CSCI046 Final (Sample)

Collaboration policy:

You may not:
1. discuss the exam with any human other than Mike; this includes:

(a) asking your friend for clarification about what a problem is asking

(b) asking your friend if they’ve completed the exam
You may:
1. take as much time as needed
2. use any written notes / electronic resources you would like

3. ask Mike to clarify questions via email

Name:

Problem 1. (3 pts) Complete each equation below by adding the symbol O if f = O(g),
if f=Q(g), or © if f =©O(g). The first row is completed for you as an example.
You will lose one point for each incorrect answer.

f(n) g(n)

1 = O(n)
1.1" = Q n?
1/n = 0 1

log, n = © logsn
2m = Q n?
logn = O /n
log(n?) = © logn
log(n!) = © nlogn
n! = Q n?
(logn)* = Q (logn)?

Page 2

Problem 2. (15 pts) For each question below, circle either True or False. Each correct
answer will result in +1 point, each incorrect answer will result in -1 point, and each blank
answer in 0 points.

1.

10.
11.

12.
13.

14.

15.

TRUE False

TRUE False

True FALSE
True FALSE
TRUE False
True FALSE
TRUE False
TRUE False
True FALSE
TRUE False
True FALSE
True FALSE
True FALSE
True FALSE
True FALSE

Any procedure with worst-case runtime O(n) is guaranteed to have
best case runtime O(n?).

Given an array of n integers randomly generated between 1 and
1000, there exists an algorithm to sort these integers in time O(n).

Python’s built-in sort function uses Quicksort.

Merge sort is guaranteed to run asymptotically faster than insertion
sort for all input lists.

Python’s built-in sort function allocates 2(n) memory.
Python’s built-in range function allocates ©(n) memory.

In python 3, the __contains__ method of the set class is asymp-
totically faster than the __contains__ method of the 1ist class.

The worst case runtime for inserting into an AVL Tree is better than
the worst case runtime for inserting into a BST.

Python dictionaries are internally implemented using an AVL tree
written in the C programming language.

The height of every BST is guaranteed to be Q(logn).

There does not exist a binary tree that is both a valid heap and a
valid AVL tree.

In python 3, a 1ist variable can be used as the key for a dictionary.

A pre-order traversal of a heap will traverse the elements in sorted
order.

If you release an open source project using the GPL license, the GPL
license will guarantee that no one can make money selling your code
without your permission.

If you find a github repo with no LICENSE file, you may legally use
code from this repo in a BSD3-licensed project.

Page 3

N O U W N~

Problem 3. Consider the following two functions:

def print_container_1(xs):
for i in range(len(xs)):
print(’xs[i]=",xs[1i])

def print_container_2(xs):
for i,x in enumerate(xs):
print(’i,x=",(i,x))

Notice that both functions will work whether the xs parameter is a list or a deque. Whenever
a function works for more than one type of input, we call it polymorphic.

1. (1 pt) Assume we have a list with n elements. What is the runtime of print_container_1
on this list? Your answer must be tight and in big-O notation.

O(n)

2. (1 pt) Assume we have a list with n elements. What is the runtime of print_container 2
on this list? Your answer must be tight and in big-O notation.

O(n)

3. (1 pt) Assume we have a deque with n elements. What is the runtime of print_container_1
on this deque? Your answer must be tight and in big-O notation.

O(n?)

4. (1 pt) Assume we have a deque with n elements. What is the runtime of print_container 2
on this deque? Your answer must be tight and in big-O notation.

O(n)

Page 4

Problem 4. We saw in class that binary search runs in logrithmic time. One possible idea
for speeding up the computation is to perform trinary search (that is, split the list into three
sections rather than two on each recursive call). The following code implements trinary
search.

1 def trinary_search(xs,val):

2 left = 0

3 right = len(xs)

4 def go(left,right):

5 if right—-left<3:

6 return val in xs[left:right]
7 midl = left + (right-—left)//3

8 mid2 = left + (right—left)//3x%2
9 if val < xs[midl]:

return go(left,midl)

11 elif val < xs[mid2]:

12 return go(midl,mid2)
13 else:

14 return go(mid2,right)
15 return go(left,right)

1. (2 pts) What is the recurrence relation describing the runtime of trinary _search?
Assume that the input data structue is a list.

T(n)=T(n/3)+1

Page 5

2. (2 pts) Solve the recurrence relation you gave for part 1 using the master theorem, and
report your answer using © notation. (You can get full credit on this problem even if
you gave the wrong answer on the previous problem.)

O(logn)

Page 6

Problem 5. In the questions below, assume that all data structures from the homeworks
are correctly implemented.

1.

Ol > W N~

(2 pts) What is the worst-case runtime of the avl_sorted function defined below in
terms of the length n of the input list? (Use © notation.)

O O Ul W N+~ N

from containers import AVLTree

def avl_sorted(xs):
avl = AVLTree(xs)
return xs.to_list(’inorder’)

©(nlogn)

(2 pts) What is the runtime of the code below in terms of n? (Use © notation.)

from containers import BST

bst = BST(Q)
for i in range(n):
bst.insert (i)
for x in bst.to_list(’inorder’):
print("x=",x)
bst.remove (i)

NOTE: The first problem above is asking for a worst case runtime, whereas the
second problem is only asking for a runtime. This is because in the first problem,
there are many possible lists that could be input into the function, and each list
might have different runtimes. In the second problem, there is only one particular
sequence of values that will get inserted. Since there are not multiple possibilities, the
worst /best /average cases for this problem are all going to be the same sequence. Note
that this does not mean that the worst/best/average cases for the BST itself are the
same. The final exam will test your ability to understand all of these subtleties.

Page 7

Problem 6. The previous problems total 30 points. You will have 10 more points worth of
problems related to material from the last 2 weeks of class.

Page 8

