This should include all statistical analysis and computations you per-
formed.
he first two plaintexts were taken from “The Diary of Samuel Marchbanks,” by
Robertson Davies, Clarke Irwin, 1947; the fourth was taken from “Lake Wobegon
Days,” by Garrison Keillor, Viking Penguin, Inc., 1985.
¢ T
w m:@MHMMMMMW%MUZOGmE<mWEmeO&NUwGZbSQQHOON%MH@QON
QPKUGKMGOLICGINCGACKSNISACYKZSCKXECJCKSHYSXCG
OIDPKZCNKSHICGIWYGKKGKGOLDSILKGOIUSIGLEDSPWZU
GFZCCNDGYYSFUSZCNXEOJNCGYEOWEUPXEZGACGNFGLKNS
ACIGOIYCKXCJUCIUZCFZCCNDGYYSFEUEKUZCSOCFZCCNC
IACZEJINCSHFZEJZEGMXCYHCJUMGKUCY

HINT F decrypts to w.

- <@JMNWM%MWW6@EDH&F<HZWWHZ<®W%UZw<MUmHUQHbHN%@GO
DKOTFMBPVGEGLTGCKQRACQCWDNAWCRXIZAKFTLEWRPTYC
QKYVXCHKFTPONCQQORHJIVAJUWETMCMS PKODYHJVDAHCTRL
SVSKCGCZOQDZXGSFRLSWCWSJTBHAFSIASPRJAHKIRJUMV
GKMITZHFPDISPZLVLGWTFPLKKEBDPGCEBSHCTJRWXBAFS
PEZQNRWXCVYCGAONWDDKACKAWBBIKFTIOVKCGGHIVLNHT
FFSQESVYCLACNVRWBBIREPBBVFEXOSCDYGZWPFDTKFQIY
CWHJVLNHIQIBTKHJVNPIST

© >mdmmﬂﬁmww0mwOQOWNHmbOGNwNm<mNWwOHwDowwaO<wodm
KRIOFKPACUZQEPBKRXPEIIEABDKPBCPFCDCCAFIEABDKP
BCPFEQPKAZBKRHAIBKAPCCIBURCCDKDCCJCIDFUIXPAFF
ERBICZDFKABICBBENEFCUPJCVKABPCYDCCDPKBCOCPERK
IVKSCPICBRKIJPKABI

(d) unspecified cipher:



M Prove

[, We proved that d(e(ar)) = @ i
(he sime statement (s rae forany ¢

a1 = ey (mod pq) if and only if 21 = 22 (mod p) and

M“,.__.h,.awp_._wﬁ_%_:m,__E ,,_2._‘_._.5 of Optinl Asymmetric Encryption Pacding wind
O_m cryptosystems against chosen-ciphertext attncks: Shoup [302], _:u:E‘
amoto, Pointcheval and Stern [149] and Boneh [58]. ‘ T

1

HINT  Une the (i

Exercises 5.15-5.17 gi .
. : ive so : 5 L i, T i ;
st g me examples of protocol failures. For a nice articls g This : e T R
subject, see Moore [246]. 1w (mod ). This follows from the Chinese remainder theorem.
501 Vot = pg, where p and ¢ are distinct odd primes, define
p— 1)(g—1
s (@=)(g~1)
mon.—cu elq Hv

Suppose that we modify the RSA Cryptosystem by requiring that ab =1 (mod A(n)).

Exercises ’ ; 2% ...
(1) Prove that encryption and decryption are still inverse operations in this mod-

ified cryptosystem.

() Ifp = 87,9 =179, and b = 7, compute a in this modified cryptosystem, as

well as in the original RSA Cryptosystem.

4,12 Two samples of RSA ciphertext are presented in Tables 5.1 and 5.2. Your task is
{0 decrypt them. The public parameters of the system are n = 18923 and b =
1261 (for Table 5.1) and n = 31313 and b = 4913 (for Table 5.2). This can be
accomplished as follows. First, factor n (which is easy because it is so small). Then
compute the exponent a from ¢(n), and, finally, decrypt the ciphertext. Use the
SQUARE-AND-MULTIPLY ALGORITHM to exponentiate modulo n.

In order to translate the plaintext back into ordinary English text, you need to
know how alphabetic characters are “sncoded” as elements in Z . Each element of
7., represents three alphabetic characters as in the following examples:

DOG — 3x26°+14x26+6 = 2398
CAT — 2x26°+0x26+19 1371
777 - 25 x26%+25 %26+ 25 17575.
You will have to invert this process as the final step in your program.

The first plaintext was taken from “The Diary of Samuel Marchbanks,” by Robert-
son Davies, 1947, and the second was taken from “Lake Wobegon Days,” by Garri-
son Keillor, 1985.

513 A common way to speed up RSA decryption incorporates the Chinese remainder
theorem, as follows. Suppose that d x(y) = y® mod n andn = pg. Define dp =
dmod (p — 1) anddy = d mod (¢ — 1); and let Mp = ¢! mod p and My =
p~! mod g. Then consider the following algorithm:

5.1 In Algorithm 5.1, prove that

ged(ro, m) = ged(r1,r2) = - = ged(Fm—t,rm) = rm
and, hence, r, = ged(a, b).
5.2 Suppose that a > b in Algorithm 5.1.
(a) Provethatr; > 2r;y» forall s suchthat) <: < m — 2
(b) Prove that m is O(log a). o :
(c) Prove that m is O(logb).

m.w Cm@ :—0 _wxﬂm NDED mCAuHL:UHwPL ALGORITHM to Oc:—_vﬂ_®~ c C—Cc,\ nultl-
:um :;

(@) 177 mod 101
(b) 3577 mod 1234
(c) 31257 mod 9987.
5.4 Compute gcd(57,93), and find inte
’ ) ; gers s and ¢ such that 57s 4+ 93¢ = :
5.5 Suppose x : Zios — Zs x Zs x Zr is defined as ; S

Il

Il

x(#) = (¢ mod 3,z mod 5, mod 7).

Give an explicit formula for the function y ~* i
ion y~, and use it t L
5.6 Solve the following system of congruences: ety '

12 (mod 25)
z = 9 (mod 26)
z = 23 (mod 27).
5.7 Solve the following system of congruences:
132 = 4 (mod 99)
15z = 56 (mod 101).

x

Algorithm 5.15: CRT-OPTIMIZED RSA DECRYPTION(n,dy, dg, Mp, Mg, y)

zp ¢ y*» mod p

Tg m\ﬁ mod g

¢ & Myqrp + Mgpzg mod n
return (z)

HINT First use the EXTEND
; ED EUCLIDEAN ALGOR
Chinese remainder theorem. o e T

Algorithm 5.15 replaces an exponentiation modulo n by modular exponentiations
modulo p and ¢g. If p and g are {-bit integers and exponentiation modulo an £-
bit integer takes time 3, then the time to perform the required exponentiation(s)
is reduced from ¢(2€)® to 2¢€°, a savings of 75%. The final step, involving the
Chinese remainder theorem, requires time O(£) if dp,dq, Mp and My have been

pre-computed.

Mw Mmo Theorem 5.8 to find the smallest primitive element modulo 97.
: Q:Mwwmm EMH wrw HHH Mm +Q_H, where p and ¢ are odd primes. Suppose further that
s mo . Prove that « i i
i e 1 3 ¢ that « 1s a primitive element modulo p if and
5.10 mcgomo that n = pq, where p and ¢ are distinct odd primes and ab = 1 (mod (p—
)(g—1)). The RSA encryption operation s ¢(z) = #* mod n and the decryption

e o et s i
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Algorithm 5.1: EUCLIDEAN ALGORITHM(a, b)

o — a
%HTW
m+ 1
while 7,,, % 0
o b

m
do Pm41 < "m—1 — dmTm
m—m-+1
m+—m—1

return (g1, - - -, gm; ?:v
comment: 7, = ged(a, b)

At this point, we know that any b € Z,,* has a multiplicative inverse, b1, but
we do not yet have an efficient algorithm to compute b~!. Such an algorithm
exists; it is called the EXTENDED EUCLIDEAN ALGORITHM. However, we first
describe the EUCLIDEAN ALGORITHM, in its basic form, which can be used to
compute the greatest common divisor of two positive integers, say a and b. The
EUCLIDEAN ALGORITHM sets 7 to be a and 7; to be b, and performs the follow-
ing sequence of divisions:

ro = qir1+ 7o, 0<rs<m

r1 = (@ara+r3, 0<ry <r
Tm-2 = gm-1"m—-1+7Tm, 0<rn <rmoq
m—-1 = gmTm.

A pseudocode description of the EUCLIDEAN ALGORITHM is presented as Algo-
rithm 5.1.

~

REMARK ~ We will make use of the list (¢, .. ., ¢, ) that is computed during the
execution of Algorithm 5.1 in a later section of this chapter. i

In Algorithm 5.1, it is not hard to show that
god (ro, 1) = ged (1) = + o+ = ged (P 1y Fn) = s

Hence, it follows that ged (o, 1) = 1.
Sinee the HUCLIDEAN ALGORITHM computes greatest common divisors, i
can be used to determine i n positive fnteger b < n b o maltiphicative inverse
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modulo n, by calling EUCLIDEAN ALGORITHM (7, b) and checking to see if r,,, =
1. However, it does not compute the value of b~ mod n (if it exists).
Now, suppose we define two sequences of numbers,

wogﬁf...;ﬁ: and 80y S1yeeeySmy

according to the following recurrences (where the ¢;’s are defined as in Algorithm
5.1):

0 #1=1
=141 ifj=1
tj_g —qj_atj_1 ifj>2
and
| W sl
;=40 ifj=1

8j—2 —qj-15j-1 if j > 2.

Then we have the following useful result.

THEOREM 5.1 For (0 < j < m, we have that r; = s;ro + t;71, where the ;s
are defined as in Algorithm 5.1, and the s;’s and t;’s are defined in the above
recurrence.

PROOF  The proof is by induction on j. The assertion is trivially true for j = 0
and j = 1. Assume the assertion is true for j = ¢ — 1 and ¢ — 2, where ¢ > 2; we
will prove the assertion is true for j = ¢. By induction, we have that

Ti_g = S;j_32T0 +t;_271

and
Ti—l = 85170 + t=171-

Now, we compute:
Ty = Ti—2 — ¢i—1Ti—1
= §j_ar0 + ti—a71 — gi—1(Si—170 + ti—171)
= (si—2 — gi—15i—1)T0 + (ti—2 — gi—1li-1)71
= $iro+&iry.

Hence, the result is true, for all integers j > 0, by induction. |

In Algorithm 5.2, we present the EXTENDED EUCLIDEAN ALGORITHM, which
fnkes two integers « and b as input and computes integers r, s and ¢ such that
i ped (ayb) and sa o tb = ». In this version of the algorithm, we do not keep
fruck of all the ¢;'s, '8, ;'8 and (;'s; it suffices to record only the “last” two
fermn b ench of (these sequences al any point in the algorithim,

The next corollary v an immediate consequence of Theorem 5,1,




