CSCI046 Midterm
DUE: Friday, 13 March by noon

Collaboration policy:

You may not:
1. discuss the midterm exam with a human other than Mike; this includes:

(a) asking your friend for clarification about what a problem is asking

(b) asking your friend if they’ve completed the exam
You may:
1. take as much time as needed
2. use any written notes / electronic resources you would like

3. ask Mike to clarify questions

Name:




Problem 1. (2 pts) Complete each equation below by adding the symbol O if f = O(g),
if f=Q(g), or © if f =©O(g). The first row is completed for you as an example.

f(n)

11"

1/n

log,n

27’L

(logn)*

logsn

logn

nlogn

(logn)?®



Problem 2. (1 pt) Fill in the table with the appropriate runtimes in theta notation. You
do not need to fill in the gray-ed out entries.

run time

memory usage

best case worst case average case

bubble sort

selection sort

msertion sort

merge sort

quick sort

tim sort

Problem 3. (1 pt) What is a tight lower bound on the runtime (in omega notation) of the
best possible comparison-based sorting algorithm?



N O U W N~

Problem 4. (2 pts) Consider the following two functions:

def print_container_1(xs):
for i in range(len(xs)):
print(’xs[i]=",xs[1i])

def print_container_2(xs):
for x in xs:
print(’x=",x)

Notice that both functions will work whether the xs parameter is a list or a deque. Whenever
a function works for more than one type of input, we call it polymorphic.

1. Assume we have a list with n elements. What is the runtime of print_container_ 1
on this list? (Use big-O notation.)

2. Assume we have a list with n elements. What is the runtime of print_container 2
on this list? (Use big-O notation.)

3. Assume we have a deque with n elements. What is the runtime of print_container_1
on this deque? (Use big-O notation.)

4. Assume we have a deque with n elements. What is the runtime of print_container 2
on this deque? (Use big-O notation.)



Problem 5. We saw in class that binary search runs in logrithmic time. One possible idea
for speeding up the computation is to perform trinary search (that is, split the list into three
sections rather than two on each recursive call). The following code implements trinary
search.

1 def trinary_search(xs,val):

2 left = 0

3 right = len(xs)

4 def go(left,right):

5 if right—-left<3:

6 return val in xs[left:right]
7 midl = left + (right-—left)//3

8 mid2 = left + (right—left)//3x%2
9 if val < xs[midl]:

10 return go(left,midl)

11 elif val < xs[mid2]:

12 return go(midl,mid2)

13 else:

14 return go(mid2,right)

15 return go(left,right)

1. (2 pts) What is the recurrence relation describing the runtime of trinary _search?



2. (2 pts) Solve the recurrence relation you gave for part 1. (You can get full credit on
this problem even if you gave the wrong answer on the previous problem.)



