CSCI046 Final, Spring 2021

Collaboration policy:

You may not:
1. discuss the exam with any human other than Mike; this includes:

(a) asking your friend for clarification about what a problem is asking

(b) asking your friend if they’ve completed the exam
You may:
1. take as much time as needed
2. use any written notes / electronic resources you would like

3. ask Mike to clarify questions via email

Name:

Problem 1. (3 pts) Complete each equation below by adding the symbol O if f = O(g),

if f=Q(g), or © if f =©O(g). The first row is completed for you as an example.
You will lose one point for each incorrect answer.

f(n)

1/n

logn

2TL

log(2")

logn

log(3n)

271

371

log(3")

0.01

log(4n)

n-+mn

Page 2

Problem 2. (20 pts) For each question below, circle either True or False. Each correct
answer will result in +1 point, each incorrect answer will result in -1 point, and each blank
answer in 0 points.

1.

10.

11.
12.
13.
14.
15.

16.
17.

18.

19.

True

True

True

True

True

True
True

True

True

True

True
True
True
True

True

True

True

True

True

False

False

False

False

False

False
False
False

False

False

False
False
False
False

False

False

False

False

False

Any procedure with worst-case runtime ©(n?) is guaranteed to have
best case runtime O(n?).

TimSort is asymptotically faster than Merge sort on worst case in-
put.

TimSort is asymptotically faster than insertion sort on worst case
input.

When Python’s built-in sorted function is called on a list, it returns
a new list object and leaves the original list unchanged.

Binary search can be efficiently implemented using Python’s built-in
deque data structure.

Tuples cannot be modified in python after they are created.
Python’s built-in enumerate function allocates ©(1) memory.

Python’s built-in range function is implemented natively in python
using the yield keyword.

In Python 3, all classes that implement the __hash__ magic method
are assumed to be immutable.

The worst case runtime for inserting into a Binary Heap is better
than the worst case runtime for inserting into a BST.

Python sets implement the __hash__ magic method.

The height of every binary heap is guaranteed to be ©(logn).

The height of every AVL tree is guaranteed to be ©(logn).

In Python 3, a deque variable can be used as the key for a dictionary.

An in-order traversal of a BST will traverse the elements in sorted
order.
The Linux kernel is licensed using the GPL wersion 5.

If you find a github repo using the BSD3 license, you may legally
use code from this repo in a GPL licensed project.

Given the string “César Chévez”, an NFC-normalized UTF-8 encod-
ing will require fewer bytes than a NFD-normalized UTF-8 encoding.

Given any string in NFC form, normalizing to NFD and back to
NFC is guaranteed to be an idempotent operation (i.e. you will get
the same string back.)

Page 3

20. True False Given any string in NFKD form, normalizing to NFD and back to
NFKD is guaranteed to be an idempotent operation (i.e. you will
get the same string back.)

Page 4

—_
— O © 00 3O Uik Wi

—_

Problem 3. Consider the following three functions:

def print_container_1(xs):
for i in range(len(xs)):
print(xs.pop())

def print_container_2_list(xs):
for i in range(len(xs)):
print (xs.pop(0))

def print_container_2_deque (xs):
for i in range(len(xs)):
print(xs.popleft ())

Notice that the first function will work whether the xs parameter is a list or a deque (i.e.
it is polymorphic). The other two functions, however, are not polymorphic and will throw
errors when run with the wrong input type.

1. (1 pt) Assume we have a list with n elements. What is the runtime of print_container_1
on this list? Your answer must be tight and in big-O notation.

2. (1 pt) Assume we have a list with n elements. What is the runtime of print_container 2 list
on this list? Your answer must be tight and in big-O notation.

3. (1 pt) Assume we have a deque with n elements. What is the runtime of print_container_1
on this deque? Your answer must be tight and in big-O notation.

4. (1 pt) Assume we have a deque with n elements. What is the runtime of print_container_2_deque
on this deque? Your answer must be tight and in big-O notation.

Page 5

Problem 4. The code below is my merge sort implementation for the week 5 homework.
Recall that we analyzed the runtime of merge sort when the input variable xs was a list of
length n, and showed that the runtime was ©(nlogn). In this problem, we will compute the
runtime when the input variable xs is a deque.

1 def merge_sorted(xs, cmp=cmp_standard):
2 if len(xs) <= 1:

3 return xs

4 else:

5 mid = len(xs) // 2

6 left = xs[:mid]

7 right = xs[mid:]

8 return _merged(

9 merge_sorted(left, cmp),
10 merge_sorted(right, cmp),
11 cmp

12)

13

14 def _merged(xs, ys, cmp=cmp_standard):
15 zs = []

16 i=20

17 j =20

18 while i < len(xs) and j < len(ys):
19 if cmp(xs[i], ys[j]l) == —1:
20 zs.append(xs[i])

21 i+=1

22 else:

23 zs.append(ys[j])

24 j +=1

25 while i < len(xs):

26 zs.append(xs[i])

27 i +=1

28 while j < len(ys):

29 zs.append(ys[j])

30 j +=1

31 return zs

Note that lines 6 and 7 above take a slice of the xs variable. The built-in collections.deque
class does not by default support the ability to take slices, and so the code above will
generate an error message. It is possible, however, to efficiently add the ability to take
slices to the deque class. (You do not need to understand the details of how to do this, buth
this stackoverflow link explains them: https://stackoverflow.com/questions/10003143/
how-to-slice-a-deque.) For this problem, you should assume that the above technique
has been used to make the input deque slicable. The runtime of computing the slice is O(n),
where n is the size of the deque.

Page 6

https://stackoverflow.com/questions/10003143/how-to-slice-a-deque
https://stackoverflow.com/questions/10003143/how-to-slice-a-deque

1. (2 pts) Compute the recurrence relation that describes the runtime of the merge_sorted
function when the input variable xs is a deque.

2. (2 pts) Solve the recurrence relation in part 1 above, and report your answer in ©
notation. Note that if you do not get the answer to part 1 above correct, you can get
partial credit on this problem, but you will not get full credit.

Page 7

Problem 5. In the questions below, assume that all data structures from the homeworks
are correctly implemented.

1. (2 pts) What is the worst-case runtime of the heap_sorted function defined below in
terms of the length n of the input list? (Use © notation.)

1 from containers.Heap import Heap

2

3 def heap_sorted(xs):

4 heap = Heap(xs)

5 ret = []

6 while len(heap) > O0:

7 ret.appendCheap.find_smallest ())
8 heap.remove_min ()

9 return ret

2. (2 pts) What is the runtime of the code below in terms of n? (Use © notation.)
1 from containers.BST import BST

2

3 bst = BSTQ)

4 for i in range(nxx*2):

5 bst.insert (i)

Page 8

U= W N~ W

(2 pts) What is the runtime of the code below in terms of n? (Use © notation.)

from containers.AVLTree import AVLTree

avl = AVLTree()
for i in range(n):
avl.insert (i)

Page 9

Problem 6. (3 pts) List all of the shortest paths from node S to node T in the following
graph. If no path exists between these two nodes, say so.

(a)

Page 10

