
Books for professionals by professionals®

The Definitive Guide to SQLite
Dear Reader,

Outside of the world of enterprise computing there is one database that enables
a huge range of software and hardware to flex relational database capabilities,
without the baggage and cost of traditional database management systems.
That database is SQLite—an embeddable database with an amazingly small
footprint, yet it can handle databases of enormous size. SQLite comes equipped
with an array of powerful features available through a host of programming and
development environments. It is supported by languages such as C, Java, Perl,
PHP, Python, Ruby, TCL, and more.

The Definitive Guide to SQLite, 2nd Edition is devoted to complete cover-
age of the latest version of this powerful database. It offers a thorough over-
view of SQLite’s capabilities and APIs. The book also uses SQLite as the basis for
helping newcomers make their first foray into database development. In only
a short time you can be writing programs as diverse as a server-side browser
plug-in or the next great iPhone or Android application!

• You’ll learn about SQLite extensions for C, Java, Perl, PHP, Python, Ruby, and Tcl.
• You’ll get solid coverage of SQLite internals.
• You’ll explore developing iOS (iPhone) and Android applications with SQLite.

SQLite is the solution chosen for thousands of products around the world, from
mobile phones and GPS devices to set-top boxes and web browsers. You almost
certainly use SQLite every day without even realizing it!

Sincerely,
Grant Allen and Mike Owens

US $49.99

Shelve in:
Databases

User level:
Intermediate–Advanced

Mike Owens

THE APRESS ROADMAP

Beginning
Database Design

Beginning
SQL Queries

Applied Mathematics
for Database
Professionals

The Definitive Guide
to SQLite

www.apress.com
SOURCE CODE ONLINE

Companion eBook

See last page for details

on $10 eBook version

ISBN 978-1-4302-3225-4

9 781430 232254

54999

Allen
Ow

ens

Second
Edition

SQLite

Companion
eBook Available

The Definitive
Guide to

The EXPERT’s VOIce® in Open Source

Second Edition

Grant Allen and Mike Owens

Take control of this compact and powerful tool to
embed sophisticated SQL databases within your
applications

The Definitive Guide to

SQLite
Grant Allen

The Definitive Guide
to SQLite
Second Edition

■ ■ ■

Grant Allen
Mike Owens

The Definitive Guide to SQLite, Second Edition

Copyright © 2010 by Grant Allen and Mike Owens

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-3225-4

ISBN-13 (electronic): 978-1-4302-3226-1

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of
the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

President and Publisher: Paul Manning
Lead Editor: Jonathan Gennick
Technical Reviewer: Richard Hipp
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Jonathan Gennick,

Jonathan Hassell, Michelle Lowman, Matthew Moodie, Duncan Parkes, Jeffrey Pepper,
Frank Pohlmann, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade,
Tom Welsh

Coordinating Editor: Jennifer L. Blackwell
Copy Editor: Kim Wimpsett
Production Support: Patrick Cunningham
Indexer: Julie Grady
Artist: April Milne
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media, LLC.,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our
Special Bulk Sales–eBook Licensing web page at www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall have
any liability to any person or entity with respect to any loss or damage caused or alleged to be caused
directly or indirectly by the information contained in this work.

The source code for this book is available to readers at www.apress.com.

mailto:ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/info/bulksales
http://www.apress.com

To my mother for her endless support of all my crazy ideas

iv

Contents at a Glance

About the Authors .. xvi

About the Technical Reviewer .. xvii

Acknowledgments ... xviii

Introduction ... xix

■Chapter 1: Introducing SQLite.. 1

■Chapter 2: Getting Started ... 17

■Chapter 3: SQL for SQLite .. 47

■Chapter 4: Advanced SQL for SQLite .. 87

■Chapter 5: SQLite Design and Concepts ... 125

■Chapter 6: The Core C API .. 153

■Chapter 7: The Extension C API ... 195

■Chapter 8: Language Extensions ... 219

■Chapter 9: iOS Development with SQLite ... 253

■Chapter 10: Android Development with SQLite .. 279

■Chapter 11: SQLite Internals and New Features .. 303

Index ... 323

v

Contents

About the Authors .. xvi

About the Technical Reviewer .. xvii

Acknowledgments ... xviii

Introduction ... xix

■Chapter 1: Introducing SQLite.. 1

An Embedded Database ... 1

A Developer’s Database ... 2

An Administrator’s Database ... 3

SQLite History .. 3

Who Uses SQLite .. 4

Architecture ... 5

The Interface .. 6

The Compiler .. 6

The Virtual Machine .. 6

The Back End .. 7

Utilities and Test Code .. 8

SQLite’s Features and Philosophy ... 8

Zero Configuration .. 8

Portability ... 8

Compactness .. 9

■ CONTENTS

vi

Simplicity .. 9

Flexibility .. 9

Liberal Licensing .. 9

Reliability .. 10

Convenience ... 10

Performance and Limitations ... 11

Who Should Read This Book .. 13

How This Book Is Organized .. 14

Additional Information ... 15

Summary ... 15

■Chapter 2: Getting Started ... 17

Where to Get SQLite ... 17

SQLite on Windows .. 18

Getting the Command-Line Program .. 18

Getting the SQLite DLL .. 21

Compiling the SQLite Source Code on Windows .. 22

Building the SQLite DLL with Microsoft Visual C++ ... 25

Building a Dynamically Linked SQLite Client with Visual C++ ... 27

Building SQLite with MinGW ... 28

SQLite on Linux, Mac OS X, and Other POSIX Systems .. 30

Binaries and Packages ... 30

Compiling SQLite from Source .. 31

The Command-Line Program ... 32

The CLP in Shell Mode .. 33

The CLP in Command-Line Mode ... 34

■ CONTENTS

vii

Database Administration ... 35

Creating a Database ... 35

Getting Database Schema Information ... 37

Exporting Data .. 39

Importing Data .. 40

Formatting .. 40

Exporting Delimited Data .. 41

Performing Unattended Maintenance ... 41

Backing Up a Database .. 42

Getting Database File Information .. 44

Other SQLite Tools ... 45

Summary ... 46

■Chapter 3: SQL for SQLite .. 47

The Example Database .. 47

Installation .. 48

Running the Examples .. 49

Syntax .. 50

Commands .. 51

Literals .. 52

Keywords and Identifiers .. 53

Comments .. 53

Creating a Database .. 53

Creating Tables ... 53

Altering Tables .. 54

Querying the Database .. 55

Relational Operations ... 55

select and the Operational Pipeline .. 57

Filtering .. 59

■ CONTENTS

viii

Limiting and Ordering ... 64

Functions and Aggregates .. 66

Grouping ... 67

Removing Duplicates .. 72

Joining Tables .. 72

Names and Aliases ... 77

Subqueries ... 79

Compound Queries ... 81

Conditional Results ... 83

Handling Null in SQLite ... 84

Summary .. 86

■Chapter 4: Advanced SQL for SQLite .. 87

Modifying Data ... 87

Inserting Records ... 87

Updating Records ... 91

Deleting Records .. 92

Data Integrity ... 92

Entity Integrity .. 93

Domain Integrity ... 97

Storage Classes .. 101

Views .. 104

Indexes ... 106

Triggers .. 108

Transactions .. 111

Transaction Scopes .. 111

Conflict Resolution .. 112

Database Locks .. 115

Deadlocks ... 116

Transaction Types .. 117

■ CONTENTS

ix

Database Administration ... 118

Attaching Databases ... 118

Cleaning Databases .. 119

Database Configuration .. 120

The System Catalog .. 123

Viewing Query Plans ... 123

Summary ... 124

■Chapter 5: SQLite Design and Concepts ... 125

The API ... 125

The Principal Data Structures ... 126

The Core API ... 127

Operational Control ... 135

Using Threads ... 136

The Extension API .. 136

Creating User-Defined Functions .. 136

Creating User-Defined Aggregates ... 137

Creating User-Defined Collations ... 138

Transactions .. 138

Transaction Life Cycles .. 138

Lock States ... 139

Read Transactions .. 141

Write Transactions .. 141

Tuning the Page Cache .. 145

Transitioning to Exclusive ... 145

Sizing the Page Cache .. 145

Waiting for Locks ... 146

Using a Busy Handler ... 146

Using the Right Transaction ... 147

■ CONTENTS

x

Code 149

Using Multiple Connections . .. 149

The Importance of Finalizing . .. 150

Shared Cache Mode 151

Summary ... 151

■Chapter 6: The Core C API ... 153

Wrapped Queries 153

Connecting and Disconnecting 153

The exec Query 155

The Get Table Query 159

Prepared Queries 161

Compilation 161

Execution . .. 162

Finalization and Reset . .. 163

Fetching Records 164

Getting Column Information . .. 165

Getting Column Values 166

A Practical Example . .. 168

Parameterized Queries . .. 169

Numbered Parameters 172

Named Parameters 173

Tcl Parameters 173

Errors and the Unexpected . .. 174

Handling Errors 174

Handling Busy Conditions 176

Handling Schema Changes 177

■ CONTENTS

xi

Operational Control .. 178

Commit Hooks .. 178

Rollback Hooks ... 179

Update Hooks ... 179

Authorizer Functions .. 180

Threads .. 190

Shared Cache Mode ... 190

Threads and Memory Management .. 193

Summary ... 193

■Chapter 7: The Extension C API ... 195

The API ... 196

Registering Functions ... 196

The Step Function ... 198

Return Values ... 198

Functions ... 200

Return Values ... 202

Arrays and Cleanup Handlers ... 202

Error Conditions .. 203

Returning Input Values ... 203

Aggregates .. 204

Registration Function ... 205

A Practical Example .. 206

Collations ... 209

Collation Defined .. 210

A Simple Example ... 212

Collation on Demand .. 216

Summary ... 217

■ CONTENTS

xii

■Chapter 8: Language Extensions ... 219

Selecting an Extension .. 220

Perl .. 221

Installation .. 221

Connecting .. 222

Query Processing .. 222

Parameter Binding .. 224

User-Defined Functions .. 224

Aggregates ... 225

Python .. 226

Installation .. 226

Connecting .. 227

Query Processing .. 227

Parameter Binding .. 229

User-Defined Functions .. 230

Aggregates ... 231

APSW as an Alternative Python Interface ... 232

Ruby ... 232

Installation .. 232

Connecting .. 233

Query Processing .. 233

Parameter Binding .. 234

User-Defined Functions .. 236

Java ... 236

Installation .. 237

Connecting .. 238

Query Processing .. 238

User-Defined Functions and Aggregates .. 240

JDBC ... 241

■ CONTENTS

xiii

Tcl .. 243

Installation .. 243

Connecting .. 244

Query Processing .. 244

User-Defined Functions .. 247

PHP .. 247

Installation .. 248

Connections .. 248

Queries ... 248

User-Defined Functions and Aggregates .. 251

Summary ... 252

■Chapter 9: iOS Development with SQLite ... 253

Prerequisites for SQLite iOS Development .. 253

Signing Up for Apple Developer .. 254

Downloading and Installing Xcode and the iOS SDK .. 254

Alternatives to Xcode .. 258

Building the iSeinfeld iOS SQLite Application .. 259

Step 1: Creating a New Xcode Project .. 259

Step 2: Adding the SQLite Framework to Your Project ... 261

Step 3: Preparing the Foods Database ... 263

Step 4: Creating Classes for the Food Data .. 264

Step 5: Accessing and Querying the SQLite DB .. 269

Step 6: Final Polish and Wiring for iSeinfeld .. 272

iSeinfeld in Action! ... 272

Working with Large SQLite Databases Under iOS .. 276

Summary ... 277

■ CONTENTS

xiv

■Chapter 10: Android Development with SQLite .. 279

Prerequisites for SQLite Android Development .. 279

Check Prerequisites and the JDK ... 280

Downloading and Installing the Android SDK Starter Package... 280

Downloading and Installing the Android Developer Tools .. 280

Adding Android Platforms and Components ... 281

The Android SQLite Classes and Interfaces ... 285

Using the Basic Helper Class, SQLiteOpenHelper ... 285

Working with the SQLiteDatabase Class .. 286

Applying SQLiteOpenHelper and SQLiteDatabase in Practice .. 290

Querying SQLite with SQLiteQueryBuilder .. 293

Building the Seinfeld Android SQLite Application .. 294

Creating a New Android Project ... 295

Adding the Seinfeld SQLite Database to Your Project .. 296

Querying the Foods Table ... 296

Defining the User Interface ... 297

Linking the Data and User Interface ... 298

Viewing the Finished Seinfeld Application ... 299

Care and Feeding for SQLite Android Applications .. 300

Database Backup for Android ... 300

Working with Large SQLite Databases Under Android ... 300

Summary ... 301

■Chapter 11: SQLite Internals and New Features .. 303

The B-Tree and Pager Modules ... 303

Database File Format.. 303

The B-Tree API .. 308

■ CONTENTS

xv

Manifest Typing, Storage Classes, and Affinity ... 311

Manifest Typing .. 311

Type Affinity .. 313

Affinities and Storage ... 314

Write Ahead Logging.. 318

How WAL Works ... 318

Activation and Configuration WAL .. 319

WAL Advantages and Disadvantages ... 320

Operational Issues with WAL-Enabled SQLite Databases ... 321

Summary ... 322

Index ... 323

xvi

About the Authors

■Grant Allen has worked in the IT field for more than 20 years, including
in roles such as chief technology officer at various leading software
development companies and such as data architect at Google. He has
worked across the industry, as well as in government and academia
around the world, consulting on large-scale systems design, development,
performance, innovation, and disruptive change. Grant is a frequent
speaker at conferences and industry events on topics such as data mining,
collaboration technologies, relational databases, and the business of
technology. In his spare time, Grant is completing a PhD in leading
disruptive innovation in high-technology companies.

■Mike Owens is the IT director for a major real estate firm in Fort Worth,
Texas, where he’s charged with the development and management of the
company’s core systems. His prior experience includes time spent at Oak
Ridge National Laboratory as a process design engineer, and at Nova
Information Systems as a C++ programmer. He is the original creator of
PySQLite, the Python extension for SQLite. Michael earned his bachelor’s
degree in chemical engineering from the University of Tennessee in
Knoxville.

Mike enjoys jogging, playing guitar, snow skiing, and hunting with his
buddies in the Texas panhandle. He lives with his wife, two daughters,
and two rat terriers in Fort Worth, Texas.

xvii

About the Technical Reviewer

■D. Richard Hipp is the creator and project leader for both SQLite and
the Fossil DVCS. Richard and his small yet select staff work full-time
maintaining and enhancing these products for an international
clientele.

Richard was born in Charlotte, North Carolina, where he currently
lives with his wife, Ginger. Richard holds degrees from Georgia Tech
(MSEE, 1984) and Duke University (PhD, 1992).

3

xviii

Acknowledgments

I'd like to express my gratitude to the entire team at Apress, especially Jonathan Gennick, my fabulous
editor, and Jennifer Blackwell, my wonderful project manager. They made it feel like the book was
almost writing itself! OK, that’s a lie, but really, they made the experience of producing The Definitive
Guide to SQLite an enjoyable and rewarding one.

I’d also like to pass on a huge thank you to D. Richard Hipp. Not only do we have Richard to thank
for the wonderful creation that is SQLite, but he also graciously offered to be my technical reviewer and
was gentle with his comments and criticisms. He taught me a great deal about the latest and greatest
features of SQLite, and I hope I’ve done him justice in bringing those topics to life in this book.

Lastly, a big thanks to all my friends and family, who put up with me writing yet another book, as
well as the crazy antics that go with it.

xix

Introduction

The Definitive Guide to SQLite covers SQLite in a comprehensive fashion, giving you the knowledge and
experience to use it in a wide range of situations. Whether you are a hard-core C developer, are a mobile
device aficionado, or are just seeking more know-how on the best embedded and small-footprint
database engine ever invented, this book it for you.

Prerequisites
This book assumes no prior knowledge of SQLite, though naturally people of all experience levels will
benefit from the material. SQLite is written in C with an extensive C API and also supports many other
languages such as Python, Tcl, Ruby, and Java. As a database engine, it also makes extensive use of SQL.
Although the examples in this book will benefit a reader of any skill level, we don’t have space to also
teach those languages.

How This Book Is Organized
The book contains 11 chapters, which cover the following broad areas:

• SQLite introduction, acquisition, and installation

• Using SQL with SQLite

• The C API for SQLite

• Using languages such as Python, Tcl, Ruby, and Java with SQLite

• Mobile device development with SQLite

• Internals and new features of SQLite

There’s no real impediment to jumping in to whatever area takes your fancy, though you may find
that Chapters 5, 6, and 7, which deal with the C API, are best approached in order.

Obtaining the Source Code of the Examples
The source code of all the examples in the book is available from the book’s catalog page on the Apress
web site, at http://apress.com/book/view/1430232250. Look for the “Source Code” link in the “Book
Resources” sidebar.

http://apress.com/book/view/1430232250

C H A P T E R 1

■ ■ ■

1

Introducing SQLite

SQLite is an open source, embedded relational database. Originally released in 2000, it is designed to
provide a convenient way for applications to manage data without the overhead that often comes with
dedicated relational database management systems. SQLite has a well-deserved reputation for being
highly portable, easy to use, compact, efficient, and reliable.

An Embedded Database
SQLite is an embedded database. Rather than running independently as a stand-alone process, it
symbiotically coexists inside the application it serves—within its process space. Its code is intertwined,
or embedded, as part of the program that hosts it. To an outside observer, it would never be apparent
that such a program had a relational database management system (RDBMS) on board. The program
would just do its job and manage its data somehow, making no fanfare about how it went about doing
so. But inside, there is a complete, self-contained database engine at work.

One advantage of having a database server inside your program is that no network configuration or
administration is required. Take a moment to think about how liberating that is: no firewalls or address
resolution to worry about, and no time wasted on managing intricate permissions and privileges. Both
client and server run together in the same process. This reduces overhead related to network calls,
simplifies database administration, and makes it easier to deploy your application. Everything you need
is compiled right into your program.

Consider the processes found in Figure 1-1. One is a Perl script, another is a standard C/C++
program, and the last is an Apache-hosted PHP script, all using SQLite. The Perl script imports the
DBI::SQLite module, which in turn is linked to the SQLite C API, pulling in the SQLite library. The PHP
library works similarly, as does the C++ program. Ultimately, all three processes interface with the
SQLite C API. All three therefore have SQLite embedded in their process spaces. By doing so, not only
does each of those processes run their own respective code, but they’ve also become independent
database servers in and of themselves. Furthermore, even though each process represents an
independent server, they can still operate on the same database file(s) , benefitting from SQLite’s use of
the operating system to manage synchronization and locking.

Today there is a wide variety of relational database products on the market specifically designed for
embedded use—products such as Sybase SQL Anywhere, Oracle TimesTen and BerkleyDB, Pervasive
PSQL, and Microsoft’s Jet Engine. Some of the dominant commercial vendors have pared down their
large-scale databases to create embedded variants. Examples of these include IBM’s DB2 Everyplace,
Oracle’s Database Lite, and Microsoft’s SQL Server Express. The open source databases MySQL and
Firebird both offer embedded versions as well. Of all these products, only one is open source,
unencumbered by licensing fees, and designed exclusively for use as an embedded database: SQLite.

CHAPTER 1 ■ INTRODUCING SQLITE

2

Perl Code

SQLite

Perl Process

DBI::SQLite

SQLite C API

Operating System

Perl

C/C++

C/C++ App Process

DB

SQLite

SQLite C API

PHP Code

SQLite

Apache Process

PHP Data Objects

SQLite C API

PHP

Figure 1-1. SQLite embedded in host processes

A Developer’s Database
SQLite is quite versatile. It is a database, a programming library, and a command-line tool, as well an
excellent learning tool that provides a good introduction to relational databases. There are many ways to
use it—in embedded environments, websites, operating system services, scripts, and applications. For
programmers, SQLite is like “data duct tape,” providing an easy way to bind applications and their data.
Like duct tape, there is no end to its potential uses. In a web environment, SQLite can help with
managing complex session information. Rather than serializing session data into one big blob,
individual pieces can be selectively written to and read from individual session databases. SQLite also
serves as a good stand-in relational database for development and testing: there are no external RDBMSs
or networking to configure or usernames and passwords to hinder the programmer’s focus. SQLite can
also serve as a cache, hold configuration data, or, by leveraging its binary compatibility across platforms,
even work as an application file format.

Besides being just a storage receptacle, SQLite can serve as a purely functional tool for general data
processing. Depending on size and complexity, it may be easier to represent some application data
structures as a table or tables in an in-memory database. With so many developers, analysts, and others
familiar with relational databases and SQL, you can benefit from “assumed knowledge”—operating on
the data relationally by using SQLite to do the heavy lifting rather than having to write your own
algorithms to manipulate and sort data structures. If you are a programmer, imagine how much code it
would take to implement the following SQL statement in your program:

CHAPTER 1 ■ INTRODUCING SQLITE

3

SELECT x, STDDEV(w)
FROM table
GROUP BY x
HAVING x > MIN(z) OR x < MAX(y)
ORDER BY y DESC
LIMIT 10 OFFSET 3;

If you are already familiar with SQL, imagine coding the equivalent of a subquery, compound query,
GROUP BY clause, or multiway join in your favorite (or not so favorite) programming language. SQLite
embeds all of this functionality into your application with minimal cost. With a database engine
integrated directly into your code, you can begin to think of SQL as an offload engine in which to
implement complex sorting algorithms in your program. This approach becomes more appealing as the
size of your data set grows or as your algorithms become more complex. What’s more, SQLite can be
configured to use a fixed amount of RAM and then offload data to disk if it exceeds the specified limit.
This is even harder to do if you write your own algorithms. With SQLite, this feature is available with a
simple call to a single SQL command.

SQLite is also a great learning tool for programmers—a cornucopia for studying computer science
topics. From parser generators to tokenizers, virtual machines, B-tree algorithms, caching, program
architecture, and more, it is a fantastic vehicle for exploring many well-established computer science
concepts. Its modularity, small size, and simplicity make it easy to present each topic as an isolated case
study that any individual could easily follow.

An Administrator’s Database
SQLite is not just a programmer’s database. It is a useful tool for system administrators as well. It is
small, compact, and elegant like finely honed versatile utilities such as find, rsync, and grep. SQLite has
a command-line utility that can be used from the shell or command line and within shell scripts.
However, it works even better with a large variety of scripting languages such as Perl, Python, TCL, and
Ruby. Together the two can help with pretty much any task you can imagine, such as aggregating log file
data, monitoring disk quotas, or performing bandwidth accounting in shared networks. Furthermore,
since SQLite databases are ordinary disk files, they are easy to work with, transport, and back up.

SQLite is a convenient learning tool for administrators looking to learn more about relational
databases. It is an ideal beginner’s database with which to learn about relational concepts and practice
their implementation. It can be installed quickly and easily on any platform you’re likely to encounter,
and its database files share freely between them without the need for conversion. It is full featured but
not daunting. And SQLite—both the program and the database—can be carried around on a USB stick or
memory chip.

SQLite History
SQLite was conceived on a battleship...well, sort of. SQLite’s author, D. Richard Hipp, was working for
General Dynamics on a program for the U.S. Navy developing software for use on board guided missile
destroyers. The program originally ran on Hewlett-Packard Unix (HP-UX) and used an Informix
database as the back end. For their particular application, Informix was somewhat overkill. For an
experienced database administrator (DBA) at the time, it could take almost an entire day to install or
upgrade. To the uninitiated application programmer, it might take forever. What was really needed was
a self-contained database that was easy to use and that could travel with the program and run anywhere
regardless of what other software was or wasn’t installed on the system.

CHAPTER 1 ■ INTRODUCING SQLITE

4

In January 2000, Hipp and a colleague discussed the idea of creating a simple embedded SQL
database that would use the GNU DBM hash library (gdbm) as a back end, one that would require no
installation or administrative support whatsoever. Later, when some free time opened up, Hipp started
work on the project, and in August 2000, SQLite 1.0 was released.

As planned, SQLite 1.0 used gdbm as its storage manager. However, Hipp soon replaced it with his
own B-tree implementation that supported transactions and stored records in key order. With the first
major upgrade in hand, SQLite began a steady evolution, growing in both features and users. By mid-
2001, many projects—both open source and commercial alike—started to use it. In the years that
followed, other members of the open source community started to write SQLite extensions for their
favorite scripting languages and libraries. One by one, new extensions for popular languages and APIs
such as Open Database Connectivity (ODBC), Perl, Python, Ruby, Java, and others fell into place and
testified to SQLite’s wide application and utility.

SQLite began a major upgrade from version 2 to 3 in 2004. Its primary goal was enhanced
internationalization supporting UTF-8 and UTF-16 text as well as user-defined text-collating sequences.
Although version 3.0 was originally slated for release in summer 2005, America Online provided the
necessary funding to see that it was completed by July 2004. Besides internationalization, version 3
brought many other new features such as a revamped C API, a more compact format for database files (a
25 percent size reduction), manifest typing, binary large object (BLOB) support, 64-bit ROWIDs,
autovacuum, and improved concurrency. Even with many new features, the overall library footprint was
still less than 240KB, at a time when most home PCs began measuring their memory in gigabytes!
Another improvement in version 3 was a good code cleanup—revisiting, refactoring and rewriting, or
otherwise throwing out the detritus accumulated in the 2.x series.

SQLite continues to grow feature-wise while still remaining true to its initial design goals: simplicity,
flexibility, compactness, speed, and overall ease of use. At the time of this book’s latest edition, SQLite
has leapt ahead to include such advanced features as recursive triggers, distribution histograms to help
the optimizer produce even faster queries, and asynchronous I/O on operating systems capable of
supporting such workloads. What’s next after that? Well, it all depends. Perhaps you or your company
will sponsor the next big feature that makes this super-efficient database even better.

Who Uses SQLite
Today, SQLite is used in a wide variety of software and products. It is used in Apple’s Mac OS X operating
system, Safari web browser, Mail.app email program, and RSS manager, as well as Apple’s Aperture
photography software. Perhaps Apple’s biggest use for SQLite has come in the iPhone age. You’ll find
many apps on the iPhone, such as the Contacts database, Notes, and more, all rely on SQLite. This
reliance on SQLite also extends to the iPad. We’ll return to this topic in Chapter 9, where we’ll discuss
working with SQLite on Apple’s mobile platforms in detail.

SQLite can be found in Sun’s Solaris operating environment, specifically the database backing the
Service Management Facility that debuted with Solaris 10, a core component of its predictive self-
healing technology. SQLite is in the Mozilla Project’s mozStorage C++/JavaScript API layer, which will be
the backbone of personal information storage for Firefox, Thunderbird, and Sunbird. SQLite has been
added as part of the PHP 5 standard library. It also ships as part of Trolltech’s cross-platform Qt C++
application framework, which is the foundation of the popular KDE window manager, and many other
software applications. SQLite is especially popular in embedded platforms. Much of Richard Hipp’s
SQLite-related business has been porting SQLite to various proprietary embedded platforms. Symbian
uses SQLite to provide SQL support in the native Symbian OS platform. Google has made extensive use
of SQLite in the Android mobile phone operating system and user-space applications. SQLite is so
pervasive within Android that Chapter 10 is dedicated to showing you all about its use on Android
devices. SQLite is also included in commercial development products for cell phone applications.

CHAPTER 1 ■ INTRODUCING SQLITE

5

Although it is rarely advertised, SQLite is also used in a variety of consumer products, as some tech-
savvy consumers have discovered in the course of poking around under the hood. Examples include the
D-Link Media Lounge, the Slim Devices Squeezebox music player, and the Philips GoGear personal
music player. Some clever consumers have even found a SQLite database embedded in the Complete
New Yorker DVD set—a digital library of every issue of the New Yorker magazine—apparently used by its
accompanying search software.

You can find SQLite as an alternative back-end storage facility for a wide array of open source
projects such as Yum (the package manager for Fedora Core), Movable Type, DSPAM, and Edgewall
Software’s excellent Trac SCM and project management system; possibly most famously, it’s used as the
built-in database for Firefox, the web browser from Mozilla. Even parts of SQLite’s core utilities can be
found in other open source projects. One such example is its Lemon parser generator, which the lighttpd
web server project uses for generating the parser code for reading its configuration file. Indeed, there
seems to be such a variety of uses for SQLite that Google took notice and awarded Richard Hipp with
“Best Integrator” at O’Reilly’s 2005 Open Source Convention—long before Google entered the mobile
space with Android. See also www.sqlite.org/famous.html for other ideas of important SQLite users.

Architecture
SQLite has an elegant, modular architecture that takes some unique approaches to relational database
management. It consists of eight separate modules grouped within three major subsystems (as shown in
Figure 1-2). These modules divide query processing into discrete tasks that work like an assembly line.
The top of the stack compiles the query, the middle executes it, and the bottom handles storage and
interfacing with the operating system.

Interface

Virtual Machine

B-Tree

OS Interface

Database

Backend

Core

Compiler
Pager

Tokenizer

Parser

Code Generator

Figure 1-2. SQLite’s architecture

http://www.sqlite.org/famous.html

CHAPTER 1 ■ INTRODUCING SQLITE

6

The Interface
The interface is the top of the stack and consists of the SQLite C API. It is the means through which
programs, scripting languages, and libraries alike interact with SQLite. Literally, this is where you as
developer, administrator, student, or mad scientist talk to SQLite.

The Compiler
The compilation process starts with the tokenizer and parser. They work together to take a Structured
Query Language (SQL) statement in text form, validate its syntax, and then convert it to a hierarchical
data structure that the lower layers can more easily manipulate. SQLite’s tokenizer is hand-coded. Its
parser is generated by SQLite’s custom parser generator, which is called Lemon. The Lemon parser
generator is designed for high performance and takes special precautions to guard against memory
leaks. Once the statement has been broken into tokens, evaluated, and recast in the form of a parse tree,
the parser passes the tree down to the code generator.

The code generator translates the parse tree into a kind of assembly language specific to SQLite.
This assembly language consists of instructions that are executable by its virtual machine. The code
generator’s sole job is to convert the parse tree into a complete mini-program written in this assembly
language and to hand it off to the virtual machine for processing.

The Virtual Machine
At the center of the stack is the virtual machine, also called the virtual database engine (VDBE). The
VDBE is a register-based virtual machine that works on byte code, making it independent of the
underlying operating system, CPU, or system architecture. The VDBE’s byte code (or virtual machine
language) consists of more than 100 possible tasks known as opcodes, which are all centered on database
operations. The VDBE is designed specifically for data processing. Every instruction in its instruction set
either accomplishes a specific database operation (such as opening a cursor on a table, making a record,
extracting a column, or beginning a transaction) or performs manipulations to prepare for such an
operation. Altogether and in the right order, the VDBE’s instruction set can satisfy any SQL command,
however complex. Every SQL statement in SQLite—from selecting and updating rows to creating tables,
views, and indexes—is first compiled into this virtual machine language, forming a stand-alone
instruction set that defines how to perform the given command. For example, take the following
statement:

SELECT name FROM episodes LIMIT 10;

This compiles into the VDBE program shown in Listing 1-1.

CHAPTER 1 ■ INTRODUCING SQLITE

7

Listing 1-1. VDBE Assembly

addr opcode p1 p2 p3 p4 p5 comment
0 Trace 0 0 0 00
1 Integer 10 1 0 00
2 Goto 0 11 0 00
3 OpenRead 0 2 0 3 00
4 Rewind 0 9 0 00
5 Column 0 2 2 00
6 ResultRow 2 1 0 00
7 IfZero 1 9 -1 00
8 Next 0 5 0 01
9 Close 0 0 0 00
10 Halt 0 0 0 00
11 Transactio 0 0 0 00
12 VerifyCook 0 4 0 00
13 TableLock 0 2 0 episodes 00
14 Goto 0 3 0 00

The program consists of 15 instructions. These instructions, performed in this particular order with
the given operands, will return the name field of the first ten records in the episodes table (which is part of
the example database included with this book).

In many ways, the VDBE is the heart of SQLite. All of the modules before it work to create a VDBE
program, while all modules after it exist to execute that program, one instruction at a time.

The Back End
The back end consists of the B-tree, page cache, and OS interface. The B-tree and page cache (pager)
work together as information brokers. Their currency is database pages, which are uniformly sized
blocks of data that, like shipping containers, are made for transportation. Inside the pages are the goods:
more interesting bits of information such as records and columns and index entries. Neither the B-tree
nor the pager has any knowledge of the contents. They only move and order pages; they don’t care
what’s inside.

The B-tree’s job is order. It maintains many complex and intricate relationships between pages,
which keeps everything connected and easy to locate. It organizes pages into tree-like structures (which
is the reason for the name), which are highly optimized for searching. The pager serves the B-tree,
feeding it pages. Its job is transportation and efficiency. The pager transfers pages to and from disk at the
B-tree’s behest. Disk operations are still some of the slowest things a computer has to do, even with
today’s solid-state disks. Therefore, the pager tries to speed this up by keeping frequently used pages
cached in memory and thus minimizes the number of times it has to deal directly with the hard drive. It
uses special techniques to predict which pages will be needed in the future and thus anticipate the needs
of the B-tree, keeping pages flying as fast as possible. Also in the pager’s job description are transaction
management, database locking, and crash recovery. Many of these jobs are mediated by the OS
interface.

Things such as file locking are often implemented differently in different operating systems. The OS
interface provides an abstraction layer that hides these differences from the other SQLite modules. The
end result is that the other modules see a single consistent interface with which to do things like file
locking. So, the pager, for example, doesn’t have to worry about doing file locking one way on Windows
and doing it another way on different operating systems such as Unix. It lets the OS interface worry
about this. It just says to the OS interface, “Lock this file,” and the OS interface figures out how to do that

CHAPTER 1 ■ INTRODUCING SQLITE

8

based on the operating system on which it happens to be running. Not only does the OS interface keep
code simple and tidy in the other modules, but it also keeps the messy issues cleanly organized and at
arm’s length in one place. This makes it easier to port SQLite to different operating systems—all of the
OS issues that must be addressed are clearly identified and documented in the OS interface’s API.

Utilities and Test Code
Miscellaneous utilities and common services such as memory allocation, string comparison, and
Unicode conversion routines are kept in the utilities module. This is basically a catchall module for
services that multiple modules need to use or share. The testing module contains a myriad of regression
tests designed to examine every little corner of the database code. This module is one of the reasons
SQLite is so reliable: it performs a lot of regression testing and makes those tests available for anyone to
run and improve.

SQLite’s Features and Philosophy
SQLite offers a surprisingly comprehensive range of features and capabilities despite its small size. It
supports a large subset of the ANSI SQL92 standard for SQL features (transactions, views, check
constraints, foreign keys, correlated subqueries, compound queries, and more) along with many other
features found in relational databases, such as triggers, indexes, autoincrement columns, and
LIMIT/OFFSET features. It also has many rare or unique features, such as in-memory databases, dynamic
typing, and conflict resolution—otherwise referred to as merge or upsert in other RDBMSs—which will
be explained in a moment.

As mentioned earlier in this chapter, SQLite has a number of governing principles or characteristics
that serve to more or less define its philosophy and implementation. I’ll expand on these issues next.

Zero Configuration
From its initial conception, SQLite has been designed so that it can be incorporated and used without
the need of a DBA. Configuring and administering SQLite is as simple as it gets. SQLite contains just
enough features to fit in a single programmer’s brain, and like its library, it requires as small a footprint
in the gray matter as it does in RAM.

Portability
SQLite was designed specifically with portability in mind. It compiles and runs on Windows, Linux, BSD,
Mac OS X, and commercial Unix systems such as Solaris, HP-UX, and AIX, as well as many embedded
platforms such as QNX, VxWorks, Symbian, Palm OS, and Windows CE. It works seamlessly on 32- and
64-bit architectures with both big- and little-endian byte orders. Portability doesn’t stop with the
software either: SQLite’s database files are as portable as its code. The database file format is binary
compatible across all supported operating systems, hardware architectures, and byte orders. You can
create a SQLite database on a Linux workstation and use it on a Mac or Windows machine, an iPhone, or
other device, without any conversion or modification. Furthermore, SQLite databases can hold up to 2
terabytes of data (limited only by the operating system’s maximum file size) and natively support both
UTF-8 and UTF-16 encoding.

CHAPTER 1 ■ INTRODUCING SQLITE

9

Compactness
SQLite was designed to be lightweight and self-contained; one header file, one library, and you’re
relational—no external database server required. Everything packs into less than half a megabyte, which
is smaller than many of the web pages you’ll visit on any given day.

SQLite databases are ordinary operating system files. Regardless of your system, all objects in your
SQLite database—tables, triggers, schema, indexes, and views—are contained in a single operating
system file. SQLite uses variable-length records wherever possible, allocating only the minimum amount
of data needed to hold each field. A 2-byte field sitting in a varchar(100) column takes up only 3 bytes of
space, not 100 (the extra byte is used to record its type information).

Simplicity
As a programming library, SQLite’s API is one of the simplest and easiest to use. The API is both well
documented and intuitive. It is designed to help you customize SQLite in many ways, such as
implementing your own custom SQL functions in C. The open source community also has a created a
vast number of language and library interfaces with which to use SQLite. There are extensions for Perl,
Python, Ruby, Tcl/Tk, Java, PHP, Visual Basic, ODBC, Delphi, C#, VB .NET, Smalltalk, Ada, Objective C,
Eiffel, Rexx, Lisp, Scheme, Lua, Pike, Objective Camel, Qt, WxWindows, REALBASIC, and others. You can
find an exhaustive list on the SQLite wiki: www.sqlite.org/cvstrac/wiki?p=SqliteWrappers.

SQLite’s modular design includes many innovative ideas that enable it to be full featured and
extensible while at the same time retaining a great degree of simplicity throughout its code base. Each
module is a specialized, independent system that performs a specific task. This modularity makes it
much easier to develop each system independently and to debug queries as they pass from one module
to the next—from compilation and planning to execution and materialization. The end result is that
there is a crisp, well-defined separation between the front end (SQL compiler) and back end (storage
system), allowing the two to be coded independently of each other. This design makes it easier to add
new features to the database engine, is faster to debug, and results in better overall reliability.

Flexibility
Several factors work together to make SQLite a very flexible database. As an embedded database, it offers
the best of both worlds: the power and flexibility of a relational database front end, with the simplicity
and compactness of a B-tree back end. With it, there are no large database servers to configure, no
networking or connectivity problems to worry about, no platform limitations, and no license fees or
royalties to pay. Rather, you get simple SQL support dropped right into your application.

Liberal Licensing
All of SQLite’s code is in the public domain. There is no license. No claim of copyright is made on any
part of the core source code. All contributors to this code are required to sign affidavits specifically
disavowing any copyright interest in contributed code. Thus, there are no legal restrictions on how you
may use the source code in any form. You can modify, incorporate, distribute, sell, and use the code for
any purpose—commercial or otherwise—without any royalty fees or restrictions.

http://www.sqlite.org/cvstrac/wiki?p=SqliteWrappers

CHAPTER 1 ■ INTRODUCING SQLITE

10

Reliability
The SQLite source code is more than just free; it also happens to be well written. SQLite’s code base
consists of about 70,000 lines of standard ANSI C that are clean, modular, and well commented. The
code base is designed to be approachable, easy to understand, easy to customize, and generally very
accessible. It is easily within the ability of a competent C programmer to follow any part of SQLite or the
whole of it with sufficient time and study.

Additionally, SQLite’s code offers a full-featured API specifically for customizing and extending
SQLite through the addition of user-defined functions, aggregates, and collating sequences along with
support for operational security.

While SQLite’s modular design significantly contributes to its overall reliability, its source code is
also well tested. Whereas the core software (library and utilities) consists of about 70,000 lines of code,
the distribution includes an extensive test suite consisting of more than 45 million lines of test code,
which as of July 2009 covers 100 percent of the core code. Ask any developer how hard it is to be that
comprehensive when testing a nontrivial amount of code, and you can see why people have rock-solid
confidence in the reliability of SQLite.

Convenience
SQLite also has a number of unique features that provide a great degree of convenience. These include
dynamic typing, conflict resolution, and the ability to “attach” multiple databases to a single session.

SQLite’s dynamic typing is somewhat akin to that found in scripting languages (e.g., duck typing in
Ruby). Specifically, the type of a variable is determined by its value, not by a declaration as employed in
statically typed languages. Most database systems restrict a field’s value to the type declared in its
respective column. For example, each field in an integer column can hold only integers or possibly
NULL. In SQLite, while a column can have a declared type, fields are free to deviate from them, just as a
variable in a scripting language can be reassigned a value with a different type. This can be especially
helpful for prototyping, since SQLite does not force you to explicitly change a column’s type. You need
only change how your program stores information in that column rather than continually having to
update the schema and reload your data.

Conflict resolution is another great feature. It can make writing SQL, as easy as it is, even easier. This
feature is built into many SQL operations and can be made to perform what can be called lazy updates.
Say you have a record you need to insert, but you are not sure whether one just like it already exists in
the database. Rather than write a SELECT statement to look for a match and then recast your INSERT to an
UPDATE if it does, conflict resolution lets you say to SQLite, “Here, try to insert this record, and if you find
one with the same key, just update it with these values instead.” Now you’ve gone from having to code
three different SQL statements to cover all the bases (i.e., SELECT, INSERT, and possibly UPDATE) to just
one: INSERT OR REPLACE (...). Other relational database systems mimic this aspect of conflict resolution
with UPSERT or MERGE statements, but SQLite goes one step further. You can build conflict resolution into
the table definition itself and dispense with the need to ever specify it again on future INSERT statements.
In fact, you can dispense with ever having to write UPDATE statements to this table again—just write
INSERT statements and let SQLite do the dirty work of figuring out what to do using the conflict
resolution rules defined in the schema.

Finally, SQLite lets you “attach” external databases to your current session. Say you are connected
to one database (foo.db) and need to work on another (bar.db). Rather than opening a separate
connection and juggling multiple connection handles in your code, you can simply attach the database
of interest to your current connection with a single SQL command:

ATTACH database bar.db as bar;

7

CHAPTER 1 ■ INTRODUCING SQLITE

11

All of the tables in bar.db are now accessible as if they existed in foo.db. You can detach it just as
easily when you’re done. This makes all sorts of things like copying tables between databases very easy.

Performance and Limitations
SQLite is a speedy database. But the words speedy, fast, peppy, or quick are rather subjective terms. To be
perfectly honest, there are things SQLite can do faster than other databases, and there are things that it
cannot. Suffice it to say, within the parameters for which it has been designed, SQLite can be said to be
consistently fast and efficient across the board. SQLite uses B-trees for indexes and B+-trees for tables,
the same as most other database systems. For searching a single table, it is as fast if not faster than any
other database on average. Simple SELECT, INSERT, and UPDATE statements are extremely quick—virtually
at the speed of RAM (for in-memory databases) or disk. Here SQLite is often faster than other databases,
because it has less overhead to deal with in starting a transaction or generating a query plan and because
it doesn’t incur the overhead of making a network calls to the server or negotiating authentication and
privileges. Its simplicity here makes it fast.

As queries become larger and more complex, however, query time overshadows the network call or
transaction overhead, and the game goes to the database with the best optimizer. This is where larger,
more sophisticated databases begin to shine. While SQLite can certainly do complex queries, it does not
have a sophisticated optimizer or query planner. You can always trust SQLite to give you the result, but
what it won’t do is try to determine optimal paths by computing millions of alternative query plans and
selecting the fastest candidate, as you might expect from Oracle or PostgreSQL. Thus, if you are running
complex queries on large data sets, odds are that SQLite is not going to be as fast as databases with
sophisticated optimizers.

So, there are situations where SQLite is not as fast as larger databases. But many if not all of these
conditions are to be expected. SQLite is an embedded database designed for small to medium-sized
applications. These limitations are in line with its intended purpose. Many new users make the mistake
of assuming that they can use SQLite as a drop-in replacement for larger relational databases.
Sometimes you can; sometimes you can’t. It all depends on what you are trying to do.

In general, there are two major variables that define SQLite’s main limitations:

• Concurrency. SQLite has coarse-grained locking, which allows multiple readers
but only one writer at a time. Writers exclusively lock the database during writes,
and no one else has access during that time. SQLite does take steps to minimize
the amount of time in which exclusive locks are held. Generally, locks in SQLite
are kept for only a few milliseconds. But as a general rule of thumb, if your
application has high write concurrency (many connections competing to write to
the same database) and it is time critical, you probably need another database. It
is really a matter of testing your application to know what kind of performance
you can get. We have seen SQLite handle more than 500 transactions per second
for 100 concurrent connections in simple web applications. But your transactions
may differ in the number of records being modified or the number and complexity
of the queries involved. Acceptable concurrency all depends on your particular
application and can be determined empirically only by direct testing. In general,
this is true with any database: you don’t know what kind of performance your
application will get until you do real-world tests.

CHAPTER 1 ■ INTRODUCING SQLITE

12

• Networking. Although SQLite databases can be shared over network file systems,
the latency associated with such file systems can cause performance to suffer.
Worse, bugs in network file system implementations can also make opening and
modifying remote files—SQLite or otherwise—error prone. If the file system’s
locking does not work properly, two clients may be allowed to simultaneously
modify the same database file, which will almost certainly result in database
corruption. It is not that SQLite is incapable of working over a network file system
because of anything in its implementation. Rather, SQLite is at the mercy of the
underlying file system and wire protocol, and those technologies are not always
perfect. For instance, many versions of NFS have a flawed fcntl()
implementation, meaning that locking does not behave as intended. Newer NFS
versions, such are Solaris NFS v4, work just fine and reliably implement the
requisite locking mechanisms needed by SQLite. However, the SQLite developers
have neither the time nor the resources to certify that any given network file
system works flawlessly in all cases.

Again, most of these limitations are intentional, resulting from SQLite’s design. Supporting high
write concurrency, for example, brings with it great deal of complexity, and this runs counter to SQLite’s
simplicity in design. Similarly, being an embedded database, SQLite intentionally does not support
networking. This should come as no surprise. In short, what SQLite can’t do is a direct result of what it
can. It was designed to operate as a modular, simple, compact, and easy-to-use embedded relational
database whose code base is within the reach of the programmers using it. And in many respects, it can
do what many other databases cannot, such as run in embedded environments where actual power
consumption is a limiting factor.

While SQLite’s SQL implementation is quite good, there are some things it currently does not
implement. These are as follows:

• Complete trigger support. SQLite supports almost all the standard features for
triggers, including recursive triggers and INSTEAD OF triggers. However, for all
trigger types, SQLite currently requires FOR EACH ROW behavior, where the triggered
action is evaluated for every row affected by the triggering query. ANSI SQL 92 also
describes a FOR EACH STATEMENT trigger style, which is not currently supported.

• Complete ALTER TABLE support. Only the RENAME TABLE and ADD COLUMN variants
of the ALTER TABLE command are supported. Other kinds of ALTER TABLE
operations such as DROP COLUMN, ALTER COLUMN, and ADD CONSTRAINT are not
implemented.

• RIGHT and FULL OUTER JOIN. LEFT OUTER JOIN is implemented, but RIGHT
OUTER JOIN and FULL OUTER JOIN are not. Every RIGHT OUTER JOIN has a provably
semantically identical LEFT OUTER JOIN, and vice versa. Any RIGHT OUT JOIN can be
implemented as a LEFT OUTER JOIN by simply reversing the order of the tables and
modifying the join constraint. A FULL OUTER JOIN can be implemented as a
combination of two LEFT OUTER JOIN statements, a UNION, and appropriate NULL
filtering in the WHERE clause.

• Updatable views. Views in SQLite are read-only. You may not execute a DELETE,
INSERT, or UPDATE statement on a view. But you can create a trigger that fires on an
attempt to DELETE, INSERT, or UPDATE a view and do what you need in the body of
the trigger.

CHAPTER 1 ■ INTRODUCING SQLITE

13

• Windowing functions. One of the new feature sets specified in ANSI SQL 99 are
the windowing functions. These provide post-processing analytic functions for
results, such a ranking, rolling averages, lag and lead calculation, and so on.
SQLite currently only targets ANSI SQL 92 compliance, so it doesn’t support
windowing functions like RANK(), ROW_NUMBER(), and so on.

• GRANT and REVOKE. Since SQLite reads and writes an ordinary disk file, the only
access permissions that can be applied are the normal file access permissions of
the underlying operating system. GRANT and REVOKE commands in general are
aimed at much higher-end systems where there are multiple users who have
varying access levels to data in the database. In the SQLite model, the application
is the main user and has access to the entire database. Access in this model is
defined at the application level—specifically, what applications have access to the
database file.

In addition to what is listed here, there is a page on the SQLite wiki devoted to reporting
unsupported SQL. It is located at www.sqlite.org/cvstrac/wiki?p=UnsupportedSql.

Who Should Read This Book
SQLite has many uses and therefore draws a wide and diverse audience. Whether you are a programmer,
web developer, systems administrator, or just casual user looking to learn about relational databases,
this book aims to help you understand and get the most out of your particular use for SQLite.

SQLite is a terrific database to start on if you are new to relational databases. This book will help you
not only get started with SQLite but also become a competent user of SQL. It will also provide you with a
good foundation with which to move on to larger relational systems and explore more advanced features
and topics.

For programmers, this book assumes only that you know the programming language in which you
intend to use SQLite and the basics of relational theory. Furthermore, it does more than document APIs.
If anything, that is the least of what it does, because API documentation only illustrates how an interface
works. As with any database, you have to have some idea of how that database works internally to get the
most out of it. Every database has unique architectural aspects, specific relational features, and
important limitations, all of which good programmers learn about and take into consideration when
writing their code. SQLite, though simple and straightforward, is no exception. As a programmer, you
need to know something about how it processes data internally to get it to work well with your
application. This book shows you how. It covers the API and explores how it works in relation to SQLite’s
architecture, allowing C programmers, web developers, and scriptwriters alike to write more informed
code. This helps you better understand not only what SQLite can do but also what it can’t. Your
knowledge of the architecture will tell you better than any list of rules when SQLite is or isn’t a good fit
for what you are trying to accomplish. You’ll know if, when, and where you need to consider another
approach.

One of the most important aims in this book is to teach concepts over recipes—to adequately
address both how and why. By the time you’re done, you will have both a conceptual and practical
understanding of how something works. To that end, this book includes both theoretical material
intermixed with many figures and examples designed specifically to illustrate the topics at hand and
provide real-world value.

http://www.sqlite.org/cvstrac/wiki?p=UnsupportedSql

CHAPTER 1 ■ INTRODUCING SQLITE

14

How This Book Is Organized
This book is divided into three parts: SQLite the database, SQLite the programming library, and
reference material. The database aspects of SQLite are covered in Chapters 2, 3, and 4. The programming
aspects of SQLite are covered in Chapters 5–8. A brief chapter outline is as follows:

Chapter 1, “Introducing SQLite,” introduces the main features of SQLite, its
origin and history, and the scope and objectives of this book (you are reading
this now!)

Chapter 2, “Getting Started,” covers how to obtain and use SQLite. It illustrates
how to get SQLite in binary and source form, as well as how to compile and
build it on a variety of platforms. It explains how to use the SQLite command-
line utility to create and work with databases.

Chapter 3, “SQL for SQLite,” provides some background behind SQL. It
introduces many of the basic SQL commands, such as those for creating tables
and selecting and working with data. This chapter acts as both an overview for
SQLite’s own approach to SQL and a quick introduction for those needing a
refresher on SQL itself.

Chapter 4, “Advanced SQL in SQLite,” continues from Chapter 3 with coverage
of more complex queries and explores every aspect of the remaining
commands in SQLite’s SQL implementation.

Chapter 5, “SQLite Design and Concepts,” lays the groundwork for
programming with SQLite. It illustrates the SQLite API, its architecture, and
how the two work in relation to one another. It addresses topics such as
transactions and locking. It provides programmers of all languages with a clear
understanding of how SQLite works internally and what to keep in mind when
writing programs that use it.

Chapter 6, “The Core C API,” covers the part of the SQLite C API related to
executing queries. With sections on connecting to databases, executing queries,
obtaining data, managing transactions, and tracing your code, this chapter
covers all parts of the API related to query and data processing.

Chapter 7, “The Extension C API,” covers the remaining part of the C API
devoted to customizing and extending SQLite. SQLite provides facilities for
implementing user-defined SQL functions, aggregates, and collations. This
chapter illustrates example implementations of these features and provides
practical examples of their use.

Chapter 8, “Language Bindings for SQLite,” provides a concise introduction to
SQLite programming in a range of popular languages such as Perl, Python,
Ruby, Java, and PHP.

Chapter 9, “SQLite for Apple iPhone and iPad,” focuses on how to use SQLite
when developing for Apple’s mobile platforms.

CHAPTER 1 ■ INTRODUCING SQLITE

15

Chapter 10, “SQLite for Google Android devices,” covers how SQLite is baked
in to the Android platform and how to develop with SQLite for the explosion of
devices that now run Android.

Chapter 11, “SQLite Internals,” explores the inner workings of SQLite. It is a
high-level overview of the source code and provides a glimpse into how the
major subsystems are implemented. This provides programmers with a deeper
understanding of SQLite’s design decisions, assumptions, and trade-offs, as
well as a point of departure for developers who want to work on SQLite.

DATABASE EXAMPLES

The example databases accompanying this book are available online and can be downloaded from the
Apress website (www.apress.com). Each database is in SQL format, and you can simply follow the
procedures covered in Chapter 2 to create them using the SQLite command-line program. The example
databases are further explained and illustrated as they are introduced in this book.

The source code for all examples is also available online. All examples compile and run on Windows, Linux,
and Unix. For each example, makefiles are included for Linux and Unix environments, and Visual C++
projects have been created for Windows users.

Additional Information
The SQLite website has a wealth of information, including the official documentation, mailing lists, wiki,
and other general information. It is located at www.sqlite.org. The SQLite community is very helpful,
and you may find everything you need on SQLite’s mailing list. Additionally, SQLite’s author offers
professional training and support for SQLite, which includes custom programming (porting to
embedded platforms, etc.), and enhanced versions of SQLite, which include native encryption and
extremely small versions optimized for embedded applications. You can find more information at
www.hwaci.com/sw/sqlite/prosupport.html.

Summary
SQLite is not to be confused with other larger databases like Oracle or PostgreSQL. Whereas dedicated
relational databases such as these are electronic juggernauts, SQLite is a digital Swiss Army knife.
Whereas large-scale dedicated relational databases are designed for thousands of users, SQLite is
designed for thousands of uses. It is more than a database. Although a tool in its own right, it is a tool for
making tools as well. It is a true utility, engineered to enable you—the developer, user, or
administrator—to quickly and easily shape those disparate piles of data into order, and manipulate
them to your liking with minimal effort.

http://www.apress.com
http://www.sqlite.org
http://www.hwaci.com/sw/sqlite/prosupport.html

CHAPTER 1 ■ INTRODUCING SQLITE

16

SQLite is public domain software. Free. You can do anything with it or its source code you like. No
licenses, no install programs, no restrictions. Just copy and run. It is also portable, well tested, and
reliable. It has a clean, modular design that helps keep the system simple, easy to develop, and easy to
debug. In addition to good design, it has good testing. There is more code written to test SQLite than
there is SQLite code to test. It should not be too surprising, then, that SQLite has proven itself to be a
solid, reliable database over its five-year history.

Finally, SQLite is fun. At least we think so, and we hope that you will find it equally useful and
enjoyable.

 If you have any comments or suggestions on this book or its examples, please feel free to contact
the authors at sqlitebook@gmail.com (Michael) or grantondata@gmail.com (Grant).

mailto:sqlitebook@gmail.com
mailto:grantondata@gmail.com

C H A P T E R 2

■ ■ ■

17

Getting Started

It’s very easy to begin using SQLite no matter what operating system you are using. For the vast majority
of users, you can be up and running with SQLite in less than five minutes, regardless of experience. This
chapter covers everything you need to know in order to install SQLite and work with databases. By the
time we are done, you will have a working knowledge of where to obtain SQLite software or source code
and how to install or compile it on multiple platforms. You’ll be working with new SQLite databases and
creating tables, views, and indexes that you can query, back up, and restore.

You will learn everything you need to know about managing SQLite databases, including how to
create, view, and examine their contents. Finally, you will be introduced to several tools with which to
work with SQLite in various environments. This chapter does include some examples that use SQL to
introduce the SQLite command-line program. If you are not yet familiar with SQL, the examples will be
easy enough that you should still be able to follow them without much trouble. We take an in-depth look
at SQL in detail in Chapters 3 and 4.

Where to Get SQLite
The SQLite website (www.sqlite.org) provides both precompiled binaries of SQLite as well as source
code. Binaries are available for popular platforms including Mac OS X, Windows, and Linux.

There are several binary packages to choose from, each of which is specific to a particular way of
using SQLite. The binary packages are as follows:

sqlite3 command-line program (CLP): This version of the SQLite command-
line program has the database engine compiled in with statically linked
dependencies, acting as a self-contained, stand-alone program. This provides a
convenient way to work with SQLite databases from the command line without
having to worry about whether the SQLite shared library is installed on your
system or located in the right place. If you run on of the contemporary Linux
distributions or OS X, you almost certainly already have this installed.

SQLite shared library (DLL or “so”): This is the SQLite database engine
packaged into a shared object (so) or Windows dynamic link library (DDL). Use
this with programs that dynamically link to SQLite. This form makes it easier to
upgrade SQLite without having to recompile the software that depends on it.
Note that there is currently no precompiled .dylib shared library for Mac OS X.

http://www.sqlite.org

CHAPTER 2 ■ GETTING STARTED

18

SQLite Analyzer: The Analyzer tool is useful for inspecting many qualities and
statistics about a given SQLite database file, including things such as physical
data distribution and layout within the file, relative fragmentation, internal data
size and free space, and other measures. This information is very useful for
performance optimization work.

Tcl extension: This binary incorporates the Tcl language extensions with the
SQLite core. This allows you to connect to SQLite from within the Tcl language.
Tcl and C are the two language bindings provided by the SQLite team
themselves. Other language bindings are covered in Chapter 8.

SQLite’s source code is provided in a variety of forms for convenience and to target different
platforms. The main differences in the source distributions concern whether the code is amalgamated
into a single source file and header or left in constituent files. There is also a source package
incorporating the Tcl Extension Architecture (TEA) for those who want to compile SQLite with Tcl
bindings.

The SQLite amalgamated source appears twice on the website—once as a zip file and again as a
gzipped tarball. The source code itself does not differ between these source distributions. The zip file is
generally recommended and in particular is the only source readily suitable for compilation on Windows
(unless you prefer going to laborious effort on that platform). The zip file source distribution benefits
from already having certain preprocessing and code generation performed on the code by build tools
like GNU autoconf. This means Windows users don’t need to hunt down Windows-specific equivalents
for these tools. The gzipped tarball is targeted to users of Linux, Unix flavors, Mac OS X, BSD variants,
and so on. These platforms include in their normal distributions the expected tool chain to do much of
the preprocessing work, as well as normal compilation, so users of those platforms can adopt this source
package in the knowledge they need not hunt down additional tools to compile SQLite.

SQLite on Windows
Whether you are using SQLite as an end user, writing programs that use SQLite, or using it as a learning
platform for relational theory and SQL, SQLite can be installed on Windows with a minimum of fuss. In
this section, we will cover all the options, from installing the available binary packages to building
everything from source using the most popular compilers. We start with the easy things first and
progress to things more technically challenging.

Getting the Command-Line Program
The SQLite command-line program (hereafter referred to as the CLP) is by far the easiest way to get
started using SQLite. Follow these steps to obtain the CLP:

1. Open your favorite browser, and navigate to the SQLite home page at
www.sqlite.org.

2. Click the download link at the top of the page. This will take you to the
download page.

http://www.sqlite.org

CHAPTER 2 ■ GETTING STARTED

19

3. Scroll down to the section Precompiled Binaries For Windows, where you will
find filenames along the lines of sqlite-3_x_y_z.zip, where x, y, and z are the
minor-version numbers. There should be a comment beside it that reads “A
command-line program for accessing and modifying SQLite databases.”
Download this file to your Windows environment.

4. Unzip the file, either using Windows built-in support for zip files or using your
favorite third-party compression tool such as WinZip or 7-Zip. The zip file
should contain a single file named sqlite3.exe. You can start using the file
from the location in which you unzipped it, or if you would like to run the CLP
from any directory in the Windows shell, you need to copy it to a folder that is
in your Windows system path. A suitable default that should work on all
versions of Windows is the \windows\system32 folder on your root partition
(C:\ for most systems).

■ Note If you don’t know your Windows system path value, you can find it in several ways. From a command
prompt, you can execute this command:

echo %PATH%

This will return a string of directories separated by semicolons—this is your path value. For the graphically
inclined, you can obtain the same information from the Control Panel. Click Start  Control Panel. Choose the
System icon. In the resulting dialog box, select the Advanced tab, and click the Environmental Variables button. In
the System Variables list in the lower half of the dialog box, double-click the Path entry. This will open the Edit
System Variables dialog box, in which the Values text box contains your path list. You can add additional
directories to this path if you like by simply appending a semicolon to the end of the line and typing the new path.

5. Open a command shell. You can do this in different ways. Using the Windows
Start menu, select Start  Run. Type cmd in the Open drop-down box, and click
OK (Figure 2-1). This will open a Windows command shell. If this doesn’t work,
try selecting Start  All Programs  Accessories  Command Prompt.

Figure 2-1. Opening a Windows command shell

CHAPTER 2 ■ GETTING STARTED

20

6. Within the shell, type sqlite3 on the command line, and press Enter. This
should bring up a SQLite command prompt. (If you get an error, then the
sqlite3.exe executable has not been copied to a folder in your system path.
Recheck your path, and place a copy of the program somewhere within it.)
When the SQLite shell appears, type .help on the command line. This will
display a list of commands with their associated descriptions similar to the one
in Figure 2-2. Type .exit to exit the program. You now have a working copy of
the SQLite CLP installed on your system.

Figure 2-2. The SQLite shell on Windows

CHAPTER 2 ■ GETTING STARTED

21

If you are especially eager to work with SQLite at this point, you may want to skip ahead to the
section “The CLP in Shell Mode.” The next few sections are geared to developers who want to write
programs that use SQLite.

Getting the SQLite DLL
The SQLite DLL is used for software compiled to link dynamically to SQLite. This means that the
application will load the DLL at runtime when SQLite features are required, instead of embedding the
SQLite code in the application itself. Software that uses SQLite in this fashion typically includes its own
copy of the SQLite DLL and installs it automatically with the software.

If you plan to develop with SQLite, using the DLL is probably the easiest way to start. You can obtain
the SQLite DLL as follows:

1. Go to the SQLite home page, www.sqlite.com, and choose the download link at the top of the
page. This will take you to the download page.

2. On the download page, find the section Precompiled Binaries For Windows.

3. Locate the DLL zip file. This file will have the description “This is a DLL of the
SQLite library without the TCL bindings.” The filename will have the form
sqlitedll-3_x_y_z.zip, where x, y, and z are the minor versions. If you want
Tcl support included, select the file with the name of the form tclsqlitedll-
3_x_y_z.zip.

4. Download and unzip the file. The extracted contents should include two files:
the actual DLL file (sqlite3.dll) together with another file called sqlite3.def.
The SQLite DLL provided here is thread safe, because it was compiled with the
THREADSAFE preprocessor flag defined. This allows you to use SQLite features in
multithreaded applications; you can therefore use this DLL in multithreaded
programs, performing simultaneous actions in multiple threads safely.

To use the DLL, it needs to either be in the same folder with programs that use it, be placed
somewhere in the system’s path (see the note on the Windows System path in the previous section), or
follow Window’s dynamic library loading rules for locations searched for DLLs.

If you want to write programs that use the SQLite DLL, you will need to create an import library with
which to link your programs. This is quite simple to do using the sqlite3.def file mentioned earlier. If
you are using C++ in Microsoft Visual Studio, open the command prompt, change the directory to the
SQLite distribution, and simply run the following command:

LIB /DEF:sqlite3.def

You should see normal library generation output similar to the following example:

C:\sqlite>lib /DEF:sqlite3.def
Microsoft (R) Library Manager Version 10.00.30319.01
Copyright (C) Microsoft Corporation. All rights reserved.

LINK : warning LNK4068: /MACHINE not specified; defaulting to X86
 Creating library sqlite3.lib and object sqlite3.exp

This will generate an import library named sqlite3.lib and an exports file named .exp. If you are
using MinGW (see the section “Building SQLite with MinGW” later in this chapter), run this command:

http://www.sqlite.com

CHAPTER 2 ■ GETTING STARTED

22

dlltool --def sqlite3.def --dllname sqlite3.dll --output-lib sqlite3.lib

The dlltool for MinGW will also create an import library called sqlite3.lib with which you can link
your programs. By linking your programs to this import library, they will load and use the SQLite DLL
upon execution.

Compiling the SQLite Source Code on Windows
Building SQLite from source within Windows is straightforward. Depending on the compiler you are
using and what you are trying to achieve, there are several approaches to compiling SQLite. The most
common scenarios on Windows include using Microsoft Visual C++, MinGW, or Eclipse (which often
uses MinGW for C++ work). We’ll cover each of these here. You can find information about how to
compile SQLite with other compilers on the SQLite wiki (www.sqlite.org/cvstrac/
wiki?p=HowToCompile).

The Stable Source Distribution
You can obtain stable versions of SQLite’s source code in zip files from the SQLite website. Bleeding-
edge versions can be obtained from the Fossil distributed source control system maintained by the
SQLite team. Unless you are familiar with Fossil, using the source distribution is the easiest way to go. To
download a stable source distribution, follow these steps:

1. Go to the SQLite website, www.sqlite.org. Follow the download link, which will take you to
the download page.

2. On the download page, find the Source Code section.

3. The first file listed is the recommended zip file containing the source code and
suitable for compilation for Windows. The file will be named sqlite-
amalgamation-3-x_y_z.zip, where x, y, and z (and possibly further minor
digits) are the minor-version numbers.

■ Note The zip archive and the other tarballs on the download page differ slightly in their contents. Although they
contain identical source code, the SQLite distribution uses some POSIX build tools (sed, awk, and so on) to
dynamically generate some C source code in the build process. These build tools are not available by default on
Windows systems. Therefore, the zip source archive includes all the preprocessing and generated code as a
matter of convenience to Windows users who lack the build support infrastructure of Linux, Unix, Mac OS X, and
so on. This is why Windows users should use the zip archives rather than the tarballs on the download page. It is
still possible to build the tarballs on Windows, but you need the requisite build tools from a source such as Cygwin,
MinGW, GnuWin32, or similar.

4. Extract/unzip the file to a directory of your choosing. The extracted contents
will be the complete SQLite version 3 source code, suitable for Windows.

http://www.sqlite.org/cvstrac/wiki?p=HowToCompile
http://www.sqlite.org/cvstrac/wiki?p=HowToCompile
http://www.sqlite.org

CHAPTER 2 ■ GETTING STARTED

23

Anonymous Fossil Source Control
If you want to play with the latest features or participate in SQLite development, then retrieving SQLite
from the project’s Fossil source control system makes the most sense. Fossil provides the same kind of
anonymous access you’ll likely have seen in other source control systems, like CVS, Subversion,
Perforce, Git, and so on. Fossil allows you to maintain the absolutely latest version of the SQLite source
code by accessing the source straight from your browser! If you want, you can keep your copy of the
code synced up to the day, hour, or minute to stay current with changes as they are committed. Thus, if
you see an important bug fix or feature posted that you want to take advantage of, you can have Fossil
sync and recompile your copy of the code. Fossil even includes an autosync feature to guarantee you
stay at the forefront of any source changes.

Obtaining SQLite from Fossil on Windows couldn’t be easier. Like SQLite binaries, Fossil is
distributed as a single statically linked file. You can download Fossil from the project’s home page,
www.fossil-scm.org. The download page includes up-to-the-minute releases for Windows, as well as
Mac OS X and Linux. Unzip the Fossil archive to a location on your path (see our previous discussion on
determining your PATH environment variable). Next, make a new directory to house your Fossil source
extracts, or choose an existing directory if you prefer.

You can do most of your source control work with Fossil in a browser—Fossil acts as its own HTTP
server to handle all the server-side tasks. The fastest way to get your initial check-out of the SQLite
source code is to use your newly downloaded fossil.exe binary to clone one of the SQLite online
repositories. Open a command prompt, and change directories to the new or existing directory you’ve
chosen for your SQLite Fossil source control repository. Then at the command prompt, issue the Fossil
clone command, as shown here:

C:\sqlite\fossil.exe clone http://www.sqlite.org/src sqlite.fossil
 Bytes Cards Artifacts Deltas
Send: 49 1 0 0
Received: 1499917 32606 0 0
Send: 10025 225 0 0
Received: 132364 239 7 193
...
Send: 4655 99 0 0
Received: 1698453 125 29 69
Total network traffic: 1379539 bytes sent, 17512520 bytes received
Rebuilding repository meta-data...
32605 (100%)...
project-id: 2ab58778c2967968b94284e989e43dc11791f548
server-id: 38f0c0987054889a5d2c0b4f27b370e9e8632a16
admin-user: fuzz (password is "******")

The format of the command is fossil <action> <Fossil Repository URL> <your repository name>.
In this case, the action was clone, meaning to take a complete copy of the SQLite repository. We provide
one of the SQLite Fossil repositories described on the SQLite website, in this case www.sqlite.org/src.
Lastly, we provide a name of our choosing, which will be the name of the file Fossil creates to contain
and manage our copy of the source. This can be any name you like that satisfies Windows file-naming
conventions. We choose sqlite.fossil to be a useful name reminding us what the file contains and
what uses it.

http://www.fossil-scm.org
http://www.sqlite.org/src
http://www.sqlite.org/src

CHAPTER 2 ■ GETTING STARTED

24

■ Note We are targeting the current “head” of the source control tree for SQLite with the example given. This
means you would be compiling from the latest and greatest source. That’s a two-edged sword of course, giving
you the absolute latest developments but not the benefit of a “stable” release. Feel free to choose a stable branch
if you prefer.

You are now ready to launch and use the Fossil web interface. From your command line, just run
the next command (substitute your own directory and local repository filename as appropriate).

C:\sqlite\fossil.exe ui sqlite.fossil

You should see output from Fossil indicating it has successfully launched its HTTP server and is
listening for connections. This should very quickly disappear behind your favorite browser, which Fossil
will have automatically opened at the home of your local SQLite repository, as shown in Figure 2-3.

Figure 2-3. Your local SQLite Fossil source control system, complete with up-to-date source

CHAPTER 2 ■ GETTING STARTED

25

You are now up and running with Fossil. From here, you’ll obviously want to start with checking out
the code so that you can start work. That’s just as easy as most other Fossil actions. First, from your shell,
create a directory for the source, and then change into that directory.

mkdir c:\sqlite\src
cd c:\sqlite\src

Now you can tell Fossil to check out the current incarnation of the source, using the open command:

c:\sqlite\fossil.exe open c:\sqlite\sqlite.fossil

You’ll see all the source files for the SQLite project fly by on the screen. When completed, around
15MB of files are downloaded, and you have the source ready with which to work.

Building the SQLite DLL with Microsoft Visual C++
To build the SQLite DLL from source using Visual C++, follow these steps:

1. Start Visual Studio. Create a new DLL project within the unpacked SQLite source directory.
Do this by selecting File  New  Project. Under Project Types (Figure 2-4), select Visual C++
Projects, and then select Win32. Choose the Win32 Project template. In the Location text box,
enter the folder name that contains your SQLite source folder. In this example, it would be
C:\sqlite. In the Name text box, enter the name of the folder containing the SQLite source
code—src in this example. This will create the Visual C++ project inside the existing SQLite
source folder (C:\sqlite\src). Click OK.

Figure 2-4. Creating a new Visual C++ project

CHAPTER 2 ■ GETTING STARTED

26

2. Next, the Win 32 Application Wizard will automatically open (Figure 2-5).
Choose Application Settings, and set the application type to DLL. Be sure to
select the Empty Project box. Click Finish, and this will create a blank DLL
project.

Figure 2-5. The Win32 Application Wizard

3. Add SQLite source files and headers to the project. Select Project  Add
Existing Item. Add all .c and .h files in the directory except for two files:
tclsqlite.c and shell.c. (The first is for Tcl support; the second is for creating
the SQLite CLP, neither of which we want in this case.)

4. Specify an export or a module definition (.def) file. This file defines what
symbols (or functions) to export (make visible) to programs that link to the
library. SQLite’s source distribution is kind enough to include such a file
(sqlite3.def) for this very purpose. Also within the Property Pages dialog box,
select All Configurations in the Configuration drop-down box (Figure 2-6).
Then click the Linker folder, and click the Input submenu. In the Module
Definition File property page, type sqlite3.def. You are now ready to build
the DLL.

CHAPTER 2 ■ GETTING STARTED

27

Figure 2-6. Project properties

5. From the main menu, select Build  Build sqlite to build the DLL.

6. Once you have built the DLL, be sure to create the import library, as described
in the section “Getting the SQLite DLL.”

Building a Dynamically Linked SQLite Client with Visual C++
The binary for a static CLP is available on the SQLite website, but what if you want a version that uses the
SQLite DLL? To build such a version in Visual C++, do the following:

■ Note Many of the steps are very similar to the process of building a DLL, mentioned earlier—you may want to
use some of the figures listed there for reference.

1. From the main menu, select File  New  Project. Under Project Types, select Visual C++
Projects, and then select Win32. Choose the Win32 Project template. Name the project
(shell, for example), and click OK.

CHAPTER 2 ■ GETTING STARTED

28

2. After this, the Win 32 Application Wizard will automatically open. Choose
Application Settings, set the application type to Console Application, and be
sure to check the Empty Project box. Click Finish to create a blank executable
project.

3. Next you want to add the SQLite CLP source file. Select Project  Add Existing
Item. In the dialog box that appears, add the source file shell.c.

4. Tell Visual C++ to link against the SQLite DLL. Select Project  Properties. In
the dialog box that appears, select All Configurations in the Configuration
drop-down box. Next select the Linker folder. Select the Input submenu, and
within the Additional Dependencies property page, add sqlite3.lib. You are
now ready to build the program. Note that the SQLite DLL needs to be either in
the same directory as the command-line program or in the Windows system
path.

■ Note If you build the SQLite DLL with threading enabled or you obtain the DLL from the SQLite website, you
need to use the multithreaded Microsoft C runtime library DLL when building the CLP. To do this, refer to the
second half of step 4 in “Building the SQLite DLL with Microsoft Visual C++.” It contains two informative figures
that make it easy to set this option.

Building SQLite with MinGW
MinGW (www.mingw.org) is a fork of the Cygwin project, and it provides a nice distribution of the GNU
Compiler Collection (GCC) for Windows. It also includes freely available Windows-specific header files
and libraries that you can use to create native Windows programs that do not rely on any third-party C
runtime DLLs. Put simply, it is a free C/C++ compiler for Windows, and it’s a very good one at that. It is
usually used in conjunction with MSYS, which offers a bash-like shell and POSIX environment that
makes Unix users feel at home on Windows. Together, the two provide a powerful environment with
which to compile and build software on Windows. The two are popular but also can be difficult to stick
together by hand. Thankfully, several very good bundles exist to take all the hard work out of deploying
them, allowing you to get on with the fun of compiling your own SQLite from source. We recommend
the TakeOffGW package, freely available from SourceForge.

To build the SQLite DLL from source with the TakeOffGW distribution of MinGW and MSYS, do the
following:

1. Open your favorite browser, and navigate to the SourceForge website: sourceforge.net.

2. Search for the TakeOffGW project, or navigate straight to the project page at
sourceforge.net/projects/takeoffgw/.

3. Download the latest release of the TakeOffGW network installer, usually just
called setup.exe.

http://www.mingw.org

CHAPTER 2 ■ GETTING STARTED

29

4. After downloading the TakeOffGW network installer, run the setup.exe file,
and choose the defaults for installation location, package directory, and links
to the Internet (remembering any proxy server you may use). When you get to
the package selection page, shown in Figure 2-7, be sure to select all the
packages available under the MSYS heading. Do this by toggling the MSYS
heading itself until the phrase “install” appears.

Figure 2-7. TakeOffGW installation components, with MSYS selected for install

5. Click Next to continue, and TakeOffGW will download and install all the
components required.

CHAPTER 2 ■ GETTING STARTED

30

6. Download the Linux/Unix SQLite source code distribution. Navigate to
www.sqlite.org, and click the download link. On the download page, find the
Source Code section. The file you are looking for is the source distribution in
tarballs form, which should have a name of the form sqlite-amalgamation-
3.x.y.z.tar.gz, where x, y, and z (and possibly further numbers) are the
minor-version numbers (at the time of this writing, the current filename is
sqlite-amalgamation-3.6.23.1.tar.gz). Download the tarball, and place it in a
temporary directory (e.g., C:\Temp).

7. TakeOffGW will have placed an icon on your desktop. Double-click that icon to
open the environment.

8. Navigate to your temporary directory in which you downloaded the SQLite
source distribution. Since this is a Unix-like environment, you will need to use
Unix file system conventions. For example, to get to c:\Temp, you would type
cd /c/Temp.

9. Unpack the SQLite tarball. Issue this command: tar -xzvf sqlite-
amalgamation-3.6.23.1.tar.gz.

10. Move into the unpacked directory:

cd sqlite-3.6.32.1

11. Create the makefile. For the SQLite binary, run this:

./configure

12. Build the source:

make

You will see configure and make scroll many lines of status output to the screen. When make
completes, you now have a functional SQLite binary. To use it easily, add the TakeOffGW bin directory to
your path. If you followed the defaults prompted by the TakeOffGW network installer, this will be the
c:\cygwin\bin directory. You can now use Windows Explorer or the command prompt, navigate to the
temporary directory, and run sqlite3.exe. You now have a working SQLite CLP.

SQLite on Linux, Mac OS X, and Other POSIX Systems
SQLite compiles and builds identically on systems such as Linux, Mac OS X, FreeBSD, NetBSD,
OpenBSD, Solaris, and others—known historically as POSIX systems (though this is now a less useful
term, because systems as diverse as mainframes and Microsoft Windows have been POSIX compliant for
more than a decade). SQLite binaries can be obtained in a variety of ways depending on the particular
operating system.

Binaries and Packages
If you are using Mac OS 10.4 (Tiger) or greater, you already have SQLite installed on your system. If not,
there are several routes you can take to install it. The easiest way is to use one of the following Mac-
specific package management systems, all of which include packages or ports for SQLite:

http://www.sqlite.org

CHAPTER 2 ■ GETTING STARTED

31

MacPorts: MacPorts is probably the most popular source of open source
software, tools, and encompassing package management features with Mac
users today. It includes the absolute latest SQLite distributions, including
additional packages such as the Tcl bindings, and so on.

Fink: Fink is a Debian-based package management system that uses Debian
utilities such as dpkg, dselect, and apt-get, in addition to its own utility—fink.
You can download Fink from http://fink.sourceforge.net. With Fink, it is
possible to install straight from precompiled binaries. No compilation step is
needed.

BSD users will have no trouble installing SQLite either. FreeBSD, OpenBSD, and NetBSD all have
packages and/or ports for SQLite, all of which are very easy to install. Each distribution has ports for very
recent versions of SQLite 3.6.x.

Solaris 10 uses SQLite as part of the OS, originally shipping with version 2, but if your system is
patched regularly, contemporary Solaris 10 platforms are patched to version 3.6.20.

As mentioned earlier, binaries for Linux are available directly from the SQLite website. The
download page on SQLite’s website provides the following binaries:

Statically linked command-line program: The filename is of the form
sqlite3-3.x.y.z.bin.gz, where x, y, and z (and possibly more digits) are the
minor-version numbers.

Shared library: Two forms of the shared library exist. One form includes the Tcl
bindings; the other does not. The description next to each highlights which
shared library source is which. Note that the shared libraries provided are not
thread safe. If you need a thread-safe version, you will have to compile the
library from source. See the section “Compiling SQLite from Source” for more
details.

SQLite Analyzer: This is a command-line program that provides detailed
information about the contents of a SQLite database. You’ll find information on
this program in the section “Getting Database File Information.”

Probably the best way to get new versions of SQLite and/or its source for your Linux platform is
from the relevant package repositories for your distribution. Red Hat, CentOS, Fedora, and other Red
Hat derivatives can use yum to search and find various SQLite packages. Debian-based distributions
(including Ubuntu) will have no trouble getting up-to-date versions of SQLite. SQLite 3 packages are
available online in both Ubuntu and Debian repositories, among others. Use apt or Synaptic to search
and retrieve the packages of your choice.

Compiling SQLite from Source
Compiling SQLite from source on Linux, Mac OS X, the BSD flavors, or other Unix systems follows very
closely the MinGW/TakeOffGW instructions given earlier for the Windows platform (actually, it is more
the other way around; MinGW installation apes Linux source installation!). To build SQLite on these
systems, you need to ensure that you have the GNU Compiler Collection (GCC) installed, including
Autoconf, Automake, and Libtool. Most of the systems already discussed include all of these by default.
With this software in place, you can build SQLite by doing the following:

http://fink.sourceforge.net

CHAPTER 2 ■ GETTING STARTED

32

1. Download the Linux/Unix SQLite tarball (source code) from the SQLite website. At the time
of this writing, the current version is sqlite-amalgamation-3.6.23.1.tar.gz. Place it in a
directory (e.g., /tmp).

2. Navigate to your build directory:

cd /tmp

3. Unpack the SQLite tarball:

tar -xzvf sqlite-amalgamation-3.6.23.1.tar.gz

4. Move into the unpacked directory:

cd sqlite-3.6.23.1

5. Create the makefile:

./configure

6. Other options, such as the installation directory, are also available. For a
complete list of configure options, run this:

./configure --help

7. Build the source:

make

8. As root, install:

make install

You now have a functional SQLite installation on your system. If you have GNU Readline installed
on you system, the CLP should be compiled with Readline support. Test it by running it from the
command line:

root@linux # sqlite3

This will invoke the CLP using an in-memory database. Type .help for a list of shell commands.
Type .exit to close the application, or press Ctrl+D.

The Command-Line Program
The SQLite CLP is the most common means you can use to work with and manage SQLite databases. It
operates the same way on all platforms, so learning how to use it ensures you will always have a
common and familiar way to manage your databases. The CLP is really two programs in one. It can be
run in shell mode acting as an interactive query processor, or it can run from the command line to
perform various administration tasks.

CHAPTER 2 ■ GETTING STARTED

33

The CLP in Shell Mode
Open a shell, and change directories to some temporary folder—say C:\Temp if you are on Windows or
/tmp if you’re in Unix. If you’re happy working from a more permanent location, you can create a sqlite
directory—e.g., c:\sqlite under Windows or /sqlite for Linux or Unix. This will be your current
working directory. All files you create in the course of working with the shell will be created in this
directory.

■ Note If you need a refresher on how to get to the Windows command prompt, refer to step 5 in the “Getting the
Command-Line Program” section earlier in this chapter.

To invoke the CLP as in shell mode, type sqlite3 from a command line, followed by an optional
database name. If you do not specify a database name, SQLite will use an in-memory database (the
contents of which will be lost when the CLP exits).

Using the CLP as an interactive shell, you can issue queries, obtain schema information, import and
export data, and perform many other database tasks. The CLP will consider any statement issued as a
query, except for commands that begin with a period (.). These commands are reserved for specific CLP
operations, a complete list of which can be obtained by typing .help, as shown here:

fuzzy@linux:/tmp$ sqlite3
SQLite version 3.6.22
Enter ".help" for instructions
Enter SQL statements terminated with a ";"
sqlite> .help

.backup ?DB? FILE Backup DB (default "main") to FILE

.bail ON|OFF Stop after hitting an error. Default OFF

.databases List names and files of attached databases

.dump ?TABLE? ... Dump the database in an SQL text format
 If TABLE specified, only dump tables matching
 LIKE pattern TABLE.
.echo ON|OFF Turn command echo on or off
.exit Exit this program
.explain ?ON|OFF? Turn output mode suitable for EXPLAIN on or off.
 With no args, it turns EXPLAIN on.
.genfkey ?OPTIONS? Options are:
 --no-drop: Do not drop old fkey triggers.
 --ignore-errors: Ignore tables with fkey errors
 --exec: Execute generated SQL immediately
 See file tool/genfkey.README in the source
 distribution for further information.
.header(s) ON|OFF Turn display of headers on or off
.help Show this message
.import FILE TABLE Import data from FILE into TABLE

CHAPTER 2 ■ GETTING STARTED

34

.indices ?TABLE? Show names of all indices
 If TABLE specified, only show indices for tables
 matching LIKE pattern TABLE.
.load FILE ?ENTRY? Load an extension library
.mode MODE ?TABLE? Set output mode where MODE is one of:
 csv Comma-separated values
 column Left-aligned columns. (See .width)
 html HTML <table> code
 insert SQL insert statements for TABLE
 line One value per line
 list Values delimited by .separator string
 tabs Tab-separated values
 tcl TCL list elements
.nullvalue STRING Print STRING in place of NULL values
.output FILENAME Send output to FILENAME
.output stdout Send output to the screen
.prompt MAIN CONTINUE Replace the standard prompts
.quit Exit this program
.read FILENAME Execute SQL in FILENAME
.restore ?DB? FILE Restore content of DB (default "main") from FILE
.schema ?TABLE? Show the CREATE statements
 If TABLE specified, only show tables matching
 LIKE pattern TABLE.
.separator STRING Change separator used by output mode and .import
.show Show the current values for various settings
.tables ?TABLE? List names of tables
 If TABLE specified, only list tables matching
 LIKE pattern TABLE.
.timeout MS Try opening locked tables for MS milliseconds
.width NUM1 NUM2 ... Set column widths for "column" mode
.timer ON|OFF Turn the CPU timer measurement on or off
.width NUM NUM ... Set column widths for "column" mode

sqlite>.exit

You can just as easily type .h for short. Many of the commands can be similarly abbreviated, such as
.e—short for .exit—to exit the shell.

The CLP in Command-Line Mode
You can use the CLP from the command line for tasks such as importing and exporting data, returning
result sets, and performing general batch processing. It is ideal for use in shell scripts for automated
database administration. To see what the CLP offers in command-line mode, invoke it from the shell
(Windows or Unix) with the –help switch, as shown here:

CHAPTER 2 ■ GETTING STARTED

35

fuzzy@linux:/tmp$ sqlite3 -help

Usage: sqlite3 [OPTIONS] FILENAME [SQL]
FILENAME is the name of an SQLite database. A new database is created
if the file does not previously exist.
OPTIONS include:
 -help show this message
 -init filename read/process named file
 -echo print commands before execution
 -[no]header turn headers on or off
 -bail stop after hitting an error
 -interactive force interactive I/O
 -batch force batch I/O
 -column set output mode to 'column'
 -csv set output mode to 'csv'
 -html set output mode to HTML
 -line set output mode to 'line'
 -list set output mode to 'list'
 -separator 'x' set output field separator (|)
 -nullvalue 'text' set text string for NULL values
 -version show SQLite version -init filename read/process named file

The CLP in command-line mode takes the following arguments:

• A list of options (optional)

• A database filename (optional)

• A SQL command to execute (optional)

Most of the options control output formatting except for the init switch, which specifies a batch file
of SQL commands to process. The database filename is required. The SQL command is optional with a
few caveats.

Database Administration
Now you that you’ve seen how to invoke the CLP both interactively and in command-line mode, it’s time
to look at some examples of using the CLP for some common, administrative tasks. We’ll begin at the
beginning, with database creation.

Creating a Database
Let’s start by creating a database that we will call test.db. From the command line, open the CLP in shell
mode by typing the following:

sqlite3 test.db

Even though we have provided a database name, SQLite does not actually create the database (yet)
if it doesn’t already exist. SQLite will defer creating the database until you actually create something
inside it, such as a table or view. The reason for this is so that you have the opportunity to set various

CHAPTER 2 ■ GETTING STARTED

36

permanent database settings (such as page size) before the database structure is committed to disk.
Some settings such as page size and character encoding (UTF-8, UTF-16, etc.) cannot be changed easily
once the database is created, so this is where you have a chance to specify them. We will go with the
default settings here, so to actually create the database on disk, we need only to create a table. Issue the
following statement from the shell:

sqlite> create table test (id integer primary key, value text);

Now you have a database file on disk called test.db, which contains one table called test. This
table, as you can see, has two columns:

• A primary key column called id, which has the ability to automatically generate
values by default. Wherever you define a column of type integer primary key,
SQLite will apply an function for the column to create and apply monotonically
increasing values. That is, if no value is provided for the column in an INSERT
statement, SQLite will automatically generate one by finding the next integer
value specific to that column.

• A simple text field called value.

Let’s add a few rows to the table:

sqlite> insert into test (id, value) values(1, 'eenie');
sqlite> insert into test (id, value) values(2, 'meenie');
sqlite> insert into test (value) values('miny');
sqlite> insert into test (value) values('mo');

Now fetch them back:

sqlite> .mode column
sqlite> .headers on
sqlite> select * from test;

id value
---------- ----------
1 eenie
2 meenie
3 miny
4 mo

CHAPTER 2 ■ GETTING STARTED

37

The two commands preceding the select statement (.headers and .mode) are used to improve the
formatting a little (these commands and others like them are covered later). We can see that our explicit
ID values for the first two rows were used. We can also see that SQLite provided sequential integer values
for the id column for rows 3 and 4, which we did not provide in the insert statements. While on the
topic of autoincrement columns, you might be interested to know that the value of the last inserted
autoincrement value can be obtained using the SQL function last_insert_rowid():

sqlite> select last_insert_rowid();

last_insert_rowid()

4

Before we quit, let’s add an index and a view to the database. These will come in handy in the
examples that follow:

sqlite> create index test_idx on test (value);
sqlite> create view schema as select * from sqlite_master;

To exit the shell, issue the .exit command:

sqlite> .exit

On Windows, you can also terminate the shell by using the key sequence Ctrl+C. On Unix, you can
use Ctrl+D.

Getting Database Schema Information
There are several shell commands for obtaining information about the contents of a database. You can
retrieve a list of tables (and views) using .tables [pattern], where the optional [pattern] can be any
pattern that the SQL like operator understands (we cover like in Chapter 3 if you are unfamiliar with it).
All tables and views matching the given pattern will be returned. If no pattern is supplied, all tables and
views are returned:

sqlite> .tables

schema test

Here we see our table named test and our view named schema. Similarly, indexes for a given table
can be printed using .indices [table name]:

CHAPTER 2 ■ GETTING STARTED

38

sqlite> .indices test

test_idx

Here we see the index we created earlier on test, called test_idx. The SQL definition or data
definition language (DDL) for a table or view can be obtained using .schema [table name]. If no table
name is provided, the SQL definitions of all database objects (tables, indexes, views, and triggers) are
returned:

sqlite> .schema test

CREATE TABLE test (id integer primary key, value text);
CREATE INDEX test_idx on test (value);

sqlite> .schema

CREATE TABLE test (id integer primary key, value text);
CREATE VIEW schema as select * from sqlite_master;
CREATE INDEX test_idx on test (value);

More detailed schema information can be had from SQLite’s principal system view, sqlite_master.
This view is a simple system catalog of sorts. Its schema is described in Table 2-1.

Table 2-1. SQLite Master Table Schema

Name Description

type The object’s type (table, index, view, trigger)

name The object’s name

tbl_name The table the object is associated with

rootpage The object’s root page index in the database (where it begins)

sql The object’s SQL definition (DDL)

Querying sqlite_master for our current database returns the following (don’t forget to use the

.mode column and .headers on commands first to manually set the column format and headers):

CHAPTER 2 ■ GETTING STARTED

39

sqlite> .mode column
sqlite> .headers on
sqlite> select type, name, tbl_name, sql from sqlite_master order by type;

type name tbl_name sql
---------- ---------- ---------- -------------------------------------
index test_idx test CREATE INDEX test_idx on test (value)
table test test CREATE TABLE test (id integer primary
view schema schema CREATE VIEW schema as select * from s

We see a complete inventory of test.db objects: one table, one index, and one view, each with their
respective original DDL creation statements.

There are few additional commands for obtaining schema information through SQLite’s PRAGMA
commands, table_info, index_info, and index_list, which are covered in Chapter 4.

■ Tip Don’t forget that most command-line tools like the SQLite CLP keep a history of the commands that you
execute. To rerun a previous command, you can hit the Up Arrow key to scroll through your previous commands.
On Windows, you can also hit F7 in any command prompt window to see a scrollable list of the commands you
have entered.

Exporting Data
You can export database objects to SQL format using the .dump command. Without any arguments,
.dump will export the entire database as a series of DDL and data manipulation language (DML)
commands, suitable for re-creating the database objects and the data contained therein. If you provide
arguments, the shell interprets them as table names or views. Any tables or views matching the given
arguments will be exported. Those that don’t are simply ignored. In shell mode, the output from the
.dump command is directed to the screen by default. If you want to redirect output to a file, use the
.output [filename] command. This command redirects all output to the file filename. To restore output
back to the screen, simply issue .output stdout. So, to export the current database to a file file.sql, you
would do the following:

sqlite> .output file.sql
sqlite> .dump
sqlite> .output stdout

This will create the file file.sql in your current working directory if it does not already exist. If a file
by that name does exist, it will be overwritten.

By combining redirection with SQL and the various shell formatting options (covered later), you
have a great deal of control over exporting data. You can export specific subsets of tables and views in
various formats using the delimiter of your choice, which can later be imported using the .import
command described next.

CHAPTER 2 ■ GETTING STARTED

40

Importing Data
There are two ways to import data, depending on the format of the data in the file to import. If the file is
composed of SQL, you can use the .read command to execute the commands contained in the file. If the
file contains comma-separated values (CSV) or other delimited data, you can use the .import
[file][table] command. This command will parse the specified file and attempt to insert it into the
specified table. It does this by parsing each line in the file using the pipe character (|) as the delimiter
and inserting the parsed columns into the table. Naturally, the number of parsed fields in the file should
match up with the number of columns in the table. You can specify a different delimiter using the
.separator command. To see the current value set for the separator, use the .show command. This will
show all user-defined settings for the shell, among them the current default separator:

sqlite> .show

 echo: off
 explain: off
 headers: on
 mode: column
nullvalue: ""
 output: stdout
separator: "|"
 width:

The .read command is the way to import files created by the .dump command. Using file.sql
created earlier as a backup, we can drop the existing database objects (the test table and schema view)
and re-import it as follows:

sqlite> drop table test;
sqlite> drop view schema;
sqlite> .read file.sql

Formatting
The shell offers a number of formatting options to help you and make your results and output neat and
tidy. The simplest are .echo, which echoes the last run command after issuing a command, and .headers,
which includes column names for queries when set to on. The text representation of NULL can be set with
.nullvalue. For instance, if you want NULLs to appear as the text string NULL, simply issue the command
.nullvalue NULL. By default, this presentation value is an empty string.

The shell prompt can be changed using .prompt [value]:

sqlite> .prompt 'sqlite3> '
sqlite3>

Result data can be formatted several ways using the .mode command. The current options are csv,
column, html, insert, line, list, tabs, and tcl, each of which is helpful in different ways. The default is
.list. For instance, list mode displays results with the columns separated by the default separator. Thus,
if you wanted to dump a table in a CSV format, you could do the following:
sqlite3> .output file.csv

CHAPTER 2 ■ GETTING STARTED

41

sqlite3> .separator ,
sqlite3> select * from test;
sqlite3> .output stdout

The contents of file.csv now appear as shown next.

1,eenie
2,meenie
3,miny
4,mo

Actually, since there is a CSV mode already defined in the shell, it is just as easy to use it in this
particular example instead:

sqlite3> .output file.csv
sqlite3> .mode csv
sqlite3> select * from test;
sqlite3> .output stdout

The results obtained are the same. The difference is that CSV mode will wrap field values with
double quotes, whereas list mode (the default) does not.

Exporting Delimited Data
Combining the previous three sections on exporting, importing, and formatting data, we now have an
easy way to export and import data in delimited form. For example, to export only the rows of the test
table whose value fields start with the letter m to a file called test.csv in comma-separated values, do
the following:

sqlite> .output text.csv
sqlite> .separator ,
sqlite> select * from test where value like 'm%';
sqlite> .output stdout

If you want to then import this CSV data into a similar table with the same structure as the test table
(call it test2), do the following:

sqlite> create table test2(id integer primary key, value text);
sqlite> .import text.csv test2

The CLP, therefore, makes it easy to both import and export text-delimited data to and from the
database.

Performing Unattended Maintenance
So far, you’ve seen the CLP used interactively to perform tasks such as creating a database and exporting
data. However, you don’t always want to be tied to your seat, executing CLP commands one at a time.
Instead, you can use the command mode to run CLP commands in batches. You can then use your
operating system’s built-in scheduler to schedule those batches to run whenever you need them.

CHAPTER 2 ■ GETTING STARTED

42

■ Note You are free to invoke the CLP from the command line interactively. Any time you have a sequence of
commands that you want to invoke routinely, it’s useful to use the command-line approach.

There are actually two ways to invoke the CLP in command-line mode. The first is to provide a SQL
command, or a SQLite shell command as well, such as .dump and .schema. Any valid SQL or SQLite shell
command will do. SQLite will execute the specified command, print the result to standard output, and
exit. For example, to dump the test.db database from the command line, issue the following command:

sqlite3 test.db .dump

To make it useful, we should redirect the output to a file:

sqlite3 test.db .dump > test.sql

The file test.sql now contains the complete human-readable set of DDL and DML statements for
the database test.db. Similarly, to select all records for the test table, issue this:

sqlite3 test.db "select * from test"

The second way to invoke the CLP in command-line mode is to redirect a file as an input stream.
For instance, to create a new database test2.db from our database dump test.sql, do the following:

sqlite3 test2.db < test.sql

The CLP will read the file as standard input and then process and apply all SQL commands within it

to the test2.db database file.
Another way to create a database from the test.sql file is to use the init option and provide the

test.sql as an argument:

sqlite3 –init test.sql test3.db

The CLP will process test.sql, create the test3.db database, and then go into shell mode. Why? The
invocation included no SQL command or input stream. To get around this, you need to provide a SQL
command or SQLite shell command. For example:

sqlite3 –init test.sql test3.db .exit

The .exit command prompts the CLP to run in command-line mode and does as little as possible.
All things considered, redirection is perhaps the easiest method for processing files from the command
line.

Backing Up a Database
Backing up a database can be done in two ways, depending on the type of backup you desire. A SQL
dump is perhaps the most portable form for keeping backups. The standard way to generate one is using

CHAPTER 2 ■ GETTING STARTED

43

the CLP .dump command, as shown in the previous section. From the command line, this is done as
follows:

sqlite3 test.db .dump > test.sql

Within the shell, you can redirect output to an external file, issue the command, and restore output
to the screen as follows:

sqlite> .output file.sql
sqlite> .dump
sqlite> .output stdout
sqlite> .exit

Likewise, importing a database is most easily done by providing the SQL dump as an input stream to
the CLP:

sqlite3 test.db < test.sql

This assumes that test.db does not already exist. If it does, then things may still work if the contents
of test.sql are different from those of test.db. You will of course get errors if test.sql contains objects
that already reside within test.db or contains data that violates primary key or foreign key constraints
(though see the PRAGMA discussion in subsequent chapters on how to finesse this behavior).

Making a binary backup of a database is little more than a file copy. One small operation you may
want to perform beforehand is a database vacuum, which will free up any unused space created from
deleted objects. This will provide you with a smaller resulting file from the binary copy:

sqlite3 test.db vacuum
cp test.db test.backup

As a general rule, binary backups are not as portable as SQL backups. On the whole, SQLite does
have good backward compatibility and is binary compatible across all platforms for a given database
format. However, for long-term backups, it is always a good idea to use SQL form. If size is an issue, SQL
format (raw text) usually yields a good compression ratio.

■ Caution No matter how good you think your chosen backup approach is, remember you are only as good as
your last successful restore. Test your restore procedure if you need to rely on it—otherwise, you’ll be
remembered for one failed restore, regardless of how many successful backups you took.

Finally, if you’ve worked with other databases, “dropping” a database in SQLite, like binary backups,
is a simple file operation: you simply delete the database file you want to drop.

CHAPTER 2 ■ GETTING STARTED

44

Getting Database File Information
The primary means by which to obtain logical database information, such as table names, DDL
statements, and so on, is using the sqlite_master view, which provides detailed information about all
objects contained in a given database.

If you want information on the physical database structure, you can use a tool called SQLite
Analyzer, which can be downloaded in binary form from the SQLite website. SQLite Analyzer provides
detailed technical information about the on-disk structure of a SQLite database. This information
includes a detailed breakdown of database, table, and index statistics for individual objects and in
aggregate. It provides everything from database properties such as page size, number of tables, indexes,
file size, and average page density (utilization) to detailed descriptions of individual database objects.
Following the report is a detailed list of definitions explaining all terms used within the report. A partial
output of sqlite_analyzer is as follows:

fuzzy@linux:/tmp$ sqlite3_analyzer test.db

/** Disk-Space Utilization Report For test.db
*** As of 2010-May-07 20:26:23

Page size in bytes.................... 1024
Pages in the whole file (measured).... 3
Pages in the whole file (calculated).. 3
Pages that store data................. 3 100.0%
Pages on the freelist (per header).... 0 0.0%
Pages on the freelist (calculated).... 0 0.0%
Pages of auto-vacuum overhead......... 0 0.0%
Number of tables in the database...... 2
Number of indices..................... 1
Number of named indices............... 1
Automatically generated indices....... 0
Size of the file in bytes............. 3072
Bytes of user payload stored.......... 26 0.85%

*** Page counts for all tables with their indices ********************

TEST.................................. 2 66.7%
SQLITE_MASTER......................... 1 33.3%

*** All tables and indices ***

Percentage of total database.......... 100.0%
Number of entries..................... 11
Bytes of storage consumed............. 3072
Bytes of payload...................... 235 7.6%
Average payload per entry............. 21.36
Average unused bytes per entry........ 243.00
Maximum payload per entry............. 72
Entries that use overflow............. 0 0.0%
Primary pages used.................... 3
Overflow pages used................... 0

CHAPTER 2 ■ GETTING STARTED

45

Total pages used...................... 3
Unused bytes on primary pages......... 2673 87.0%
Unused bytes on overflow pages........ 0
Unused bytes on all pages............. 2673 87.0%

*** Table TEST and all its indices ***********************************

Percentage of total database.......... 66.7%
Number of entries..................... 8
Bytes of storage consumed............. 2048
Bytes of payload...................... 60 2.9%
Average payload per entry............. 7.50
Average unused bytes per entry........ 243.00
Maximum payload per entry............. 10
Entries that use overflow............. 0 0.0%
Primary pages used.................... 2
Overflow pages used................... 0
Total pages used...................... 2
Unused bytes on primary pages......... 1944 94.9%
Unused bytes on overflow pages........ 0
Unused bytes on all pages............. 1944 94.9%

SQLite Analyzer is provided in binary form on the SQLite website for Linux, Mac OS X, and
Windows. SQLite Analyzer can be built from the source using the Unix makefile provided. From the
build directory, issue the following command:

make sqlite3_analyzer

You must, however, have Tcl support configured in the build settings because SQLite Analyzer uses
the Tcl extension to perform most of its work. Refer to “Compiling SQLite from Source” for more
information.

Other SQLite Tools
There are many other open source and commercial programs available with which to work with SQLite.
Good graphical, cross-platform tools include the following:

SQLite Database Browser (http://sqlitebrowser.sourceforge.net): Allows
users to manage databases, tables, and indexes, as well as import and export
them. Users can interactively run SQL queries and inspect the results, as well as
examine a log of all SQL commands issued. It recently received a major upgrade
to version 2.

SQLiteman (http://www.sqliteman.com): A cross-platform program that’s
targeted at people managing and administering SQLite databases. It allows for
general management of databases, tables, indexes, and triggers, as well as other
common management tasks.

http://sqlitebrowser.sourceforge.net):
http://www.sqliteman.com):

CHAPTER 2 ■ GETTING STARTED

46

SQLiteManager (www.sqlabs.net/sqlitemanager.php): A commercial software
package designed for working with and administering SQLite. Users can
manage database objects, execute queries, and save SQL, as well as create
reports with flexible report templates. It includes its own high-level scripting
language to complement its SQL capabilities.

These are just the cross-platform tools. Many more tools are available that can be used with just
about any programming, end-user, or management environment. You can find more information on
such packages on the SQLite wiki (www.sqlite.org/cvstrac/wiki?p=ManagementTools).

Summary
No matter what platform you work on, SQLite is easy to install and build. Windows, Mac OS X, and Linux
users can obtain binaries directly from the SQLite website. Users of many other operating systems can
also obtain binaries using their native—or even third-party—package systems.

The common way to work with SQLite across all platforms is using the SQLite command-line
program (CLP). This program operates as both a command-line tool and an interactive shell. You can
issue queries and do essential database administration tasks such as creating tables, indexes, and views
as well as exporting and importing data. SQLite databases are contained in single operating system files,
so doing things like backups are very simple—just copy the file. For long-term backups, however, it is
always best to dump the database in SQL format, because this is portable across SQLite versions.

In the next few chapters, you will be using the CLP to explore SQL and the database aspects of
SQLite. We will start with the basics of using SQL with SQLite in Chapter 3 and move to more advanced
SQL in Chapter 4.

http://www.sqlabs.net/sqlitemanager.php):
http://www.sqlite.org/cvstrac/wiki?p=ManagementTools

C H A P T E R 3

■ ■ ■

47

SQL for SQLite

This chapter is an introduction to using SQL with SQLite. SQL makes up a huge component of any
discussion about databases, and SQLite is no different. Whether you’re a novice or pro with SQL, this
chapter offers comprehensive coverage. Even if you’ve never used SQL before, you should have no
trouble with the material covered in this chapter. If you’ve also avoided the relational model that
underpins SQLite and other RDBMSs, don’t fret. We’ll augment our discussion of SQL with just enough
of the relational concepts to make things clear, without getting bogged down in the theory.

SQL is the sole (and almost universal) means by which to communicate with a relational database. It
is the workhorse devoted to information processing. It is designed for structuring, reading, writing,
sorting, filtering, protecting, calculating, generating, grouping, aggregating, and in general managing
information.

SQL is an intuitive, user-friendly language. It can be fun to use and is quite powerful. One of the fun
things about SQL is that regardless of whether you are an expert or a novice, it seems that you can always
continue to learn new ways of doing things (for better or worse).

The goal of this chapter is to teach you to use SQL well—to expose you to good techniques and
perhaps a few cheap tricks along the way. As you can already tell from the table of contents, SQL for
SQLite is such a large topic that we’ve split its discussion into two halves. We cover the core select
statement first and then move on to other SQL statements in Chapter 4. But by the time you are done,
you should be well equipped to put a dent in any database.

■ Note Even with two chapters, we really only have space to focus on SQL’s use in SQLite. For a much wider and
in-depth coverage of SQL in general, we recommend a book like Beginning SQL Queries by Claire Churcher.

The Example Database
Before diving into syntax, let’s get situated with the obligatory example database. The database used in
this chapter (and the rest of this book, for that matter) consists of all the foods in every episode of
Seinfeld. If you’ve ever watched Seinfeld, you can’t help but notice a slight preoccupation with food.
There are more than 400 different foods mentioned in the 180 episodes of its history (according to fan
data spread far and wide on the Internet). That’s more than two new foods every show. Subtract
commercial time, and that’s virtually a new food introduced every 10 minutes.

CHAPTER 3 ■ SQL FOR SQLITE

48

As it turns out, this preoccupation with food works out nicely because it makes for a database that
illustrates all the requisite concepts of SQL and of using SQL in SQLite. Figure 3-1 shows the database
tables for our sample database.

foods

+id: integer
+type_id: integer
+name: text

episodes

+id: integer
+name: text

food_types

+id: integer
+name: text

foods_episodes

+food_id: integer
+episode_id: integer

Figure 3-1. The Seinfeld food database

The database schema, as defined in SQLite, is defined as follows:

create table episodes (
 id integer primary key,
 season int,
 name text);

create table foods(
 id integer primary key,
 type_id integer,
 name text);

create table food_types(
 id integer primary key,
 name text);

create table foods_episodes(
 food_id integer,
 episode_id integer);

The main table is foods. Each row in foods corresponds to a distinct food item, the name of which is
stored in the name attribute. The type_id attribute references the food_types table, which stores the
various food classifications (e.g., baked goods, drinks, or junk food). Finally, the foods_episodes table
links foods in foods with the episodes in episodes.

Installation
The food database is located in the examples zip file accompanying this book. It is available on the
Apress website (www.apress.com) in the Source Code section. To create the database, first locate the
foods.sql file in the root directory of the unpacked zip file. To create a new database from scratch from
the command line, navigate to the examples directory, and run the following command:

sqlite3 foods.db < foods.sql

http://www.apress.com

CHAPTER 3 ■ SQL FOR SQLITE

49

This will create a database file called foods.db. If you are not familiar with how to use the SQLite
command-line program, refer to Chapter 2.

Running the Examples
For your convenience, all the SQL examples in the chapter are available in the file sql.sql in the root
directory of the examples zip file. So instead of typing them by hand, simply open the file and locate the
SQL you want to try.

A convenient way to run the longer queries in this chapter is to copy them into your favorite editor
and save them in a separate file, which you can run from the command line. For example, copy a long
query in test.sql to try. You simply use the same method to run it as you did to create your database
earlier:

sqlite3 foods.db < test.sql

The results will be printed to the screen. This also makes it easier to experiment with these queries
without having to retype them or edit them from inside the SQLite shell. You just make your changes in
the editor, save the file, and rerun the command line.

For maximum readability of the output, you may want to put the following commands at the
beginning of the file:

.echo on
.mode column
.headers on
.nullvalue NULL

This causes the command-line program to 1) echo the SQL as it is executed, 2) print results in
column mode, 3) include the column headers, and 4) print nulls as NULL. The output of all examples in
this chapter is formatted with these specific settings. Another option you may want to set for various
examples is the .width option, which sets the respective column widths of the output. These vary from
example to example.

For better readability, the examples are presented in two different formats. For short queries, we’ll
show the SQL and output as it would be shown from within the SQLite shell. For example:

sqlite> select *
 ...> from foods
 ...> where name='JujyFruit'
 ...> and type_id=9;

id type_id name
---------- ---------- ----------
244 9 JujyFruit

Occasionally, as in the previous example, we take the liberty of adding an extra line between the
command and its output to improve readability here on the printed page. For longer queries, we show
just the SQL in code format separated from the results by gray lines, as in the following example:

CHAPTER 3 ■ SQL FOR SQLITE

50

select f.name name, types.name type
from foods f
inner join (
 select *
 from food_types
 where id=6) types
on f.type_id=types.id;

name type
------------------------- -----
Generic (as a meal) Dip
Good Dip Dip
Guacamole Dip Dip
Hummus Dip

Syntax
SQL’s declarative syntax reads a lot like a natural language. Statements are expressed in the imperative
mood, beginning with the verb describing the action. Following it are the subject and predicate, as
illustrated in Figure 3-2.

select id from foods where name= JujyFruit ;

verb subject predicate

Figure 3-2. General SQL syntax structure

As you can see, it reads like a normal sentence. SQL was designed specifically with nontechnical
people in mind and was thus meant to be very simple and easy to understand.

Part of SQL’s ease of use comes from its being (for the most part) a declarative language, as opposed
to an imperative language such as C or Perl. A declarative language is one in which you describe what
you want, whereas an imperative language is one in which you specify how to get it. For example,
consider the process of ordering a cheeseburger. As a customer, you use a declarative language to
articulate your order. That is, you simply declare to the person behind the counter what you want:

Give me a double meat Whataburger with jalapeños and cheese, hold the mayo.

CHAPTER 3 ■ SQL FOR SQLITE

51

The order is passed back to the chef who fulfills the order using a program written in an imperative
language—the recipe. He follows a series of well-defined steps that must be executed in a specific order
to create the cheeseburger per your (declarative) specifications:

1. Get ground beef from the third refrigerator on the left.

2. Make a patty.

3. Cook for three minutes.

4. Flip.

5. Cook three more minutes.

6. Repeat steps 1–5 for second patty.

7. Add mustard to top bun.

8. Add patties to bottom bun.

9. Add cheese, lettuce, tomatoes, onions, and jalapeños to burger.

10. Combine top and bottom buns, and wrap in yellow paper.

As you can see, declarative languages tend to be more succinct than imperative ones. In this
example, it took the declarative burger language (DBL) one step to materialize the cheeseburger, while it
took the imperative chef language (ICL) 10 steps. Declarative languages do more with less. In fact, SQL’s
ease of use is not far from this example. A suitable SQL equivalent to our imaginary DBL statement
shown earlier might be something along the lines of this:

select burger
from kitchen
where patties=2
and toppings='jalopenos'
and condiment != 'mayo'
limit 1;

Pretty simple. As we’ve mentioned, SQL was designed to be a user-friendly language. In the early
days, SQL was targeted specifically for end users for tasks such as ad hoc queries and report generation
(unlike today where it is almost exclusively the domain of developers and database administrators).

Commands
SQL is made up of commands. Commands are typically terminated by a semicolon, which marks the end
of the command. For example, the following are three distinct commands:

select id, name from foods;
insert into foods values (null, 'Whataburger');
delete from foods where id=413;

CHAPTER 3 ■ SQL FOR SQLITE

52

■ Note The semicolon is used by SQLite as a command terminator, signaling the end of the command to be
processed. Command terminators are most commonly associated with interactive programs designed for letting
users execute queries against a database. The semicolon is a common SQL command terminator across many
systems, though some use \g or even the word go.

Commands, in turn, are composed of a series of tokens. Tokens can be literals, keywords, identifiers,
expressions, or special characters. Tokens are separated by white space, such as spaces, tabs, and
newlines.

Literals
Literals, also called constants, denote explicit values. There are three kinds: string literals, numeric
literals, and binary literals. String literals are one or more alphanumeric characters surrounded by single
quotes. Here are some examples:

'Jerry'
'Newman'
'JujyFruit'

Although SQLite supports delimiting string values with single or double quotes, we strongly suggest
you only use single quotes. This is the SQL standard and will save you many hours of grief should you
encounter a system that strictly enforces this. If single quotes are part of the string value, they must be
represented as two successive single quotes. For example, Kenny’s chicken would be expressed as
follows:

'Kenny''s chicken'

Numeric literals are represented in integer, decimal, or scientific notation. Here are some examples:

-1
3.142
6.0221415E23

Binary values are represented using the notation x'0000', where each digit is a hexadecimal value.
Binary values must be expressed in multiples of 2 hexadecimal values (8 bits). Here are some examples:

x'01'
X'0fff'
x'0F0EFF'
X'0f0effab'

CHAPTER 3 ■ SQL FOR SQLITE

53

Keywords and Identifiers
Keywords are words that have a specific meaning in SQL. These include words such as select, update,
insert, create, drop, and begin. Identifiers refer to specific objects within the database, such as tables or
indexes. Keywords are reserved words and may not be used as identifiers. SQL is case insensitive with
respect to keywords and identifiers. The following are equivalent statements:

SELECT * from foo;
SeLeCt * FrOm FOO;

By default, string literal values are case sensitive in SQLite, so the value 'Mike' is not the same as the
value 'mike'.

Comments
Comments in SQLite are denoted by two consecutive hyphens (--), which comment the remaining line,
or by the multiline C-style notation (/* */), which can span multiple lines. Here’s an example:

-- This is a comment on one line
/* This is a comment spanning
 two lines */

Again, unless you have a strong reason to use C-style notation, we’d recommend sticking with the
SQL standard of two consecutive hyphens in your SQL scripts for SQLite.

Creating a Database
Tables are the natural starting point to kick off your exploration of SQL in SQLite. The table is the
standard unit of information in a relational database. Everything revolves around tables. Tables are
composed of rows and columns. And although that sounds simple, tables bring along with them all
kinds of other concepts, which can’t be nicely summarized in a few tidy paragraphs. In fact, it takes
almost the whole chapter. So, what we are going to do here is the two-minute overview of tables—just
enough for you to create a simple table and get rid of it if you want to. And once we have that out of the
way, all the other parts of this chapter will have something to build on.

Creating Tables
Like the relational model, SQL consists of several parts. It has a structural part, for example, which is
designed to create and destroy database objects. This part of the language is generally referred to as a
data definition language (DDL). Similarly, it has a functional part for performing operations on those
objects (such as retrieving and manipulating data). This part of the language is referred to as a data
manipulation language (DML). Creating tables falls under DDL, the structural part.

You create a table with the create table command, which is defined as follows:

create [temp] table table_name (column_definitions [, constraints]);

CHAPTER 3 ■ SQL FOR SQLITE

54

The temp or temporary keyword creates a temporary table. This kind of table is, well, temporary—it
will last only as long your session. As soon as you disconnect, it will be destroyed (if you haven’t already
destroyed it manually). The brackets around the temp denote that it is an optional part of the command.
Whenever you see any syntax in brackets, it means that the contents within them are optional.
Furthermore, the pipe symbol (|) denotes an alternative (think of the word or). Take, for example, the
following syntax:

create [temp|temporary] table … ;

This means that either the temp or temporary keyword may be optionally used. You could say create
temp table foo…, or you could say create temporary table foo…. In this case, they mean the same thing.

If you don’t create a temporary table, then create table creates a base table. The term base table
refers to a table that is a named, persistent table in the database. This is the most common kind of table.
In general, the term base table is used to differentiate tables created by create table from system tables
and other table-like objects such as views.

The minimum required information for create table is a table name and a column name. The
name of the table, given by table_name, must be unique among all other identifiers. In the body,
column_definitions consists of a comma-separated list of column definitions composed of a name, a
domain, and a comma-separated list of column constraints. A type, sometimes referred to as a domain,
is synonymous with a data type in a programming language. It denotes the type of information that is
stored in the column.

There are five native types in SQLite: integer, real, text, blob, and null. All of these types are
covered in the section called “Storage Classes” later in this chapter. Constraints are constructs that
control what kind of values can be placed in the table or in individual columns. For instance, you can
ensure that only unique values are placed in a column by using a unique constraint. Constraints are
covered in the section “Data Integrity.”

The create table command allows you to include a list of additional column constraints at the end
of the command, denoted by constraints in the syntax outlined earlier. Consider the following example:

create table contacts (id integer primary key,
 name text not null collate nocase,
 phone text not null default 'UNKNOWN',
 unique (name,phone));

Column id is declared to have type integer and constraint primary key. As it turns out, the
combination of this type and constraint has a special meaning in SQLite. Integer primary key basically
turns the column into an autoincrement column (as explained in the section “Primary Key Constraints”
later in this chapter). Column name is declared to be of type text and has two constraints: not null and
collate nocase. Column phone is of type text and has two constraints defined as well. After that, there is
a table-level constraint of unique, which is defined for columns name and phone together.

This is a lot of information to absorb all at once, but it will all be explained in due course. You can
probably appreciate our preamble that warned you how complex tables could become. The only
important thing here, however, is that you understand the general format of the create table statement.

Altering Tables
You can change parts of a table with the alter table command. SQLite’s version of alter table can
either rename a table or add columns. The general form of the command is as follows:

alter table table { rename to name | add column column_def }

CHAPTER 3 ■ SQL FOR SQLITE

55

Note that there is some new notation here: {}. Braces enclose a list of options, where one option is
required. In this case, we have to use either alter table table rename… or alter table table add
column…. That is, you can either rename the table using the rename clause or add a column with the add
column clause. To rename a table, you simply provide the new name given by name.

If you add a column, the column definition, denoted by column_def, follows the form in the create
table statement. It is a name, followed by an optional domain and list of constraints. Here’s an example:

sqlite> alter table contacts
 add column email text not null default '' collate nocase;
sqlite> .schema contacts

create table contacts (id integer primary key,
 name text not null collate nocase,
 phone text not null default 'UNKNOWN',
 email text not null default '' collate nocase,
 unique (name,phone));

To view the table definition from within the SQLite command-line program, use the .schema shell
command followed by the table name. It will print the current table definition. If you don’t provide a
table name, then .schema will print the entire database schema.

Tables can also be created from the results of select statements, allowing you to create not only the
structure but also the data at the same time. This particular use of the create table statement is covered
later in the section “Inserting Records.”

Querying the Database
The effort spent designing your database and creating your tables all focuses on one purpose: using your
data. Working with your data is the job of SQL’s DML. The core of DML is the select command, which
has the unique honor of being the sole command for querying the database. select is by far the largest
and most complex command in SQL. select derives many of its operations from relational algebra and
encompasses a large portion of it. The capabilities and complexities of the select statement are vast,
even in a streamlined efficient environment like SQLite. Don’t let that put you off. SQLite’s approach to
the select command is very logical, and it has a firm grounding in the underlying relational theory that
underpins all RDBMS.

Relational Operations
For the theoretically minded, it’s useful to think about what select does and why it does it, framed in a
conceptual way. In most SQL implementations, including SQLite’s, the select statement provides for
the “relational operations” that source, mix, compare, and filter data. These relational operations are
typically divided into three categories:

• Fundamental operations

• Restriction

• Projection

• Cartesian product

CHAPTER 3 ■ SQL FOR SQLITE

56

• Union

• Difference

• Rename

• Additional operations

• Intersection

• Natural join

• Assign

• Extended operations

• Generalized projection

• Left outer join

• Right outer join

• Full outer join

The fundamental operations are just that: fundamental. They define the basic relational operations,
and all of them (with the exception of rename) have their basis in set theory. The additional operations
are for convenience, offering a shorthand way of performing frequently used combinations of the
fundamental operations. For instance, intersection can be performed by taking the union of two sets
and from that removing via difference the results of two further unions that have each had difference
applied for one of the two initial sets. Finally, the extended operations add features to the fundamental
and additional operations. For example, the generalized projection operation adds arithmetic
expressions, aggregates, and grouping features to the fundamental projection operations. The outer
joins extend the join operations and allow additional information and/or incomplete information to be
retrieved from the database.

In standard ANSI SQL, select can perform every one of these relational operations. These
operations map to the original relational operators defined by E. F. Codd in his original work on
relational theory (with the exception of divide). SQLite supports all the relational operations in ANSI
SQL with the exception of right and full outer joins. The types of joins can be constructed using
combinations of other fundamental relational operations, so don’t fret their absence.

All of these operations are defined in terms of relations or, as they are commonly called, tables! They
take one or more relations as their inputs and produce a relation as their output. This allows operations
to be strung together into relational expressions. Relational expressions can therefore be created to
arbitrary complexity. For example, the output of a select operation (a relation) can be fed as the input to
another select statement, as follows:

select name from (select name, type_id from (select * from foods));

Here, the output of the innermost select is fed to the next select, whose output is in turn fed to the
outermost select. It is all a single relational expression. Anyone familiar with piping commands in
Linux, Unix, or Windows will appreciate this behavior. The output of any select statement can be used
as input to yet another statement.

CHAPTER 3 ■ SQL FOR SQLITE

57

select and the Operational Pipeline
The select command incorporates many of the relational operations through a series of clauses in its
syntax. Each clause corresponds to specific relational operation. In SQLite, almost all of the clauses are
optional, in fact, to a degree beyond what standard SQL suggests is desirable. As a user of SQL in SQLite,
this empowers you to employ only the operations you need to obtain the data you seek.

A very general form of select in SQLite (without too much distracting syntax) can be represented as
follows:

select [distinct] heading
from tables
where predicate
group by columns
having predicate
order by columns
limit count,offset;

Each keyword—from, where, having, and so on—is a separate clause. Each clause consists of the
keyword followed by arguments (represented in italics). From here on out, we will refer to these clauses
simply by name, and you’ll be able to recognize our use by the fixed-width font. So, rather than “the
where clause,” we will simply use where.

In SQLite, the best way to think of the select command is as a pipeline that processes relations. This
pipeline has optional processes that you can plug into it as you need them. Regardless of whether you
include or exclude a particular operation, the relative operations are always the same. Figure 3-3 shows
this order.

The select command starts with from, which takes one or more input relations; combines them into
a single composite relation; and passes it through the subsequent chain of operations.

R5

SELECT DISTINCT heading FROM tables WHERE predicate GROUP BY columns HAVING predicate ORDER BY columns LIMIT int,int;

Result

R1

R2

R3

R4
R6

R7

Figure 3-3. The phases of select in SQLite

All clauses are optional with the exception of select. You must always provide at least this clause to
make a valid select command. By far the most common invocation of the select command consists of
three clauses: select, from, and where. This basic syntax and its associated clauses are as follows:

select heading from tables where predicate;

CHAPTER 3 ■ SQL FOR SQLITE

58

The from clause is a comma-separated list of one or more tables, views, and so on (represented by
the variable tables in Figure 3-3). If more than one table is specified, they will be combined to form a
single relation (represented by R1 in Figure 3-3). This is done by one of the join operations. The resulting
relation produced by from serves as the initial material. All subsequent operations will either work
directly from it or work from derivatives of it.

The where clause filters rows in R1. The argument of where is a predicate, or logical expression, which
defines the selection criteria by which rows in R1 are included in (or excluded from) the result. The
selected rows from the where clause form a new relation R2, as shown in Figure 3-3 above.

In this particular example, R2 passes through the other operations unscathed until it reaches the
select clause. The select clause filters the columns in R2, as depicted in Figure 3-4. Its argument
consists of a comma-separated list of columns or expressions that define the result. This is called the
projection list, or heading of the result.

1 2 3 1 2 3

Figure 3-4. Projection

Here’s a concrete example using our example database:

sqlite> select id, name from food_types;
id name
---------- ----------
1 Bakery
2 Cereal
3 Chicken/Fowl
4 Condiments
5 Dairy
6 Dip
7 Drinks
8 Fruit
9 Junkfood
10 Meat
11 Rice/Pasta
12 Sandwiches
13 Seafood
14 Soup
15 Vegetables

There is no where clause to filter rows, so all rows in the table food_types are returned. The select
clause specifies all the columns in food_types, and the from clause does not join tables. The result is an
exact copy of food_types. As in most SQL implementations, SQLite supports an asterisk (*) as shorthand
to mean all columns. Thus, the previous example can just as easily be expressed as follows:

select * from food_types;

CHAPTER 3 ■ SQL FOR SQLITE

59

In summary, SQLite’s basic select processing gathers all data to be considered in the from clause,
filters rows (restricts) in the where clause, and filters columns (projects) in the select clause. Figure 3-5
shows this process.

ProjectionRestriction

WHERE clause SELECT clause

a b c d
a b c d da c

R2
R1

Result

FROM clause

Figure 3-5. Restriction and projection in select

With this simple example, you can begin to see how a query language in general and SQL in
particular ultimately operate in terms of relational operations. There is real math under the hood.

Filtering
If the select command is the most complex command in SQL, then the where clause is the most complex
clause in select. But it also does most of the work. Having a solid understanding of its mechanics will
most likely bring the best overall returns in your day-to-day use of SQL in SQLite.

SQLite applies the where clause to each row of the relation produced by the from clause (R1). As
stated earlier, where—a restriction—is a filter. The argument of where is a logical predicate. A predicate,
in the simplest sense, is just an assertion about something. Consider the following statement:

The dog (subject) is purple and has a toothy grin (predicate).

The dog is the subject, and the predicate consists of the two assertions (color is purple and grin is
toothy). This statement may be true or false, depending on the dog.

The subject in the where clause is a row. The row is the logical subject. The WHERE clause is the logical
predicate. Each row in which the proposition evaluates to true is included (or selected) as part of the
result (R2). Each row in which it is false is excluded. So, the dog proposition translated into a relational
equivalent would look something like this:

select * from dogs where color='purple' and grin='toothy';

The database will take each row in table dogs (the subject) and apply the where clause (the predicate)
to form the logical proposition:

This row has color='purple' and grin='toothy'.

If it is true, then the row (or dog) is indeed purple and toothy, and it is included in the result. where is
a powerful filter. It provides you with a great degree of control over the conditions with which to include
(or exclude) rows in (or from) the result.

CHAPTER 3 ■ SQL FOR SQLITE

60

Values
Values represent some kind of data in the real world. Values can be classified by their type, such as a
numerical value (1, 2, 3, and so on) or string value (“JujyFruit”). Values can be expressed as literal values
(an explicit quantity such as 1, 2, 3 or “JujyFruit”), variables (often in the form of column names like
foods.name), expressions (3+2/5), or the results of functions (count(foods.name))—which are covered
later.

Operators
An operator takes one or more values as input and produces a value as output. An operator is so named
because it performs some kind of operation, producing some kind of result. Binary operators are
operators that take two input values (or operands). Ternary operators take three operands, unary
operators take just one, and so on.

Operators can be strung together, feeding the output of one operator into the input of another
(Figure 3-6), forming value expressions.

binaryunary ternary

Figure 3-6. Unary, binary, and ternary operators, also displaying pipelining of operations

By stringing operators together, you can create value expressions that are expressed in terms of yet
other value expressions to arbitrary complexity. Here’s an example:

x = count(episodes.name)
y = count(foods.name)
z = y/x * 11

Binary Operators
Binary operators are by far the most common of all operators in SQL. Table 3-1 lists the binary operators
supported in SQLite by precedence, from highest to lowest. Operators in each color group have equal
precedence.

CHAPTER 3 ■ SQL FOR SQLITE

61

Table 3-1. Binary Operators

Operator Type Action

|| String Concatenation

* Arithmetic Multiply

/ Arithmetic Divi de

% Arithmetic Modul us

+ Arithmetic Add

– Arithmetic Subtra ct

<< Bitwise Right shift

>> Bitwise Left shift

& Logical And

| Logical Or

< Relational Les s than

<= Relational Less than or equal to

> Relational Grea ter than

>= Relational Greater than or equal to

= Relational Equa l to

== Relational Equa l to

<> Relational Not equal to

!= Relational Not equal to

IN Logical In

AND Logical And

OR Logical Or

CHAPTER 3 ■ SQL FOR SQLITE

62

Continued

Operator Type Action

IS Logical Equal to

LIKE Relational St ring matching

GLOB Relational Fi lename matching

Arithmetic operators (for example, addition, subtraction, division) are binary operators that take

numeric values and produce a numeric value. Relational operators (for example, >, <, =) are binary
operators that compare values and value expressions and return a logical value (also called a truth
value), which is either true or false. Relational operators form logical expressions, for example:

x > 5
1 < 2

A logical expression is any expression that returns a truth value. In SQLite, false is represented by
the number 0, while true is represented by anything else. For example:

sqlite> SELECT 1 > 2;

1 > 2

0

sqlite> SELECT 1 < 2;

1 < 2

1

sqlite> SELECT 1 = 2;

1 = 2

0

sqlite> SELECT -1 AND 1;

-1 AND 1

1

CHAPTER 3 ■ SQL FOR SQLITE

63

Logical Operators
Logical operators (AND, OR, NOT, IN) are binary operators that operate on truth values or logical
expressions. They produce a specific truth value depending on their inputs. They are used to build more
complex logical expressions from simpler expressions, such as the following:

(x > 5) AND (x != 3)
(y < 2) OR (y > 4) AND NOT (y = 0)
(color='purple') AND (grin='toothy')

The truth value produced by a logical operator follows normal Boolean logic rules, but there is an
added twist when considering nulls, which we’ll discuss later in the chapter. This is the stuff the where
clause is made of—using logical operators to answer real questions about the data in your SQLite
database. Here’s an example:

sqlite> select * from foods where name='JujyFruit' and type_id=9;

id type_id name
---------- ---------- ----------
244 9 JujyFruit

The restriction here works according to the expression (name='JujyFruit') and (type_id=9), which
consists of two logical expressions joined by logical and. Both of these conditions must be true for any
record in foods to be included in the result.

The LIKE and GLOB Operators
A particularly useful relational operator is like. like is similar to equals (=) but is used for matching
string values against patterns. For example, to select all rows in foods whose names begin with the letter
J, you could do the following:

sqlite> select id, name from foods where name like 'J%';

id name
----- --------------------
156 Juice box
236 Juicy Fruit Gum
243 Jello with Bananas
244 JujyFruit
245 Junior Mints
370 Jambalaya

A percent symbol (%) in the pattern matches any sequence of zero or more characters in the string.
An underscore (_) in the pattern matches any single character in the string. The percent symbol is
greedy. It will eat everything between two characters except those characters. If it is on the extreme left
or right of a pattern, it will consume everything on each respective side. Consider the following
examples:

CHAPTER 3 ■ SQL FOR SQLITE

64

sqlite> select id, name from foods where name like '%ac%P%';

id name
----- --------------------
127 Guacamole Dip
168 Peach Schnapps
198 Mackinaw Peaches

Another useful trick is to use NOT to negate a pattern:
sqlite> select id, name from foods
 where name like '%ac%P%' and name not like '%Sch%'

id name
----- --------------------
 38 Pie (Blackberry) Pie
127 Guacamole Dip
198 Mackinaw peaches

The glob operator is very similar in behavior to the like operator. Its key difference is that it behaves
much like Unix or Linux file globbing semantics in those operating systems. This means it uses the
wildcards associated with file globbing such as * and _ and that matching is case sensitive. The following
example demonstrates glob in action:

sqlite> select id, name from foods
 ...> where name glob 'Pine*';

id name
---------- ----------
205 Pineapple
258 Pineapple

SQLite also recognizes the match and regexp predicates but currently does not provide a native
implementation. You’ll need to develop your own with the sqlite_create_funtion() call, discussed in
Chapters 5 through 8.

Limiting and Ordering
You can limit the size and particular range of the result using the limit and offset keywords. limit
specifies the maximum number of records to return. offset specifies the number of records to skip. For
example, the following statement obtains the Cereal record (the second record in food_types) using
limit and offset:

select * from food_types order by id limit 1 offset 1;

The offset clause skips one row (the Bakery row), and the limit clause returns a maximum of one
row (the Cereal row).

But there is something else here as well: order by. This clause sorts the result by a column or
columns before it is returned. The reason it is important in this example is because the rows returned
from select are never guaranteed to be in any specific order—the SQL standard declares this. Thus, the
order by clause is essential if you need to count on the result being in any specific order. The syntax of

CHAPTER 3 ■ SQL FOR SQLITE

65

the order by clause is similar to the select clause: it is a comma-separated list of columns. Each entry
may be qualified with a sort order—asc (ascending, the default) or desc (descending). For example:

sqlite> select * from foods where name like 'B%'
 order by type_id desc, name limit 10;

id type_id name
----- -------- --------------------
382 15 Baked Beans
383 15 Baked Potato w/Sour
384 15 Big Salad
385 15 Broccoli
362 14 Bouillabaisse
328 12 BLT
327 12 Bacon Club (no turke
326 12 Bologna
329 12 Brisket Sandwich
274 10 Bacon

Typically you only need to order by a second (third, and so on) column when there are duplicate
values in the first (second, and so on) ordered column(s). Here, there were many duplicate type_ids. I
wanted to group them together and then arrange the foods alphabetically within these groups.

■ Note limit and offset are not standard SQL keywords as defined in the ANSI standard. Most databases have
functional equivalents, although they use different syntax.

If you use both limit and offset together, you can use a comma notation in place of the offset
keyword. For example, the following SQL:

select * from foods where name like 'B%'
order by type_id desc, name limit 1 offset 2;

can be expressed equivalently with this:

sqlite> select * from foods where name like 'B%'
 order by type_id desc, name limit 2,1;

id type_id name
----- -------- --------------------
384 15 Big Salad

There is a trick here for those who think this syntax should be the other way around. In SQLite, when
using this shorthand notation, the offset precedes the limit. Here, the values following limit keyword
specify an offset of 2 and a limit of 2. Also, note that offset depends on limit. That is, you can use limit
without using offset but not the other way around.

Notice that limit and offset are dead last in the operational pipeline. One common misconception
of limit/offset is that it speeds up a query by limiting the number of rows that must be collected by the

CHAPTER 3 ■ SQL FOR SQLITE

66

where clause. This is not true. If it were, then order by would not work properly. For order by to do its job,
it must have the entire result in hand to provide the correct order. There is a small performance boost, in
that SQLite only needs to keep track of the order of the 10 biggest values at any point. This has some
benefit but not nearly as much as the “sort-free limiting” that some expect.

Functions and Aggregates
SQLite comes with various built-in functions and aggregates that can be used within various clauses.
Function types range from mathematical functions such as abs(), which computes the absolute value, to
string-formatting functions such as upper() and lower(), which convert text to upper- and lowercase,
respectively. For example:

sqlite> select upper('hello newman'), length('hello newman'), abs(-12);

upper('hello newman') length('hello newman') abs(-12)
--------------------- -------------------- ----------
HELLO NEWMAN 12 12

Notice that the function names are case insensitive (i.e., upper() and UPPER() refer to the same
function). Functions can accept column values as their arguments:

sqlite> select id, upper(name), length(name) from foods
 where type_id=1 limit 10;

id upper(name) length(name)
----- -------------------------- ------------
1 BAGELS 6
2 BAGELS, RAISIN 14
3 BAVARIAN CREAM PIE 18
4 BEAR CLAWS 10
5 BLACK AND WHITE COOKIES 23
6 BREAD (WITH NUTS) 17
7 BUTTERFINGERS 13
8 CARROT CAKE 11
9 CHIPS AHOY COOKIES 18
10 CHOCOLATE BOBKA 15

Since functions can be part of any expression, they can also be used in the where clause:

sqlite> select id, upper(name), length(name) from foods
 where length(name) < 5 limit 5;

id upper(name) length(name)
----- -------------------- --------------------
36 PIE 3
48 BRAN 4
56 KIX 3
57 LIFE 4
80 DUCK 4

CHAPTER 3 ■ SQL FOR SQLITE

67

Aggregates are a special class of functions that calculate a composite (or aggregate) value over a
group of rows (or relation). Standard aggregate functions include sum(), avg(), count(), min(), and max().
For example, to get a count of the number of foods that are baked goods (type_id=1), you can use the
count aggregate as follows:

sqlite> select count(*) from foods where type_id=1;

count

47

The count aggregate returns a count of every row in the relation. Whenever you see an aggregate,
you should automatically think, “For each row in a table, do something.”

Aggregates can aggregate not only column values but any expression—including functions. For
example, to get the average length of all food names, you can apply the avg aggregate to the length(name)
expression as follows:

sqlite> select avg(length(name)) from foods;

avg(length(name))

12.58

Aggregates operate within the select clause. They compute their values on the rows selected by the
where clause—not from all rows selected by the from clause. The select command filters first and then
aggregates.

Although SQLite comes with a standard set of common SQL functions and aggregates, it is worth
noting that the SQLite C API allows you to create custom functions and aggregates as well. See Chapter 7
for more information.

Grouping
An essential part of aggregation is grouping. That is, in addition to computing aggregates over an entire
result, you can also split that result into groups of rows with like values and compute aggregates on each
group—all in one step. This is the job of the group by clause. Here’s an example:

sqlite> select type_id from foods group by type_id;

type_id

1
2
3
.
.
.
15

CHAPTER 3 ■ SQL FOR SQLITE

68

group by is a bit different from the other parts of select, so you need to use your imagination a little
to wrap your head around it. Figure 3-7 illustrates the process. Operationally, group by sits in between
the where clause and the select clause. group by takes the output of where and splits it into groups of
rows that share a common value (or values) for a specific column (or columns). These groups are then
passed to the select clause. In the example, there are 15 different food types (type_id ranges from 1 to
15), and therefore group by organizes all rows in foods into 15 groups varying by type_id. select takes
each group, extracts its common type_id value, and puts it into a separate row. Thus, there are 15 rows
in the result, one for each group.

1

1

1

2

2

3

3

4

4

15

1

1

1

2

2

3

3

4

4

15

tid

1

2

3

4

15

tid

WHERE

Result

GROUP BY

1

1

1

2

2

3

3

4

4

15

SELECT

Figure 3-7. group by process

When group by is used, the select clause applies aggregates to each group separately, rather than
the entire result as a whole. Since aggregates produce a single value from a group of values, they collapse
these groups of rows into single rows. For example, consider applying the count aggregate to the
preceding example to get the number of records in each type_id group:

sqlite> select type_id, count(*) from foods group by type_id;

type_id count(*)
---------- ----------
1 47
2 15
3 23

CHAPTER 3 ■ SQL FOR SQLITE

69

4 22
5 17
6 4
7 60
8 23
9 61
10 36
11 16
12 23
13 14
14 19
15 32

Here, count() was applied 15 times—once for each group, as illustrated in Figure 3-8. Note that in
the diagram, the actual number of records in each group is not represented literally (that is, it doesn’t
show 47 records in the group for type_id=1).

1

1

1

2

2

3

3

4

4

15

1

1

1

2

2

3

3

4

4

15

tid

1

2

3

4

15

tid

WHERE

Result

COUNT()

COUNT()

COUNT()

COUNT()

COUNT()

COUNT()

COUNT()

47

15

23

22

32

GROUP BY SELECT

Figure 3-8. group by and aggregation

CHAPTER 3 ■ SQL FOR SQLITE

70

The number of records with type_id=1 (Baked Goods) is 47. The number with type_id=2 (Cereal) is
15. The number with type_id=3 (Chicken/Fowl) is 23, and so forth. So, to get this information, you could
run 15 queries as follows:

select count(*) from foods where type_id=1;
select count(*) from foods where type_id=2;
select count(*) from foods where type_id=3;
.
.
.
select count(*) from foods where type_id=15;

Or, you get the results using the single select with a group by as follows:

select type_id, count(*) from foods group by type_id;

But there is more. Since group by has to do all this work to create groups with like values, it seems a
pity not to let you filter these groups before handing them off to the select clause. That is the purpose of
having, a predicate that you apply to the result of group by. It filters the groups from group by in the
same way that the where clause filters rows from the from clause. The only difference is that the where
clause’s predicate is expressed in terms of individual row values, and having’s predicate is expressed in
terms of aggregate values.

Take the previous example, but this time say you are interested only in looking at the food groups
that have fewer than 20 foods in them:

sqlite> select type_id, count(*) from foods
 group by type_id having count(*) < 20;

type_id count(*)
---------- ----------
2 15
5 17
6 4
11 16
13 14
14 19

CHAPTER 3 ■ SQL FOR SQLITE

71

Here, having applies the predicate count(*)<20 to all the groups. Any group that does not satisfy this
condition (that has 20 or more foods in it) is not passed on to the select clause. Figure 3-9 illustrates this
restriction.

1
1
1
2
2
3
3
4
4

15

1
1
1

2
2

3
3

4
4

15

tid

2
5
6
11

14

tid

WHERE
Result

GROUP BY

COUNT()
15
17
 4
16
14
19

135
5

6
6

COUNT()<20

COUNT()<20

COUNT()<20

COUNT()<20

COUNT()<20

COUNT()<20

COUNT()<20

COUNT()<20

HAVING SELECT

COUNT()
2
2

COUNT()
6
6

COUNT()
5
5

COUNT()

Figure 3-9. having as group restriction

The third column in the figure shows groups of rows ordered by type_id. The values shown are the
type_id values. The actual number of rows shown in each group is not exact but figurative. I have only
shown two rows in each group to represent the group as a whole.

So, group by and having work as additional restriction phases. group by takes the restriction
produced by the where clause and breaks it into groups of rows that share a common value for a given
column. having then applies a filter to each of these groups. The groups that make it through are passed
on to the select clause for aggregation and projection.

CHAPTER 3 ■ SQL FOR SQLITE

72

■ Caution Some databases, including SQLite, will allow you to construct a select statement where
nonaggregated columns are not grouped in a select statement with mixed aggregate and nonaggregate columns.
For instance, SQLite will allow you to execute this SQL:

select type_id, count(*) from foods

Because the aggregate (count) collapses the input table, there is a mismatch in the number of rows that pass all
the filtering steps. Count in this case will return one row, but we haven’t instructed SQLite how to group type_id.
Nevertheless, SQLite will return something. Sadly, the results of such a statement are meaningless—do not rely
on any SQL statement that doesn’t group by nonaggregate fields. The results are arbitrary!

Removing Duplicates
distinct takes the result of the select clause and filters out duplicate rows. For example, you’d use this
to get all distinct type_id values from foods:

sqlite> select distinct type_id from foods;

type_id

1
2
3
.
.
.
15

This statement works as follows: the where clause returns the entire foods table (all 412 records). The
select clause pulls out just the type_id column, and finally distinct removes duplicate rows, reducing
the number from 412 rows to 15 rows, all unique.

Joining Tables
Joins are the key to working with data from multiple tables (or relations) and are the first operation(s) of
the select command. The result of a join is provided as the input or starting point for all subsequent
(filtering) operations in the select command.

Joins in SQLite are best understood by example. The foods table has a column type_id. As it turns
out, the values in this column correspond to values in the id column in the food_types table. A
relationship exists between the two tables. Any value in the foods.type_id column must correspond to a
value in the food_types.id column, and the id column is the primary key (described later) of food_types.
The foods.type_id column, by virtue of this relationship, is called a foreign key: it contains (or
references) values in the primary key of another table. This relationship is called a foreign key
relationship

CHAPTER 3 ■ SQL FOR SQLITE

73

Using this relationship, it is possible to join the foods and food_type tables on these two columns to
make a new relation, which provides more detailed information, namely, the food_types.name for each
food in the foods table. This is done with the following SQL:

sqlite> select foods.name, food_types.name
 from foods, food_types
 where foods.type_id=food_types.id limit 10;

name name
------------------------- ---------------
Bagels Bakery
Bagels, raisin Bakery
Bavarian Cream Pie Bakery
Bear Claws Bakery
Black and White cookies Bakery
Bread (with nuts) Bakery
Butterfingers Bakery
Carrot Cake Bakery
Chips Ahoy Cookies Bakery
Chocolate Bobka Bakery

You can see the foods.name in the first column of the result, followed by the food_types.name in the
second. Each row in the former is linked to its associated row in the latter using the foods.type_id →
food_types.id relationship (Figure 3-10).

■ Note We are using a new notation in this example to specify the columns in the select clause. Rather than
specifying just the column names, we are using the notation table_name.column_name. The reason is that we
have multiple tables in the select statement. The database is smart enough to figure out which table a column
belongs to—as long as that column name is unique among all tables. If you use a column whose name is also
defined in other tables of the join, the database will not be able to figure out which of the columns you are
referring to and will return an error. In practice, when you are joining tables, it is always a good idea to use the
table_name.column_name notation to avoid any possible ambiguity. This is explained in detail in the section
“Names and Aliases.”

To carry out the join, the database finds these matched rows. For each row in the first table, the
database finds all rows in the second table that have the same value for the joined columns and includes
them in the input relation. So in this example, the from clause built a composite relation by joining the
rows of two tables.

CHAPTER 3 ■ SQL FOR SQLITE

74

id type_idname id name
Bakery1

2
310

244

198

Chocolate Bobka 1

JujyFruit

9 Junkfood

9
Junior Mints245 9

Papaya203

Mackinaw Peaches

8 Fruit

Cereal
Chicken/Fowl

15 Vegetables

8

8

Wax Beans 15412

foods food_types

1 Bagels 1

15 Chicken (Kenny’s) 8

49 Cheerios 2

id type_idname id name
 1 Bagels 1 Bakery1

 10 Chocolate Bobka 1 Bakery1
 49 Cheerios 2 Cereal2
 15 Chicken (Kenny’s) 3 Chicken/Fowl3

 198 Mackinaw Peaches 8 Fruit8
 203 Papaya 8 Fruit8
 244 JujyFruit 9 Junk Food9
 245 Junior Mints 9 Junk Food9
 412 Wax Beans 15 Vegetable1

Figure 3-10. foods and food_types join

The subsequent operations (where, group by, and so on) work exactly the same. It is only the input
that has changed through joining tables. As it turns out, SQLite supports six different kinds of joins. The
one just described, called an inner join, is the most common.

Inner Joins
An inner join is where two tables are joined by a relationship between two columns in the tables, as in
this previous example. It is the most common (and perhaps most generally useful) type of join.

An inner join uses another set operation in relational algebra, called an intersection, to find
elements that exist in both sets. Figure 3-11 illustrates this. The intersection of the set {1, 2, 8, 9} and the
set {1, 3, 5, 8} is the set {1, 8}. The intersection operation is represented by a Venn diagram showing the
common elements of both sets.

1

2

8

9

1

3

5

8

1

8

1

8

2

9

3

5

Figure 3-11. Set intersection

This is precisely how an inner join works, but the sets in a join are common elements of the related
columns. Pretend that the left set in Figure 3-11 represents values in the foods.type_id column and the
right set represents values of the food_types.id column. Given the matching columns, an inner join
finds the rows from both sides that contain like values and combines them to form the rows of the result
(Figure 3-12). Note that this example assumes that the records shown are the only records in foods and
food_types.

CHAPTER 3 ■ SQL FOR SQLITE

75

Figure 3-12. Food join as intersection

Inner joins only return rows that satisfy the given column relationship, also called the join
condition. They answer the question, “What rows of B match rows in A given the following relationship?”
Let’s demonstrate this in SQL so you can match the theory with a practical example.

Select *
From foods inner join food_types on foods.id = food_types.id

The syntax is clearly understandable once you’ve visualized what’s happening.

Cross Joins
Imagine for a moment that there is no join condition. What would you get? In this case, if the two tables
were not related in any way, select would produce a more fundamental kind of join (the most
fundamental), which is called a cross join, Cartesian join, or cross product. The Cartesian join is one of
the fundamental relational operations. It is a brute-force, almost nonsensical join that results in the
combination of all rows from the first table with all rows in the second.

In SQL, the cross join of foods and food_types is expressed as follows:

select * from foods, food_types;

CHAPTER 3 ■ SQL FOR SQLITE

76

from, in the absence of anything else, produces a cross join. The result is shown here. Every row in
foods is combined with every row in food_types, but crucially, not by relating the id and type_id values.
In a cross join, no relationship exists between the rows; there is no join condition, but they are simply
jammed together.

1 1 Bagels 1 Bakery
1 1 Bagels 2 Cereal
1 1 Bagels 3 Chicken/Fowl
…
(6174 rows omitted to save paper)
…
412 15 Wax Beans 13 Seafood
412 15 Wax Beans 14 Soup
412 15 Wax Beans 15 Vegetables

You may ask yourself what purpose such a cross join has. To be frank, that’s the question you should
always ask yourself before using such logic. Do you really want the cross-product of every row in one
table with every row in another. The answer is almost always no.

Outer Joins
Three of the remaining four joins are called outer joins. An inner join selects rows across tables
according to a given relationship. An outer join selects all the rows of an inner join plus some rows
outside of the relationship. The three outer join types are called left, right, and full. A left outer join
operates with respect to the “left table” in the SQL command. For example, in the command:

select *
from foods left outer join foods_episodes on foods.id=foods_episodes.food_id;

foods is the left table here. The left outer join favors it. It is the table of significance in a left outer join.
The left outer join tries to match every row of foods with every row in foods_episodes per the join
condition (foods.id=foods_episodes.food_id). All such matching rows are included in the result.
However, if we had registered some foodstuffs in the foods table that had not yet appeared in an
episode, the remaining food rows of foods that don’t match foods_episodes are still included in the
result, and where foods_episodes hasn’t provide a row, it “supplies” null results.

The right outer join works similarly, except the right table is the one whose rows are included,
matching or not. Operationally, left and right outer joins are identical; they do the same thing. They
differ only in order and syntax. As a user of SQLite, that means any problem that can requires a right
outer join for solution can equally be solved with a left outer join.

A full outer join is the combination of a left and right outer join. It includes all matching records,
followed by unmatched records in the right and left tables. Currently, both right and full outer joins are
not supported in SQLite. However, as mentioned earlier, a right join can be replaced with a left outer
join, and a full outer join can be performed using compound queries (see the section “Compound
Queries” later in this chapter).

CHAPTER 3 ■ SQL FOR SQLITE

77

Natural Joins
The last join on the list is called a natural join. It is actually an inner join in disguise, but with a little
syntax and convention thrown in. A natural join joins two tables by their common column names. Thus,
using the natural join, you can get the inner join of two tables without having to add the join condition.

Natural joins will join all columns by the same name in both tables. Just the process of adding to or
removing a column from a table can drastically change the results of a natural join query. This can
produce very unpredictable results, especially if your tables’ design change over time. It’s always better
to explicitly define the join conditions of your queries than rely on the semantics of the table schema.

Preferred Syntax
Syntactically, there are various ways of specifying a join. The inner join example of foods and food_types
illustrates performing a join implicitly in the where clause:

select * from foods, food_types where foods.id=food_types.food_id;

When the database sees more than one table listed, it knows there will be a join—at the very least a
cross join. The where clause here calls for an inner join.

This implicit form, although rather clean, is actually an older form of syntax that you should avoid.
The politically correct way (per SQL92) to express a join in SQL is using the join keyword. The general
form is as follows:

select heading from left_table join_type right_table on join_condition;

This explicit form can be used for all join types. For example:

select * from foods inner join food_types on foods.id=food_types.food_id;
select * from foods left outer join food_types on foods.id=food_types.food_id;
select * from foods cross join food_types;

The most important reason for using ANSI join syntax is that there are some query types that can
only be satisfied by using the join keyword-style syntax. This is particularly so for any form of outer
join—left, right, or full.

Names and Aliases
When joining tables, ambiguity can arise if both tables have a column with the same name. If you were
to join two tables with and id column using a select id clause in the earlier code, which id should
SQLite return? To help with this type of task, you can qualify column names with their table names to
remove any ambiguity, as you saw earlier.

Another useful feature is aliases. If your table name is particularly long and you don’t want to have
to use its name every time you qualify a column, you can use an alias. Aliasing is actually a fundamental
relational operation called rename. The rename operation simply assigns a new name to a relation. For
example, consider this statement:

CHAPTER 3 ■ SQL FOR SQLITE

78

select foods.name, food_types.name
from foods, food_types
where foods.type_id = food_types.id
limit 10;

There is a good bit of typing here. You can alias the tables in the source clause by simply including

the new name directly after the table name, as in the following example:

select f.name, t.name
from foods f, food_types t
where f.type_id = t.id
limit 10;

Here, the foods table is assigned the alias f, and the food_types table is assigned the alias t. Now,
every other reference to foods or food_types in the statement must use the alias f and t, respectively.
Aliases make it possible to do self-joins—joining a table with itself. For example, say you want to know
what foods in season 4 are mentioned in other seasons. You would first need to get a list of episodes and
foods in season 4, which you would obtain by joining episodes and episodes_foods. But then you would
need a similar list for foods outside of season 4. Finally, you would combine the two lists based on their
common foods. The following query uses self-joins to do the trick:

select f.name as food, e1.name, e1.season, e2.name, e2.season
from episodes e1, foods_episodes fe1, foods f,
 episodes e2, foods_episodes fe2
where
 -- Get foods in season 4
 (e1.id = fe1.episode_id and e1.season = 4) and fe1.food_id = f.id
 -- Link foods with all other episodes
 and (fe1.food_id = fe2.food_id)
 -- Link with their respective episodes and filter out e1's season
 and (fe2.episode_id = e2.id AND e2.season != e1.season)
order by f.name;

food name season name season
-------------------- ----------------- ------ ----------------------- ------
Bouillabaisse The Shoes 4 The Stake Out 1
Decaf Cappuccino The Pitch 4 The Good Samaritan 3
Decaf Cappuccino The Ticket 4 The Good Samaritan 3
Egg Salad The Trip 1 4 Male Unbonding 1
Egg Salad The Trip 1 4 The Stock Tip 1
Mints The Trip 1 4 The Cartoon 9
Snapple The Virgin 4 The Abstinence 8
Tic Tacs The Trip 1 4 The Merv Griffin Show 9
Tic Tacs The Contest 4 The Merv Griffin Show 9
Tuna The Trip 1 4 The Stall 5
Turkey Club The Bubble Boy 4 The Soup 6
Turkey Club The Bubble Boy 4 The Wizard 9

I have put comments in the SQL to better explain what is going on. This example uses two self-joins
using the where clause join syntax. There are two instances of episodes and foods_episodes, but they are
treated as if they are two independent tables. The query joins foods_episodes back on itself to link the

CHAPTER 3 ■ SQL FOR SQLITE

79

two instances of episodes. The two episodes instances are related to each other by an inequality
condition to ensure that they are in different seasons. You can alias column names and expressions in
the same way. The general alias syntax in SQLite is the same in all cases.

Select base-name [[as] alias] …

The as keyword is optional, but many people prefer it because it makes the aliasing more legible,

and it makes you less likely to confuse an alias with a base column name or expression.

Subqueries
Subqueries are select statements within select statements. They are also called subselects. Subqueries
are useful in many ways, they work anywhere normal expressions work, and they can therefore be used
in a variety of places in a select statement. Subqueries are useful in other commands as well.

Perhaps the most common use of subqueries is in the where clause, specifically using the in
operator. The in operator is a binary operator that takes an input value and a list of values and returns
true if the input value exists in the list, or false otherwise. Here’s an example:

sqlite> select 1 in (1,2,3);
1
sqlite> select 2 in (3,4,5);
0
sqlite> select count(*)
 ...> from foods
 ...> where type_id in (1,2);
62

Using a subquery, you can rewrite the last statement in terms of names from the food_types:

sqlite> select count(*)
 ...> from foods
 ...> where type_id in
 ...> (select id
 ...> from food_types
 ...> where name='Bakery' or name='Cereal');
62

Subqueries in the select clause can be used to add additional data from other tables to the result
set. For example, to get the number of episodes each food appears in, the actual count from
foods_episodes can be performed in a subquery in the select clause:

sqlite> select name,
 (select count(id) from foods_episodes where food_id=f.id) count
 from foods f order by count desc limit 10;

name count
---------- ----------
Hot Dog 5
Pizza 4
Ketchup 4

CHAPTER 3 ■ SQL FOR SQLITE

80

Kasha 4
Shrimp 3
Lobster 3
Turkey Sandwich 3
Turkey Club 3
Egg Salad 3
Tic Tacs 3

The order by and limit clauses here serve to create a top ten list, with hot dogs at the top. Notice
that the subquery’s predicate references a table in the enclosing select command: food_id=f.id. The
variable f.id exists in the outer query. The subquery in this example is called a correlated subquery
because it references, or correlates to, a variable in the outer (enclosing) query.

Subqueries can be used in the order by clause as well. The following SQL groups foods by the size of
their respective food groups, from greatest to least:

select * from foods f
order by (select count(type_id)
from foods where type_id=f.type_id) desc;

order by in this case does not refer to any specific column in the result. How does this work then?
The order by subquery is run for each row, and the result is associated with the given row. You can think
of it as an invisible column in the result set, which is used to order rows.

Finally, we have the from clause. There may be times when you want to join to the results of another
query, rather than to a base table. It’s yet another job for a subquery:

select f.name, types.name from foods f
inner join (select * from food_types where id=6) types
on f.type_id=types.id;

name name
------------------------- -----
Generic (as a meal) Dip
Good Dip Dip
Guacamole Dip Dip
Hummus Dip

Notice that the use of a subquery in the from clause requires a rename operation. In this case, the
subquery was named types. Subqueries as a source relation in the from clause are often called inline
views or derived tables.

The thing to remember about subqueries is that they can be used anywhere a relational expression
can be used. A good way to learn how, where, and when to use them is to just play around with them and
see what you can get away with. There is often more than one way to skin a cat in SQL. When you
understand the big picture, you can make more informed decisions on when a query might be rewritten
to run more efficiently.

CHAPTER 3 ■ SQL FOR SQLITE

81

Compound Queries
Compound queries are kind of the inverse of subqueries. A compound query is a query that processes
the results of multiple queries using three specific relational operations: union, intersection, and
difference. In SQLite, these are defined using the union, intersect, and except keywords, respectively.

Compound query operations require a few things of their arguments:

• The relations involved must have the same number of columns.

• There can be only one order by clause, which is at the end of the compound query
and applies to the combined result.

Furthermore, relations in compound queries are processed from left to right.
The union operation takes two relations, A and B, and combines them into a single relation

containing all distinct rows of A and B. In SQL, union combines the results of two select statements. By
default, union eliminates duplicates. If you want duplicates included in the result, then use union all.
For example, the following SQL finds the single most and single least frequently mentioned foods:

select f.*, top_foods.count from foods f
inner join
 (select food_id, count(food_id) as count from foods_episodes
 group by food_id
 order by count(food_id) desc limit 1) top_foods
 on f.id=top_foods.food_id
union
select f.*, bottom_foods.count from foods f
inner join
 (select food_id, count(food_id) as count from foods_episodes
 group by food_id
 order by count(food_id) limit 1) bottom_foods
 on f.id=bottom_foods.food_id
order by top_foods.count desc;

id type_id name top_foods.count
----- ------- --------- ---------------
288 10 Hot Dog 5
1 1 Bagels 1

Both queries return only one row. The only difference in the two is which way they sort their results.
The union simply combines the two rows into a single relation.

The intersect operation takes two relations, A and B, and selects all rows in A that also exist in B.
The following SQL uses intersect to find the all-time top ten foods that appear in seasons 3 through 5:

select f.* from foods f
inner join
 (select food_id, count(food_id) as count
 from foods_episodes
 group by food_id
 order by count(food_id) desc limit 10) top_foods
 on f.id=top_foods.food_id

CHAPTER 3 ■ SQL FOR SQLITE

82

intersect
select f.* from foods f
 inner join foods_episodes fe on f.id = fe.food_id
 inner join episodes e on fe.episode_id = e.id
 where e.season between 3 and 5
order by f.name;

id type_id name
----- ------- --------------------
4 1 Bear Claws
146 7 Decaf Cappuccino
153 7 Hennigen's
55 2 Kasha
94 4 Ketchup
164 7 Naya Water
317 11 Pizza

To produce the top ten foods, we needed an order by in the first select statement. Since compound
queries allow only one order by at the end of the statement, we got around this by performing an inner
join on a subquery in which we computed the top ten most common foods. Subqueries can have order
by clauses because they run independently of the compound query. The inner join then produces a
relation containing the top ten foods. The second query returns a relation containing all foods in
episodes 3 through 5. The intersect operation then finds all matching rows.

The except operation takes two relations, A and B, and finds all rows in A that are not in B. By
changing the intersect to except in the previous example, you can find which top ten foods are not in
seasons 3 through 5:

select f.* from foods f
inner join
 (select food_id, count(food_id) as count from foods_episodes
 group by food_id
 order by count(food_id) desc limit 10) top_foods
 on f.id=top_foods.food_id
except
select f.* from foods f
 inner join foods_episodes fe on f.id = fe.food_id
 inner join episodes e on fe.episode_id = e.id
 where e.season between 3 and 5
order by f.name;

id type_id name
----- ------- --------
192 8 Banana
133 7 Bosco
288 10 Hot Dog

As mentioned earlier, what is called the except operation in SQL is referred to as the difference
operation in relational algebra.

CHAPTER 3 ■ SQL FOR SQLITE

83

Compound queries are useful when you need to process similar data sets that are materialized in
different ways. Basically, if you cannot express everything you want in a single select statement, you can
use a compound query to get part of what you want in one select statement and part in another (and
perhaps more) and process the sets accordingly.

Conditional Results
The case expression allows you to handle various conditions within a select statement. There are two
forms. The first and simplest form takes a static value and lists various case values linked to return
values:

case value
 when x then value_x
 when y then value_y
 when z then value_z
 else default_value
end

Here’s a simple example:

select name || case type_id
 when 7 then ' is a drink'
 when 8 then ' is a fruit'
 when 9 then ' is junkfood'
 when 13 then ' is seafood'
 else null
 end description
from foods
where description is not null
order by name
limit 10;

description

All Day Sucker is junkfood
Almond Joy is junkfood
Apple is a fruit
Apple Cider is a drink
Apple Pie is a fruit
Arabian Mocha Java (beans) is a drink
Avocado is a fruit
Banana is a fruit
Beaujolais is a drink
Beer is a drink

The case expression in this example handles a few different type_id values, returning a string
appropriate for each one. The returned value is called description, as qualified after the end keyword.
This string is concatenated to name by the string concatenation operator (||), making a complete

CHAPTER 3 ■ SQL FOR SQLITE

84

sentence. For all type_ids not specified in a when condition, case returns null. The select statement
filters out such null values in the where clause, so all that is returned are rows that the case expression
does handle.

The second form of case allows for expressions in the when condition. It has the following form:

case
 when condition1 then value1
 when condition2 then value2
 when condition3 then value3
 else default_value
end

CASE works equally well in subselects comparing aggregates. The following SQL picks out frequently

mentioned foods:

select name,(select
 case
 when count(*) > 4 then 'Very High'
 when count(*) = 4 then 'High'
 when count(*) in (2,3) then 'Moderate'
 else 'Low'
 end
 from foods_episodes
 where food_id=f.id) frequency
from foods f
where frequency like '%High'

name frequency
--------- ----------
Kasha High
Ketchup High
Hot Dog Very High
Pizza High

This query runs a subquery for each row in foods that classifies the food by the number of episodes
it appears in. The result of this subquery is included as a column called frequency. The where predicate
filters frequency values that have the word High in them.

Only one condition is executed in a case expression. If more than one condition is satisfied, only the
first of them is executed. If no conditions are satisfied and no else condition is defined, case returns
null.

Handling Null in SQLite
Most relational databases support the concept of “unknown” or “unknowable” through a special
placeholder called null, which is a placeholder for missing information and is not a value per se. Rather,
null is the absence of a value: null is not nothing, null is not something, null is not true, null is not
false, null is not zero, null is not an empty string. Simply put, null is resolutely what it is: null. And not

CHAPTER 3 ■ SQL FOR SQLITE

85

everyone can agree on what that means. There are a few key rules and ideas that you should learn so you
can master the use of null in SQLite.

First, in order to accommodate null in logical expressions, SQL uses something called three-value
(or tristate) logic, where null is one of the truth values. Table 3-2 shows the truth table for logical and and
logical or with null thrown into the mix.

Table 3-2. AND and OR with NULL

x y x AND y y OR y

True True True True

True False False True

True NULL NULL True

False False False False

False NULL False NULL

NULL NULL NULL NULL

You can try a few simple select statements to see the effect of null yourself.
Second, detecting the presence or absence of null is done using the is null or is not null

operator. If you try to use any other operator, such as equals, greater than, and so on, you will receive a
shock, which leads us to our third rule regarding null.

Third and last, always remember that null is not equal to any other value, even null itself. You
cannot compare null with a value, and no null is greater than, smaller than, or in any way related to any
another null. This often catches out the unwary when statements like the next example fail to return any
rows.

select *
from mytable
where myvalue = null;

Nothing can equal null, so no data will ever be returned by that statement in SQLite. Now that
you’ve mastered the basics, you’ll be pleased to know that SQLite offers several additional functions for
working with null. The first of which is a workaround for the very limitation of “nothing equals NULL”
that we’ve just drilled in to you. From SQLite v 3.6.19, the is operator can be used to equate one NULL to
another. In the most basic form, you can run a simple query to ask SQLite if NULL is NULL:

sqlite> select NULL is NULL;
1

As already mentioned, any value other than zero means “true,” so SQLite is happy to tell us that in
this instance NULL really is the same as NULL. But please, don’t rely on this heavily. SQL’s trivalue logic
may be awkward, but it is a standard, and working around it with the is operator will likely have you
encountering problems with other systems and programming languages that expect the standard
behavior.

CHAPTER 3 ■ SQL FOR SQLITE

86

The coalesce function, which is part of the SQL99 standard, takes a list of values and returns the first
non-null in the list. Take the following example:
select coalesce(null, 7, null, 4)

In this case, coalesce will return 7 as the first non-null value. This is also handy when performing
arithmetic, so you can detect whether null has been returned and return a meaningful value like 0
instead.

Conversely, the nullif function takes two arguments and returns null if they have the same values;
otherwise, it returns the first argument:

sqlite> select nullif(1,1);
null
sqlite> select nullif(1,2);
1

If you use null, you need to take special care in queries that refer to columns that may contain null
in their predicates and aggregates. null can do quite a number on aggregates if you are not careful.

Summary
Congratulations, you have learned the select command for SQLite’s implementation of SQL. Not only
have you learned how the command works, but you’ve learned some relational theory in the process.
You should now be comfortable with using select statements to query your data, join, aggregate,
summarize, and dissect it for various uses.

We’ll continue the discussion of SQL in the next chapter, where we’ll build on your knowledge of
select by introducing the other members of DML, as well as DDL and other helpful SQL constructs in
SQLite.

C H A P T E R 4

■ ■ ■

87

Advanced SQL for SQLite

You mastered the select statement in Chapter 3, so now it is time to add the rest of the SQL dialect to
your capabilities. This chapter covers the remainder of SQL as implemented in SQLite, including insert,
update, and delete statements to modify data; constraints to protect your data; and more advanced
topics such as table creation and data types.

Modifying Data
Compared to select, the commands used to modify data are quite easy to use and understand. There
are three Data Manipulation Language (DML) commands for modifying data—insert, update, and
delete—and they do pretty much what their names imply.

Inserting Records
You insert records into a table using the insert command. insert works on a single table and can both
insert one row at a time and can insert many rows at once using a select command. The general form of
the insert command is as follows:

insert into table (column_list) values (value_list);

The variable table specifies which table—the target table—to insert into. The variable column_list is a
comma-separated list of column names, all of which must exist in the target table. The variable
value_list is a comma-separated list of values that correspond to the names given in column_list. The
order of values in value_list must correspond to the order of columns in column_list.

Inserting One Row
For example, you’d use this to insert a row into foods:

sqlite> insert into foods (name, type_id) values ('Cinnamon Bobka', 1);

This statement inserts one row, specifying two column values. 'Cinnamon Bobka'—the first value in the
value list—corresponds to the column name, which is the first column in the column list. Similarly, the
value 1 corresponds to type_id, which is listed second. Notice that id was not mentioned. In this case,

CHAPTER 4 ■ ADVANCED SQL FOR SQLITE

88

the database uses the default value. Since id is declared as integer primary key, it will be automatically
generated and associated with the record (as explained in the section “Primary Key Constraints”). The
inserted record can be verified with a simple select, and the value used for id can be queried as well:

sqlite> select * from foods where name='Cinnamon Bobka';

id type_id name
---------- ---------- --------------
413 1 Cinnamon Bobka

sqlite> select max(id) from foods;

MAX(id)

413

sqlite> select last_insert_rowid();

last_insert_rowid()

413

Notice that the value 413 was automatically generated for id, which is the largest value in the
column. Thus, SQLite provided a monotonically increasing value. You can confirm this with the built-in
SQL function last_insert_rowid(), which returns the last automatically generated key value, as shown
in the example.

If you provide a value for every column of a table in insert, then the column list can be omitted. In
this case, the database assumes that the order of values provided in the value list corresponds to the
order of columns as declared in the create table statement. Here’s an example:

sqlite> insert into foods values(NULL, 1, 'Blueberry Bobka');
sqlite> select * from foods where name like '%Bobka';

id type_id name
---------- ---------- ---------------
10 1 Chocolate Bobka
413 1 Cinnamon Bobka
414 1 Blueberry Bobka

Notice here the order of arguments. 'Blueberry Bobka' came after 1 in the value list. This is because of
the way the table was declared. To view the table’s definition, type .schema foods at the shell prompt:

sqlite> .schema foods
CREATE TABLE foods(
 id integer primary key,
 type_id integer,
 name text);
CREATE INDEX foods_name_idx on foods (name COLLATE NOCASE);

The first column is id, followed by type_id, followed by name. This, therefore, is the order you must list
values in insert statements on foods. Why did the preceding insert statement use a NULL for id? SQLite

CHAPTER 4 ■ ADVANCED SQL FOR SQLITE

89

knows that id in foods is an autoincrement column, and specifying a NULL is the equivalent of not
providing a value at all. Not specifying a value triggers the automatic key generation. It’s just a
convenient trick. There is no deeper meaning or theoretical basis behind it. We will look at the subtleties
of autoincrement columns later in this chapter.

Inserting a Set of Rows
Subqueries can be used in insert statements, both as components of the value list and as a complete
replacement of the value list. When you specify a subquery as the value list, you are really inserting a set
of rows, because you are inserting the set of rows returned by that subquery. Here’s an example that
generates a set having just one row:

insert into foods
values (null,
 (select id from food_types where name='Bakery'),
 'Blackberry Bobka');
select * from foods where name like '%Bobka';

id type_id name
---------- ---------- ----------------
10 1 Chocolate Bobka
413 1 Cinnamon Bobka
414 1 Blueberry Bobka
415 1 Blackberry Bobka

Here, rather than hard-coding the type_id value, I had SQLite look it up for me. Here’s another example:

insert into foods
select last_insert_rowid()+1, type_id, name from foods
where name='Chocolate Bobka';
select * from foods where name like '%Bobka';

id type_id name
---------- ---------- ----------------
10 1 Chocolate Bobka
413 1 Cinnamon Bobka
414 1 Blueberry Bobka
415 1 Blackberry Bobks
416 1 Chocolate Bobka

This query completely replaces the value list with a select statement. As long as the number of
columns in the select clause matches the number of columns in the table (or the number of columns in
the columns list, if provided), insert will work just fine. Here, this example added another chocolate
bobka and used the expression last_insert_rowid()+1 as the id value. You could have just as easily used
NULL instead. In fact, you probably should use NULL rather than last_insert_rowid(), because
last_insert_rowid() will return 0 if you did not previously insert a row in the current session.

CHAPTER 4 ■ ADVANCED SQL FOR SQLITE

90

You could safely assume that this would work properly for these examples, but it would not be a good
idea to make this assumption in a program.

Inserting Multiple Rows
There is nothing stopping you from inserting multiple rows at a time using the select form of insert. As
long as the number of columns matches, insert will insert every row in the result. Here’s an example:

sqlite> create table foods2 (id int, type_id int, name text);
sqlite> insert into foods2 select * from foods;
sqlite> select count(*) from foods2;

count(*)

418

This creates a new table foods2 and inserts into it all the records from foods.
However, there is an easier way to create and populate a table. The create table statement has a

special syntax for creating tables from select statements. The previous example could have been
performed in one step using this syntax:

sqlite> create table foods2 as select * from foods;
sqlite> select count(*) from list;

count(*)

418

create table does both steps in one fell swoop. This can be especially useful for creating temporary
tables:

create temp table list as
select f.name food, t.name name,
 (select count(episode_id)
 from foods_episodes where food_id=f.id) episodes
from foods f, food_types t
where f.type_id=t.id;
select * from list;

Food Name Episodes
-------------------- ---------- ----------
Bagels Bakery 1
Bagels, raisin Bakery 2
Bavarian Cream Pie Bakery 1
Bear Claws Bakery 3
Black and White cook Bakery 2
Bread (with nuts) Bakery 1
Butterfingers Bakery 1

CHAPTER 4 ■ ADVANCED SQL FOR SQLITE

91

Carrot Cake Bakery 1
Chips Ahoy Cookies Bakery 1
Chocolate Bobka Bakery 1

When using this form of CREATE TABLE, be aware that any constraints defined in the source table are
not created in the new table. Specifically, the autoincrement columns will not be created in the new
table, nor will indexes, UNIQUE constraints, and so forth. Many other databases refer to this approach as
CTAS, which stands for Create Table As Select, and that phrase is not uncommon among SQLite users.

It is also worth mentioning here that you have to be aware of unique constraints when inserting
rows. If you add duplicate values on columns that are declared as unique, SQLite will stop you in your
tracks:

sqlite> select max(id) from foods;

max(id)

416

sqlite> insert into foods values (416, 1, 'Chocolate Bobka');
SQL error: PRIMARY KEY must be unique

Updating Records
You update records in a table using the update command. The update command modifies one or more
columns within one or more rows in a table. update has the following general form:

update table set update_list where predicate;

update_list is a list of one or more column assignments of the form column_name=value. The where
clause works exactly as in select. Half of update is really a select statement. The where clause identifies
rows to be modified using a predicate. Those rows then have the update list applied to them. Here’s an
example:

update foods set name='CHOCOLATE BOBKA'
where name='Chocolate Bobka';
select * from foods where name like 'CHOCOLATE%';

id type_ name
----- ----- ------------------------------
10 1 CHOCOLATE BOBKA
11 1 Chocolate Eclairs
12 1 Chocolate Cream Pie
222 9 Chocolates, box of
223 9 Chocolate Chip Mint
224 9 Chocolate Covered Cherries

CHAPTER 4 ■ ADVANCED SQL FOR SQLITE

92

update is a very simple and direct command, and this is pretty much the extent of its use. As in
insert, you must be aware of any unique constraints, because they will stop update every bit as much as
insert:

sqlite> update foods set id=11 where name='CHOCOLATE BOBKA';
SQL error: PRIMARY KEY must be unique

This is true for any constraint, however.

Deleting Records
You delete records from a table using the delete command. The delete command deletes rows from a
table. delete has the following general form:

delete from table where predicate;

Syntactically, delete is a watered-down update statement. Remove the SET clause from update, and
you have delete. The where clause works exactly like select, except that it identifies rows to be deleted.
Here’s an example:

delete from foods where name='CHOCOLATE BOBKA';

Data Integrity
Data integrity is concerned with defining and protecting relationships within and between tables. There
are four general types: domain integrity, entity integrity, referential integrity, and user-defined integrity.
Domain integrity involves controlling values within columns. Entity integrity involves controlling rows
in tables. Referential integrity involves controlling rows between tables—specifically foreign key
relationships. And user-defined integrity is a catchall for everything else.

Data integrity is implemented using constraints. A constraint is a control measure used to restrict
the values that can be stored in a column or columns. Going by just the values in columns, the database
can enforce all four types of integrity constraints. In SQLite, constraints also include support for conflict
resolution. Conflict resolution is covered in detail later in this chapter.

Let’s deviate from our foods database for a moment and focus on the same contacts table
introduced in Chapter 3. The contacts table is defined as follows:

create table contacts (
id integer primary key,
name text not null collate nocase,
phone text not null default 'UNKNOWN',
unique (name,phone));

As you know by now, constraints are part of a table’s definition. They can be associated with a
column definition or defined independently in the body of the table definition. Column-level constraints
include not null, unique, primary key, foreign key, check, and collate. Table-level constraints include
primary key, unique, and check. All of these constraints are covered in the following sections according
to their respective integrity types.

CHAPTER 4 ■ ADVANCED SQL FOR SQLITE

93

Now that you have familiarity with the update, insert, and delete commands in SQLite, the
operation of many of the constraints will make sense. Just as these commands operate on data,
constraints operate on them, making sure that they work within the guidelines defined in the tables they
modify.

Entity Integrity
Relational theory—as implemented in most databases including SQLite—requires that every field in the
database must be uniquely identifiable and capable of being located. For a field to be addressable, its
corresponding row must also be addressable. And for that, the row must be unique in some way. This is
the job of the primary key.

The primary key consists of least one column or a group of columns with a unique constraint. The
unique constraint, as you will soon see, simply requires that every value in a column (or group of
columns) be distinct. Therefore, the primary key ensures that each row is somehow distinct from all
other rows in a table, ultimately ensuring that every field is also addressable. Entity integrity basically
keeps data organized in a table. After all, what good is data if you can’t find it?

Unique Constraints
Since primary keys are based on unique constraints, we’ll start with them. A unique constraint simply
requires that all values in a column or a group of columns are distinct from one another or unique. If you
attempt to insert a duplicate value or update a value to another value that already exists in the column,
the database will issue a constraint violation and abort the operation. unique constraints can be defined
at the column or the table level. When defined at the table level, unique constraints can be applied across
multiple columns. In this case, the combined value of the columns must be unique. In contacts, there is
a unique constraint on both name and phone together. See what happens if we attempt to insert another
'Jerry' record with a phone value 'UNKNOWN':

sqlite> insert into contacts (name,phone) values ('Jerry','UNKNOWN');
SQL error: columns name, phone are not unique

sqlite> insert into contacts (name) values ('Jerry');
SQL error: columns name, phone are not unique

sqlite> insert into contacts (name,phone) values ('Jerry', '555-1212');

In the first case, I explicitly specified name and phone. This matched the values of the existing record, and
the unique constraint kicked in and did not let me do it. The third insert illustrates that the unique
constraint applies to name and phone combined, not individually. It inserted another row with 'Jerry' as
the value for name, which did not cause an error, because name by itself it not unique—only name and
phone together.

s

CHAPTER 4 ■ ADVANCED SQL FOR SQLITE

94

NULL AND UNIQUE

Based on your knowledge of NULL from Chapter 3 and your new knowledge of unique constraints, how
many NULL values can you put in a column that is declared unique? From a theoretical perspective, the
answer is as many NULLs as you like. Remember that NULL is not equal to anything else, even other NULLs.
And this is the basis for how SQLite handles NULL entries in unique columns. It’s also how other major
databases like Oracle and PostgreSQL operate. But the database community is divided on this issue. Users
of Informix, Sybase, and Microsoft SQL Server are limited to only one NULL entry in a unique column. Those
using DB2 are forbidden any at all!

Primary Key Constraints
In SQLite, a primary key column is always created when you create a table, whether you define one or
not. This column is a 64-bit integer value called rowid. It has two aliases, _rowid_ and oid, which can be
used to refer to it as well. Default values are automatically generated for it.

SQLite provides an autoincrement feature for primary keys, should you want to define your own. If
you define a column’s type as integer primary key, SQLite will create a default value on that column,
which will provide an integer value that is guaranteed to be unique in that column. In reality, however,
this column will simply be an alias for rowid. They will all refer to the same value. Since SQLite uses a 64-
bit signed integer for the primary key, the maximum value for this column is 9,223,372,036,854,775,807.

Even if you manage to reach this limit, SQLite will simply start searching for unique values that are
not in the column for subsequent inserts. When you delete rows from the table, rowids may be recycled
and reused on subsequent inserts. As a result, newly created rowids might not always be in strictly
ascending order.

■ Caution You will remember our discussion on relational data not having implicit order when we discussed the
order by statement in Chapter 3. This is another strong reminder never to assume data in a relational database
such as SQLite has any particular order—even when your instincts say it should be safe.

If you want SQLite to use unique automatic primary key values for the life of the table—and not “fill
in the gaps”—then add the autoincrement keyword after the integer primary key clause.

In the examples so far, you have managed to insert two records into contacts. Not once did you
specify a value for id. As mentioned before, this is because id is declared as integer primary key.
Therefore, SQLite supplied an integer value for each insert automatically, as you can see here:

CHAPTER 4 ■ ADVANCED SQL FOR SQLITE

95

sqlite> select * from contacts;

id name phone
--- ----- --------
1 Jerry UNKNOWN
2 Jerry 555-1212

Notice that the primary key is accessible from all the aforementioned aliases, in addition to id:

sqlite> select rowid, oid,_rowid_,id, name, phone from contacts;

id id id id name phone
-- -- -- -- ---- -----
1 1 1 1 Jerry UNKNOWN
2 2 2 2 Jerry 555-1212

If you include the keyword autoincrement after integer primary key, SQLite will use a different key
generation algorithm for the column. This algorithm basically prevents rowids from being recycled. It
guarantees that only new (not recycled) rowids are provided for every insert. When a table is created
with a column containing the autoincrement constraint, SQLite will keep track of that column’s
maximum rowid in a system table called sqlite_sequence. It will only use values greater than that
maximum on all subsequent inserts. If you ever reach the absolute maximum, then SQLite will return a
SQLITE_FULL error on subsequent inserts. Here’s an example:

sqlite> create table maxed_out(id integer primary key autoincrement, x text);
sqlite> insert into maxed_out values (9223372036854775807, 'last one');
sqlite> select * from sqlite_sequence;

name seq
---------- -------------------
maxed_out 9223372036854775807

sqlite> insert into maxed_out values (null, 'will not work');
SQL error: database is full

Here, we provided the primary key value. SQLite then stored this value as the maximum for
maxed_out.id in sqlite_sequence. We supplied the very last (maximum) 64-bit value before wraparound.
In the next insert, you used the generated default value, which must be a monotonically increasing
value. This wrapped around to 0, and SQLite issued a SQLITE_FULL error.

Although SQLite tracks the maximum value for an autoincrement column in the sqlite_sequence
table, it does not prevent you from providing your own values for it in the insert command. The only
requirement is that the value you provide must be unique within the column. Here’s an example:

sqlite> drop table maxed_out;
sqlite> create table maxed_out(id integer primary key autoincrement, x text);
sqlite> insert into maxed_out values(10, 'works');
sqlite> select * from sqlite_sequence;

CHAPTER 4 ■ ADVANCED SQL FOR SQLITE

96

name seq
---------- ----------
maxed_out 10

sqlite> insert into maxed_out values(9, 'works');
sqlite> select * from sqlite_sequence;

name seq
---------- ----------
maxed_out 10

sqlite> insert into maxed_out values (9, 'fails');
SQL error: PRIMARY KEY must be unique

sqlite> insert into maxed_out values (null, 'should be 11');
sqlite> select * from maxed_out;

id x
---------- ------------
9 works
10 works
11 should be 11

sqlite> select * from sqlite_sequence;

name seq
---------- ----------
maxed_out 11

Here, you dropped and re-created the maxed_out table and inserted a record with an explicitly defined
rowid of 10. Then you inserted a record with a rowid less than 10, which worked. You tried it again with
the same value and it failed, because of the unique constraint. Finally, you inserted another record using
the default key value, and SQLite provided the next l value—10+1.

In summary, autoincrement prevents SQLite from recycling primary key values (rowids) and stops
when the rowid reaches the maximum signed 64-bit integer value. This feature was added for specific
applications that required this behavior. Unless you have such a specific need in your application, it is
perhaps best to just use integer primary key for autoincrement columns.

Like unique constraints, primary key constraints can be defined over multiple columns. You don’t
have to use an integer value for your primary key. If you choose to use another value, SQLite will still
maintain the rowid column internally, but it will also place a unique constraint on your declared primary
key. Here’s an example:

sqlite> create table pkey(x text, y text, primary key(x,y));
sqlite> insert into pkey values ('x','y');
sqlite> insert into pkey values ('x','x');
sqlite> select rowid, x, y from pkey;

CHAPTER 4 ■ ADVANCED SQL FOR SQLITE

97

rowid x y
---------- ---------- ----------
1 x y
2 x x

sqlite> insert into pkey values ('x','x');
SQL error: columns x, y are not unique

The primary key here is technically just a unique constraint across two columns, because SQLite will
always still maintain an internal rowid. But many database design experts will encourage you to use real
columns for your primary keys, and I encourage you to do that wherever it makes sense.

Domain Integrity
The simplest definition of domain integrity is the conformance of a column’s values to its assigned
domain. That is, every value in a column should exist within that column’s defined domain. However,
the term domain is a little vague. Domains are often compared to types in programming languages, such
as strings or floats. And although that is not a bad analogy, domain integrity is actually much broader
than that.

Domain constraints make it possible for you to start with a simple type—such as an integer—and
add additional constraints to create a more restricted set of acceptable values for a column. For example,
you can create a column with an integer type and add the constraint that only three such values are
allowed: {-1, 0. 1}. In this case, you have modified the range of acceptable values (from the domain of all
integers to just three integers), but not the data type itself. You are dealing with two things: a type and a
range.

Consider another example: the name column in the contacts table. It is declared as follows:

name text not null collate nocase

The domain text defines the type and initial range of acceptable values. Everything following it serves to
restrict and qualify that range even further. The name column is then the domain of all text values that do
not include NULL values where uppercase letters and lowercase letters have equal value. It is still text and
operates as text, but its range of acceptable values is further restricted from that of text.

You might say that a column’s domain is not the same thing as its type. Rather, its domain is a
combination of two things: a type and a range. The column’s type defines the representation and
operators of its values—how they are stored and how you can operate on them—sort, search, add,
subtract, and so forth. A column’s range is its set of acceptable values you can store in it, which is not
necessarily the same as its declared type. The type’s range represents a maximum range of values. The
column’s range—as you have seen—can be restricted through constraints. So for all practical purposes,
you can think of a column’s domain as a type with constraints tacked on.

Similarly, there are essentially two components to domain integrity: type checking and range
checking. Although SQLite supports many of the standard domain constraints for range checking (not
null, check, and so on), its approach to type checking is where things diverge from other databases. In
fact, SQLite’s approach to types and type checking is one of its most controversial, misunderstood, and
disputed features. We’ll cover the basics shortly and go into greater depths in Chapter 11 when we
discuss SQLite internals.

For now, let’s cover the easy stuff first: default values, not null constraints, check constraints, and
collations.

CHAPTER 4 ■ ADVANCED SQL FOR SQLITE

98

Default Values
The default keyword provides a default value for a column if one is not provided in an insert command.
The default keyword is only a constraint in that it prevents the absence of a value, stepping in when
needed. However, it does fall within domain integrity because it provides a policy for handling null
values in a column. If a column doesn’t have a default value and you don’t provide a value for it in an
insert statement, then SQLite will insert null for that column. For example, contacts.name has a default
value of 'UNKNOWN'. With this in mind, consider the following example:

sqlite> insert into contacts (name) values ('Jerry');
sqlite> select * from contacts;

id name phone
---------- ---------- ----------
1 Jerry UNKNOWN

The insert command inserted a row, specifying a value for name but not phone. As you can see from the
resulting row, the default value for phone kicked in and provided the string 'UNKNOWN'. If phone did not
have a default value, then in this example, the value for phone in this row would have been NULL instead.

default also accepts three predefined ANSI/ISO reserved words for generating default dates and
times. current_time will generate the current local time in ANSI/ISO-8601 time format (HH:MM:SS).
current_date will generate the current date (in YYYY-MM-DD format). current_timestamp will produce a
combination of these two (in YYYY-MM-DD HH:MM:SS format). Here’s an example:

create table times (id int,
 date not null default current_date,
 time not null default current_time,
 timestamp not null default current_timestamp);
insert into times (id) values (1);
insert into times (id) values (2);
select * from times;

id date time timestamp
--- ---------- ---------- -------------------
1 2010-06-15 23:30:25 2010-06-15 23:30:25
2 2010-06-15 23:30:40 2010-06-15 23:30:40

These defaults come in quite handy for tables that need to log or timestamp events.

NOT NULL Constraints
If you are one of those people who is not fond of NULL, then the NOT NULL constraint is for you. NOT NULL
ensures that values in the column may never be NULL. insert commands may not add NULL in the
column, and update commands may not change existing values to NULL. Oftentimes, you will see NOT
NULL raise its ugly head in insert statements. Specifically, a NOT NULL constraint without a default
constraint will prevent any unspecified values from being used in the insert (because the default values
provided in this case are NULL). In the preceding example, the NOT NULL constraint on name requires that
an insert command always provide a value for that column. Here’s an example:

CHAPTER 4 ■ ADVANCED SQL FOR SQLITE

99

sqlite> insert into contacts (phone) values ('555-1212');
SQL error: contacts.name may not be NULL

This insert command specified a phone value but not a name. The NOT NULL constraint on name kicked in
and forbade the operation.

A pragmatic way to deal with unknown data and NOT NULL constraints is to also include a default
constraint for the column. This is the case for phone. Although phone has a NOT NULL constraint, it has a
default constraint as well. If an insert command does not specify a value for phone, the default
constraint steps in and provides the value 'UNKNOWN', thus satisfying the NOT NULL constraint. To this end,
people often use default constraints in conjunction with NOT NULL constraints so that insert commands
can safely use default values while at the same time keeping NULL out of the column.

Check Constraints
Check constraints allow you to define expressions to test values whenever they are inserted into or
updated within a column. If the values do not meet the criteria set forth in the expression, the database
issues a constraint violation. Thus, it allows you to define additional data integrity checks beyond unique
or NOT NULL to suit your specific application. An example of a check constraint might be to ensure that
the value of a phone number field is at least seven characters long. To do this, you can add the constraint
to the column definition of phone or as a stand-alone constraint in the table definition as follows:

create table contacts
(id integer primary key,
name text not null collate nocase,
phone text not null default 'UNKNOWN',
unique (name,phone),
check (length(phone)>=7));

Here, any attempt to insert or update a value for phone less than seven characters will result in a
constraint violation. You can use any expression in a check constraint that you would in a where clause,
with the exception of subqueries. For example, say you have the table foo defined as follows:

create table foo
(x integer,
y integer check (y>x),
z integer check (z>abs(y)));

In this table, every value of z must always be greater than y, which in turn must be greater than x. To
show illustrate this, try the following:

insert into foo values (-2, -1, 2);
insert into foo values (-2, -1, 1);
SQL error: constraint failed

update foo set y=-3 where x=-3;
SQL error: constraint failed

The check constraints for all columns are evaluated before any modification is made. For the
modification to succeed, the expressions for all constraints must evaluate to true.

CHAPTER 4 ■ ADVANCED SQL FOR SQLITE

100

Functionally, triggers can be used just as effectively as check constraints for data integrity. In fact,
triggers can do much more. If you find that you can’t quite express what you need in a check constraint,
then triggers are a good alternative. Triggers are covered later in this chapter in the section “Triggers.”

Foreign Key Constraints
SQLite supports the concept of relational integrity from relational theory. Like most databases, it
supports this through the mechanism of foreign key constraints. Relational integrity, and by extension
foreign keys, ensures that where a key value in one table logically refers to data in another table, the data
in the other table actually exists. Classic examples are parent-child relationships, master-detail
relationships for things such as orders and line items, and even episode-food relationships.

SQLite supports foreign key creation in the create table statement using the following syntax
(simplified here for easy reading):

create table table_name
(column_definition references foreign_table (column_name)
 on {delete|update} integrity_action
 [not] deferrable [initially {deferred|immediate},]
…);

That syntax looks daunting, but in reality it can be broken down into three basic components. Let’s
use a real example of foods database. The foods and food_types tables are currently defined as follows:

CREATE TABLE food_types(
 id integer primary key,
 name text);

CREATE TABLE foods(
 id integer primary key,
 type_id integer,
 name text);

We know each food_type has an id that uniquely identifies it (see the earlier discussion on primary
keys). The foods table uses the type_id column to reference foods in the food_types table. If you want to
use referential integrity to have SQLite protect your data and ensure that there always exists a food type
for any reference of a food, then you can create the foods table like this instead:

create table foods(
 id integer primary key,
 type_id integer references food_types(id)
 on delete restrict
 deferrable initially deferred,
 name text);

The differences are shown in bold and are easy to understand if taken one at a time. The first part of
the foreign key instructs SQLite that the type_id column references the id column of the food_types
table. From there, you move on to the integrity action clause, which does most of the hard work. In this
example, you’ve used the option on delete restrict. This instructs SQLite to prevent any deletion from
the food_types table that would leave a food in the foods table without a parent food id. restrict is one
of five possible actions you can define. The full set is as follows:

CHAPTER 4 ■ ADVANCED SQL FOR SQLITE

101

set null: Change any remaining child value to NULL if the parent value is
removed or changed to no longer exist.

set default: Change any remaining child value to the column default if the
parent value is removed or changed to no longer exist.

cascade: Where the parent key is updated, update all child keys to match.
Where it is deleted, delete all child rows with the key. Pay particular attention to
this option, because cascading deletes can surprise you when you least expect
them.

restrict: Where the update or delete of the parent key would result in
orphaned child keys, prevent (abort) the transaction.

no action: Take a laid-back approach, and watch changes fly by without
intervening. Only at the end of the entire statement (or transaction if the
constraint is deferred) is an error raised.

Lastly, SQLite supports the deferrable clause, which controls whether the constraint as defined will
be enforced immediately or deferred until the end of the transaction.

Collations
Collation refers to how text values are compared. Different collations employ different comparison
methods. For example, one collation might be case insensitive, so the strings 'JujyFruit' and
'JUJYFRUIT' are considered the same. Another collation might be case sensitive, in which case the
strings would be considered different.

SQLite has three built-in collations. The default is binary, which compares text values byte by byte
using a specific C function called memcmp(). This happens to work nicely for many Western languages
such as English. nocase is basically a case-insensitive collation for the 26 ASCII characters used in Latin
alphabets. Finally there is reverse, which is the reverse of the binary collation. Reverse is more for
testing (and perhaps illustration) than anything else.

The SQLite C API provides a way to create custom collations. This feature allows developers to
support languages and/or locales that are not well served by the binary collation. See Chapter 7 for more
information.

The collate keyword defines the collation for a column. For example, the collation for
contacts.name is defined as nocase, which means that it is case insensitive. Thus, if you try to insert
another row with a name value of 'JERRY' and a phone value of '555-1212', it should fail:

sqlite> insert into contacts (name,phone) values ('JERRY','555-1212');
SQL error: columns name, phone are not unique

According to name’s collation, 'JERRY' is the same as 'Jerry', and there is already a row with that value.
Therefore, a new row with name='JERRY' would be a duplicate value. By default, collation in SQLite is
case sensitive. The previous example would have worked had we not defined nocase on name.

Storage Classes
As mentioned earlier, SQLite does not work like other databases when it comes to handling data types. It
differs in the types it supports and in how they are stored, compared, enforced, and assigned. I’ll cover
the basics of SQLite storage classes next to give you a good working knowledge. In Chapter 11, I will

CHAPTER 4 ■ ADVANCED SQL FOR SQLITE

102

address many of the internals of SQLite’s radically different but surprisingly flexible approach to data
types.

Internally, SQLite has five primitive data types, which are referred to as storage classes. The term
storage class refers to the format in which a value is stored on disk. Regardless, it is still synonymous with
type, or data type. Table 4-1 describes the five storage classes.

Table 4-1. SQLite Storage Classes

Name Description

integer Integer values are whole numbers (positive and negative). They can vary in size: 1, 2, 3, 4, 6,
or 8 bytes. The maximum integer range (8 bytes) is {-9223372036854775808,-1,0,1,
9223372036854775807}. SQLite automatically handles the integer sizes based on the
numeric value.

real Real values are real numbers with decimal values. SQLite uses 8-byte floats to store real
numbers.

text Text is character data. SQLite supports various character encodings, which include UTF-8
and UTF-16 (big and little endian). The maximum string value in SQLite is adjustable at
compile time and at runtime and defaults to 1,000,000,000 bytes.

blob Binary large object (BLOB) data is any kind of data. The maximum size for BLOBs in SQLite is
adjustable at compile time and at runtime and defaults to 1,000,000,000 bytes.

NULL NULL represents missing information. SQLite has full support for NULL handling.

SQLite infers a value’s type from its representation. The following inference rules are used to do this:

• A value specified as a literal in SQL statements is assigned class text if it is
enclosed by single or double quotes.

• A value is assigned class integer if the literal is specified as an unquoted number
with no decimal point or exponent.

• A value is assigned class real if the literal is an unquoted number with a decimal
point or an exponent.

• A value is assigned class NULL if its value is NULL.

• A value is assigned class blob if it is of the format x'ABCD', where ABCD are
hexadecimal numbers. The x prefix and values can be either uppercase or
lowercase.

The typeof() SQL function returns the storage class of a value based on its representation. Using this
function, the following SQL illustrates type inference in action:

CHAPTER 4 ■ ADVANCED SQL FOR SQLITE

103

sqlite> select typeof(3.14), typeof('3.14'),
 typeof(314), typeof(x'3142'), typeof(NULL);

typeof(3.14) typeof('3.14') typeof(314) typeof(x'3142') typeof(NULL)
------------ -------------- ----------- --------------- ------------
real text integer blob null

Here are all of the five internal storage classes invoked by specific representations of data. The value 3.14
looks like a real and therefore is a real. The value '3.14' looks like text and therefore is text, and so on.

A single column in SQLite may contain different values of different storage classes. This is the first
difference in SQLite data handling that usually makes those familiar with other databases sit up and say,
“What?” Consider the following example:

sqlite> drop table domain;
sqlite> create table domain(x);
sqlite> insert into domain values (3.142);
sqlite> insert into domain values ('3.142');
sqlite> insert into domain values (3142);
sqlite> insert into domain values (x'3142');
sqlite> insert into domain values (null);
sqlite> select rowid, x, typeof(x) from domain;

rowid x typeof(x)
---------- ---------- ----------
1 3.142 real
2 3.142 text
3 3142 integer
4 1B blob
5 NULL null

This raises a few questions. How are the values in a column sorted or compared? How do you sort a
column with integer, real, text, blob, and NULL values? How do you compare an integer with a blob?
Which is greater? Can they ever be equal?

As it turns out, values in a column with different storages classes can be sorted. And they can be
sorted because they can be compared. SQLite implements well-defined rules to do so. Storage classes
are sorted by using their respective class values, which are defined as follows:

1. The NULL storage class has the lowest class value. A value with a NULL storage
class is considered less than any other value (including another value with
storage class NULL). Within NULL values, there is no specific sort order.

2. integer or real storage classes have higher value than NULLs and share equal
class value. integer and real values are compared numerically.

3. The text storage class has higher value than integer or real. A value with an
integer or a real storage class will always be less than a value with a text
storage class no matter its value. When two text values are compared, the
comparison is determined by the collation defined for the values.

4. The blob storage class has the highest value. Any value that is not of class blob
will always be less than a value of class blob. blob values are compared using
the C function memcmp().

CHAPTER 4 ■ ADVANCED SQL FOR SQLITE

104

When SQLite sorts a column, it first groups values according to storage class—first NULLs, then
integers and reals, next text, and finally blobs. It then sorts the values within each group. NULLs are not
ordered at all, integers and reals are compared numerically, text is arranged by the appropriate
collation, and blobs are sorted using memcmp(), effectively comparing them in a bitwise fashion. Figure 4-
1 illustrates a hypothetical column sorted in ascending order.

NULL

NULL

NULL

-1

1.1

10

1.299E9

 Cheerios

 1

x 0003

x 000e

NULL

INTEGER, REAL

TEXT

BLOB

 JujyFruit

Figure 4-1. Storage class sort order

It’s probably worth reading this section again once you’ve had a chance to practice some SQL using
SQLite’s storage classes, just to reinforce this particular aspect of SQLite. You’ll return to this topic in
Chapter 11, when you’ll delve into the internals of storage classes, manifest typing, type affinity, and
other under-the-hood topics related to types and storage classes.

Views
Views are virtual tables. They are also known as derived tables, because their contents are derived from
the results of queries on other tables. Although views look and feel like base tables, they aren’t. The
contents of base tables are persistent, whereas the contents of views are dynamically generated when
they are used. The syntax to create a view is as follows:

create view name as select-stmt;

The name of the view is given by name and its definition by select-stmt. The resulting view will look like
a base table named name. Imagine you had a query you ran all the time, so much that you get sick of
writing it. Views are the solution for this particular chore. Say your query was as follows:

CHAPTER 4 ■ ADVANCED SQL FOR SQLITE

105

select f.name, ft.name, e.name
from foods f
inner join food_types ft on f.type_id=ft.id
inner join foods_episodes fe on f.id=fe.food_id
inner join episodes e on fe.episode_id=e.id;

This returns the name of every food, its type, and every episode it was in. It is one big table of 504 rows
with just about every food fact. Rather than having to write out (or remember) the previous query every
time you want these results, you can tidily restate it in the form of a view. Let’s name it details:

create view details as
select f.name as fd, ft.name as tp, e.name as ep, e.season as ssn
from foods f
inner join food_types ft on f.type_id=ft.id
inner join foods_episodes fe on f.id=fe.food_id
inner join episodes e on fe.episode_id=e.id;

Now you can query details just as you would a table. Here’s an example:

sqlite> select fd as Food, ep as Episode
 from details where ssn=7 and tp like 'Drinks';

Food Episode
-------------------- --------------------
Apple Cider The Bottle Deposit 1
Bosco The Secret Code
Cafe Latte The Postponement
Cafe Latte The Maestro
Champagne Coolies The Wig Master
Cider The Bottle Deposit 2
Hershey's The Secret Code
Hot Coffee The Maestro
Latte The Maestro
Mellow Yellow soda The Bottle Deposit 1
Merlot The Rye
Orange Juice The Wink
Tea The Hot Tub
Wild Turkey The Hot Tub

The contents of views are dynamically generated. Thus, every time you use details, its associated SQL
will be reexecuted, producing results based on the data in the database at that moment. Some features of
views available in other databases, like view-based security, are not generally available. Some view-
based security is available if you program with SQLite, using its operational control facilities. This is
covered in Chapters 5 and 6.

CHAPTER 4 ■ ADVANCED SQL FOR SQLITE

106

Finally, to drop a view, use the DROP VIEW command:

drop view name;

The name of the view to drop is given by name.

UPDATABLE VIEWS

The relational model calls for updatable views. These are views that you can modify. You can run insert
or update statements on them, for example, and the respective changes are applied directly to their
underlying tables. Updatable views are not supported in SQLite. However, using triggers, you can create
something like them. We show the technique later in the section “Triggers.”

Indexes
Indexes are a construct designed to speed up queries under certain conditions. Consider the following
query:

SELECT * FROM foods WHERE name='JujyFruit';

When a database searches for matching rows, the default method it uses to perform this is called a
sequential scan. That is, it literally searches (or scans) every row in the table to see whether its name
attribute matches 'JujyFruit'.

However, if this query is used frequently and the foods table is very large, it makes far more sense to
use an index approach to finding the data. SQLite uses B-tree indexes, similar to many other relational
databases.

Indexes also increase the size of the database. They literally keep a copy of all columns they index. If
you index every column in a table, you effectively double the size of the table. Another consideration is
that indexes must be maintained. When you insert, update, or delete records, in addition to modifying
the table, the database must modify each and every index on that table as well. So although indices can
make queries run much faster, they can slow down inserts, updates, and similar operations.

The command to create an index is as follows:

create index [unique] index_name on table_name (columns)

The variable index_name is the name of the index, and table_name is the name of the table containing the
column(s) to index. The variable columns is either a single column or a comma-separated list of columns.

If you use the unique keyword, then the index will have the added constraint that all values in the
index must be unique. This applies to both the index and, by extension, to the column or columns it
indexes. The unique constraint covers all columns defined in the index, and it is their combined values
(not individual values) that must be unique. Here’s an example:

sqlite> create table foo(a text, b text);
sqlite> create unique index foo_idx on foo(a,b);
sqlite> insert into foo values ('unique', 'value');

CHAPTER 4 ■ ADVANCED SQL FOR SQLITE

107

sqlite> insert into foo values ('unique', 'value2');
sqlite> insert into foo values ('unique', 'value');
SQL error: columns a, b are not unique

You can see here that uniqueness is defined by both columns collectively, not individually. Notice that
collation plays an important role here as well.

To remove an index, use the drop index command, which is defined as follows:
drop index index_name;

Collations
Each column in the index can have a collation associated with it. For example, to create a case-
insensitive index on foods.name, you’d use the following:

create index foods_name_idx on foods (name collate nocase);

This means that values in the name column will sort without respect to case. You can list the indexes for a
table in the SQLite command-line program by using the .indices shell command. Here’s example:

sqlite> .indices foods
foods_name_idx
For more information, you can use the .schema shell command as well:
sqlite> .schema foods
CREATE TABLE foods(
 id integer primary key,
 type_id integer,
 name text);
CREATE INDEX foods_name_idx on foods (name COLLATE NOCASE);

You can also obtain this information by querying the sqlite_master table, described later in this section.

Index Utilization
It is important to understand when indexes are used and when they aren’t. There are very specific
conditions in which SQLite will decide to use an index. SQLite will use a single column index, if available,
for the following expressions in the WHERE clause:

column {=|>|>=|<=|<} expression
expression {=|>|>=|<=|<} column
column IN (expression-list)
column IN (subquery)

Multicolumn indexes have more specific conditions before they are used. This is perhaps best
illustrated by example. Say you have a table defined as follows:

create table foo (a,b,c,d);

CHAPTER 4 ■ ADVANCED SQL FOR SQLITE

108

Furthermore, you create a multicolumn index as follows:

create index foo_idx on foo (a,b,c,d);

The columns of foo_idx can be used only sequentially from left to right. That is, in the following query:

select * from foo where a=1 and b=2 and d=3

only the first and second conditions will use the index. The reason the third condition was excluded is
because there was no condition that used c to bridge the gap to d. Basically, when SQLite uses a
multicolumn index, it works from left to right column-wise. It starts with the left column and looks for a
condition using that column. It moves to the second column, and so on. It continues until either it fails
to find a valid condition in the WHERE clause that uses it or there are no more columns in the index to use.

But there is one more requirement. SQLite will use a multicolumn index only if all of the conditions
use either the equality (=) or IN operator for all index columns except for the rightmost index column. For
that column, you can specify up to two inequalities to define its upper and lower bounds. Consider this
example:

select * from foo where a>1 and b=2 and c=3 and d=4

SQLite will only do an index scan on column a. The a>1 expression becomes the rightmost index column
because it uses the inequality. All columns after it are not eligible to be used as a result. Similarly, the
following:

select * from foo where a=1 and b>2 and c=3 and d=4

will use the index columns a and b and stop there as b>2 becomes the rightmost index term by its use of
an inequality operator.

Lastly, when you create an index, have a reason for creating it. Make sure there is a specific
performance gain you are getting before you take on the overhead that comes with it. Well-chosen
indexes are a wonderful thing. Indexes that are thoughtlessly scattered here and there in the vain hope of
performance are of dubious value.

Triggers
Triggers execute specific SQL commands when specific database events transpire on specific tables. The
general syntax for creating a trigger is as follows:

create [temp|temporary] trigger name
[before|after] [insert|delete|update|update of columns] on table
action

A trigger is defined by a name, an action, and a table. The action, or trigger body, consists of a series
of SQL commands. Triggers are said to fire when such events take place. Furthermore, triggers can be
made to fire before or after the event using the before or after keyword, respectively. Events include
delete, insert, and update commands issued on the specified table. Triggers can be used to create your
own integrity constraints, log changes, update other tables, and many other things. They are limited only
by what you can write in SQL.

CHAPTER 4 ■ ADVANCED SQL FOR SQLITE

109

Update Triggers
Update triggers, unlike insert and delete triggers, may be defined for specific columns in a table. The
general form of this kind of trigger is as follows:

create trigger name
[before|after] update of column on table
action

The following is a SQL script that shows an UPDATE trigger in action:

create temp table log(x);

create temp trigger foods_update_log update of name on foods
begin
 insert into log values('updated foods: new name=' || new.name);
end;

begin;
update foods set name='JUJYFRUIT' where name='JujyFruit';
select * from log;
rollback;

This script creates a temporary table called log, as well as a temporary update trigger on foods.name that
inserts a message into log when it fires. The action takes place inside the transaction that follows. The
first step of the transaction updates the name column of the row whose name is 'JUJYFRUIT'. This causes
the update trigger to fire. When it fires, it inserts a record into the log. Next, the transaction reads the log,
which shows that the trigger did indeed fire. The transaction then rolls back the change, and when the
session ends, the log table and the update trigger are destroyed. Running the script produces the
following output:

sqlite3 foods.db < trigger.sql

create temp table log(x);

create temp trigger foods_update_log after update of name on foods
begin
 insert into log values('updated foods: new name=' || new.name);
end;

begin;
update foods set name='JUJYFRUIT' where name='JujyFruit';
SELECT * FROM LOG;
x
--
updated foods: new name=JUJYFRUIT
rollback;

CHAPTER 4 ■ ADVANCED SQL FOR SQLITE

110

SQLite provides access to both the old (original) row and the new (updated) row in update triggers.
The old row is referred to as old and the new row as new. Notice in the script how the trigger refers to
new.name. All attributes of both rows are available in old and new using the dot notation. You could have
just as easily recorded new.type_id or old.id.

Error Handling
Defining a trigger before an event takes place gives you the opportunity to stop the event from
happening and, equally, examining the event afterward allows you to have second thoughts. before and
after triggers enable you to implement new integrity constraints. SQLite provides a special SQL function
for triggers called raise(), which allows them to raise an error within the trigger body. raise is defined
as follows:

raise(resolution, error_message);

The first argument is a conflict resolution policy (abort, fail, ignore, rollback, and so on). The second
argument is an error message. If you use ignore, the remainder of the current trigger along with the SQL
statement that caused the trigger to fire, as well as any subsequent triggers that would have been fired,
are all terminated. If the SQL statement that caused the trigger to fire is itself part of another trigger, then
that trigger resumes execution at the beginning of the next SQL command in the trigger action.

Updatable Views
Triggers make it possible to create something like updatable views, as mentioned earlier in this chapter.
The idea here is that you create a view and then create a trigger that handles update events on that view.
SQLite supports triggers on views using the instead of keywords in the trigger definition. To illustrate
this, let’s create a view that combines foods with food_types:

create view foods_view as
 select f.id fid, f.name fname, t.id tid, t.name tname
 from foods f, food_types t;

This view joins the two tables according to their foreign key relationship. Notice that you have created
aliases for all column names in the view. This allows you to differentiate the respective id and name
columns in each table when you reference them from inside the trigger. Now, let’s make the view
updatable by creating an UPDATE trigger on it:

create trigger on_update_foods_view
instead of update on foods_view
for each row
begin
 update foods set name=new.fname where id=new.fid;
 update food_types set name=new.tname where id=new.tid;
end;

Now if you try to update the foods_view, this trigger gets called. The trigger simply takes the values
provided in the UPDATE statement and uses them to update the underlying base tables foods and
food_types. Testing it yields the following:

CHAPTER 4 ■ ADVANCED SQL FOR SQLITE

111

.echo on
-- Update the view within a transaction
begin;
update foods_view set fname='Whataburger', tname='Fast Food' where fid=413;
-- Now view the underlying rows in the base tables:
select * from foods f, food_types t where f.type_id=t.id and f.id=413;
-- Roll it back
rollback;
-- Now look at the original record:
select * from foods f, food_types t where f.type_id=t.id and f.id=413;

begin;
update foods_view set fname='Whataburger', tname='Fast Food' where fid=413;
select * from foods f, food_types t where f.type_id=t.id and f.id=413;
id type_id name id name
--- ------- -------------- --- ---------
413 1 Whataburger 1 Fast Food

rollback;

select * from foods f, food_types t where f.type_id=t.id and f.id=413;
id type_id name id name
--- ------- -------------- --- -------
413 1 Cinnamon Bobka 1 Bakery

You can just as easily add insert and delete triggers to complete the trigger based manipulation of
data via views.

Transactions
Transactions define boundaries around a group of SQL commands such that they either all successfully
execute together or not at all. This is typically referred to as the atomic principle of database integrity. A
classic example of the rationale behind transactions is a money transfer. Say a bank program is
transferring money from one account to another. The money transfer program can do this in one of two
ways: first insert (credit) the funds into account 2 and then delete (debit) it from account 1, or first delete
it from account 1 and insert it into account 2. Either way, the transfer is a two-step process: an insert
followed by a delete, or a delete followed by an insert.

But what happens if, during the transfer, the database server suddenly crashes or the power goes
out, and the second operation does not complete? Now the money either exists in both accounts (the
first scenario) or has been completely lost altogether (second scenario). Either way, someone is not
going to be happy. And the database is in an inconsistent state. The point here is that these two
operations must either happen together or not at all. That is the essence of transactions.

Transaction Scopes
Transactions are issued with three commands: begin, commit, and rollback. begin starts a transaction.
Every operation following a begin can be potentially undone and will be undone if a commit is not issued

CHAPTER 4 ■ ADVANCED SQL FOR SQLITE

112

before the session terminates. The commit command commits the work performed by all operations
since the start of the transaction. Similarly, the rollback command undoes all the work performed by all
operations since the start of the transaction. A transaction is a scope in which operations are performed
and committed, or rolled back, together. Here is an example:

sqlite> begin;
sqlite> delete from foods;
sqlite> rollback;
sqlite> select count(*) from foods;

count(*)

412

We started a transaction, deleted all the rows in foods, changed our mind, and reversed those changes by
issuing a rollback. The select statement shows that nothing was changed.

By default, every SQL command in SQLite is run under its own transaction. That is, if you do not
define a transaction scope with begin…commit/rollback, SQLite will implicitly wrap every individual SQL
command with a begin…commit/rollback. In that case, every command that completes successfully is
committed. Likewise, every command that encounters an error is rolled back. This mode of operation
(implicit transactions) is referred to as autocommit mode: SQLite automatically runs each command in
its own transaction, and if the command does not fail, its changes are automatically committed.

SQLite also supports the savepoint and release commands. These commands extend the flexibility
of transactions so that a body of work that incorporates multiple statements can set a savepoint, which
SQLite can then revert to in the event of a rollback. Creating a savepoint is a simple as issuing the
savepoint command with a name of your choice, just as in this next example:

savepoint justincase;

Later, if we realize our processing needs to be reverted, instead of rolling all the way back to the start
of the transaction, we can use a named rollback as follows:
rollback [transaction] to justincase;

I’ve chosen justincase as the savepoint name. You can choose any name you like.

Conflict Resolution
As you’ve seen in previous examples, constraint violations cause the command that committed the
violation to terminate. What exactly happens when a command terminates in the middle of making a
bunch of changes to the database? In most databases, all of the changes are undone. That is the way the
database is programmed to handle a constraint violation—end of story.

SQLite, however, has an uncommon feature that allows you to specify different ways to handle (or
recover from) constraint violations. It is called conflict resolution. Take, for example, the following
UPDATE:

sqlite> update foods set id=800-id;
SQL error: PRIMARY KEY must be unique

This results in a UNIQUE constraint violation because once the update statement reaches the 388th record,
it attempts to update its id value to 800-388=412. But a row with an id of 412 already exists, so it aborts
the command. But SQLite already updated the first 387 rows before it reached this constraint violation.

CHAPTER 4 ■ ADVANCED SQL FOR SQLITE

113

What happens to them? The default behavior is to terminate the command and reverse all the changes it
made, while leaving the transaction intact.

But what if you wanted these 387 changes to stick despite the constraint violation? Well, believe it or
not, you can have it that way too, if you want. You just need to use the appropriate conflict resolution.
There are five possible resolutions, or policies, that can be applied to address a conflict (constraint
violation): replace, ignore, fail, abort, and rollback. These five resolutions define a spectrum of error
tolerance or sensitivity: from replace, the most forgiving, to rollback, the most strict. The resolutions are
defined as follows in order of their severity:

1. replace: When a unique constraint violation is encountered, SQLite removes
the row (or rows) that caused the violation and replaces it (them) with the new
row from the insert or update. The SQL operation continues without error. If a
NOT NULL constraint violation occurs, the NULL value is replaced by the default
value for that column. If the column has no default value, then SQLite applies
the abort policy. It is important to note that when this conflict resolution
strategy deletes rows in order to satisfy a constraint, it does not invoke delete
triggers on those rows. This behavior, however, is subject to change in a future
release.

2. ignore: When a constraint violation is encountered, SQLite allows the
command to continue and leaves the row that triggered the violation
unchanged. Other rows before and after the row in question continue to be
modified by the command. Thus, all rows in the operation that trigger
constraint violations are simply left unchanged, and the command proceeds
without error.

3. fail: When a constraint violation is encountered, SQLite terminates the
command but does not restore the changes it made prior to encountering the
violation. That is, all changes within the SQL command up to the violation are
preserved. For example, if an update statement encountered a constraint
violation on the 100th row it attempts to update, then the changes to the first
99 rows already modified remain intact, but changes to rows 100 and beyond
never occur as the command is terminated.

4. abort: When a constraint violation is encountered, SQLite restores all changes
the command made and terminates it. abort is the default resolution for all
operations in SQLite. It is also the behavior defined in the SQL standard. As a
side note, abort is also the most expensive conflict resolution policy—
requiring extra work even if no conflicts ever occur.

5. rollback: When a constraint violation is encountered, SQLite performs a
rollback—aborting the current command along with the entire transaction.
The net result is that all changes made by the current command and all
previous commands in the transaction are rolled back. This is the most drastic
level of conflict resolution where a single violation results in a complete
reversal of everything performed in a transaction.

Conflict resolution can be specified within SQL commands as well as within table and index
definitions. Specifically, conflict resolution can be specified in insert, update, create table, and create
index. Furthermore, it has specific implications within triggers. The syntax for conflict resolution in
insert and update is as follows:

CHAPTER 4 ■ ADVANCED SQL FOR SQLITE

114

insert or resolution into table (column_list) values (value_list);
update or resolution table set (value_list) where predicate;

The conflict resolution policy comes right after the insert or update command and is prefixed with OR.
Also, the insert or replace expression can be abbreviated as just replace. This is similar to other
database’s “merge” or “upsert” behavior.

In the preceding update example, the updates made to the 387 records were rolled back because the
default resolution is abort. If you wanted the updates to stick, you could use the fail resolution. To
illustrate this, in the following example you copy foods into a new table test and use it as the guinea pig.
You add an additional column to test called modified, the default value of which is 'no'. In the update,
you change this to 'yes' to track which records are updated before the constraint violation occurs. Using
the fail resolution, these updates will remain unchanged, and you can track afterward how many
records were updated.

create table test as select * from foods;
create unique index test_idx on test(id);
alter table test add column modified text not null default 'no';
select count(*) from test where modified='no';

count(*)

412

update or fail test set id=800-id, modified='yes';
SQL error: column id is not unique

select count(*) from test where modified='yes';

count(*)

387

drop table test;

■ Caution There is one consideration with fail of which you need to be aware. The order that records are
updated is nondeterministic. That is, you cannot be certain of the order of the records in the table or the order in
which SQLite processes them. You might assume that it follows the order of the rowid column, but this is not a
safe assumption to make. There is nothing in the documentation that says so. Once again, never assume any
implicit ordering when working with any kind of database. If you are going to use fail, in many cases it might be
better to use ignore. ignore will finish the job and modify all records that can be modified rather than bailing out
on the first violation.

When defined within tables, conflict resolution is specified for individual columns. Here’s an
example:

CHAPTER 4 ■ ADVANCED SQL FOR SQLITE

115

sqlite> create temp table cast(name text unique on conflict rollback);
sqlite> insert into cast values ('Jerry');
sqlite> insert into cast values ('Elaine');
sqlite> insert into cast values ('Kramer');

The cast table has a single column name with a unique constraint and conflict resolution set to
rollback. Any insert or update that triggers a constraint violation on name will be arbitrated by the
rollback resolution rather than the default abort. The result will abort not only the statement but the
entire transaction as well:

sqlite> begin;
sqlite> insert into cast values('Jerry');
SQL error: uniqueness constraint failed

sqlite> commit;
SQL error: cannot commit - no transaction is active

commit failed here because the name’s conflict resolution already aborted the transaction. create index
works the same way. Conflict resolution within tables and indices changes the default behavior of the
operation from abort to that defined for the specific columns when those columns are the source of the
constraint violation.

Conflict resolution at the statement level (DML) overrides that defined at the object level (DDL).
Working from the previous example:

sqlite> begin;
sqlite> insert or replace into cast values('Jerry');
sqlite> commit;

the replace resolution in the insert overrides the rollback resolution defined on cast.name.

Database Locks
Locking is closely associated with transactions in SQLite. To use transactions effectively, you need to
know a little something about how it does locking.

SQLite has coarse-grained locking. When a session is writing to the database, all other sessions are
locked out until the writing session completes its transaction. To help with this, SQLite has a locking
scheme that helps defer writer locks until the last possible moment in order to maximize concurrency.

WRITE-AHEAD LOGGING: THE FUTURE OF SQLITE

Coming soon in version 3.7.0 of SQLite is write-ahead logging (WAL). This will change the behavior of
transactions and locking to free SQLite of the “one writer” behavior described here. Chapter 11 covers
these forthcoming changes to the internals of SQLite.

CHAPTER 4 ■ ADVANCED SQL FOR SQLITE

116

SQLite uses a lock escalation policy whereby a connection gradually obtains exclusive access to a
database in order to write to it. There are five different locking states in SQLite: unlocked, shared,
reserved, pending, and exclusive. Each database session (or connection) can be in only one of these states
at any given time. Furthermore, there is a corresponding lock for each state, except for unlocked—there
is no lock required to be in the unlocked state.

To begin with, the most basic state is unlocked. In this state, no session is accessing data from the
database. When you connect to a database or even initiate a transaction with BEGIN, your connection is
in the unlocked state.

The next state beyond unlocked is shared. For a session to read from the database (not write), it
must first enter the shared state and must therefore acquire a shared lock. Multiple sessions can
simultaneously acquire and hold shared locks at any given time. Therefore, multiple sessions can read
from a common database at any given time. However, no session can write to the database during this
time—while any shared locks are active.

If a session wants to write to the database, it must first acquire a reserved lock. Only one reserved
lock may be held at one time for a given database. Shared locks can coexist with a reserved lock. A
reserved lock is the first phase of writing to a database. It does not block sessions with shared locks from
reading, and it does not prevent sessions from acquiring new shared locks.

Once a session has a reserved lock, it can begin the process of making modifications; however, these
modifications are cached and not actually written to disk. The reader’s changes are stored in a memory
cache (see the discussion of the cache_size pragma in the section “Database Configuration,” later in this
chapter, for more information).

When the session wants to commit the changes (or transaction) to the database, it begins the
process of promoting its reserved lock to an exclusive lock. To get an exclusive lock, it must first promote
its reserved lock to a pending lock. A pending lock starts a process of attrition whereby no new shared
locks can be obtained. That is, other sessions with existing shared locks are allowed to continue as
normal, but other sessions cannot acquire new shared locks. At this point, the session with the pending
lock is waiting for the other sessions with shared locks to finish what they are doing and release them.

Once all shared locks are released, the session with the pending lock can promote it to an exclusive
lock. It is then free to make changes to the database. All of the previously cached changes are written to
the database file.

Deadlocks
Although you may find the preceding discussion on locking to be interesting, you are probably
wondering at this point why any of it matters. Why do you need to know about locking? Well, if you don’t
know what you are doing, you can end up in a deadlock.

Consider the following scenario illustrated in Table 4-2. Two sessions, A and B—completely
oblivious to one another—are working on the same database at the same time. Session A issues the first
command, B the second and third, A the fourth, and so on.

CHAPTER 4 ■ ADVANCED SQL FOR SQLITE

117

Table 4-2. A Portrait of a Deadlock

Session A Session B

sqlite> begin;

 sqlite> begin;

 sqlite> insert into foo values ('x');

sqlite> select * from foo;

 sqlite> commit;

 SQL error: database is locked

sqlite> insert into foo values ('x');

SQL error: database is locked

Both sessions wind up in a deadlock. Session B was the first to try to write to the database and

therefore has a pending lock. A attempts to write but fails when INSERT tries to promote its shared lock to
a reserved lock.

For the sake of argument, let’s say that A decides to just wait around for the database to become
writable. So does B. Then at this point, everyone else is effectively locked out too. If you try to open a
third session, it won’t even be able to read from the database. The reason is that B has a pending lock,
which prevents any sessions from acquiring shared locks. So, not only are A and B deadlocked, they have
locked everyone else out of the database as well. Basically, you have a shared lock and one pending lock
that don’t want to relinquish control, and until one does, nobody can do anything.

How do you avoid a deadlock? It’s not like A and B can sit down in a meeting and work it out with
their lawyers. A and B don’t even know each other exists. The answer is to pick the right transaction type
for the job.

Transaction Types
SQLite has three different transaction types that start transactions in different locking states.
Transactions can be started as deferred, immediate, or exclusive. A transaction’s type is specified in the
begin command:

begin [deferred | immediate | exclusive] transaction;

A deferred transaction does not acquire any locks until it has to. Thus, with a deferred transaction,
the begin statement itself does nothing—it starts in the unlocked state. This is the default. If you simply
issue a begin, then your transaction is deferred and therefore sitting in the unlocked state. Multiple
sessions can simultaneously start deferred transactions at the same time without creating any locks. In
this case, the first read operation against a database acquires a shared lock, and similarly the first write
operation attempts to acquire a reserved lock.

CHAPTER 4 ■ ADVANCED SQL FOR SQLITE

118

An immediate transaction attempts to obtain a reserved lock as soon as the begin command is
executed. If successful, begin immediate guarantees that no other session will be able to write to the
database. As you know, other sessions can continue to read from the database, but the reserved lock
prevents any new sessions from reading. Another consequence of the reserved lock is that no other
sessions will be able to successfully issue a begin immediate or begin exclusive command. SQLite will
return a SQLITE_BUSY error. During this time, you can make some modifications to the database, but you
may not necessarily be able to commit them. When you call commit, you could get SQLITE_BUSY. This
means that there are other readers active, as in the earlier example. Once they are gone, you can commit
the transaction.

An exclusive transaction obtains an exclusive lock on the database. This works similarly to
immediate, but when you successfully issue it, exclusive guarantees that no other session is active in the
database and that you can read or write with impunity.

The crux of the problem in the preceding example is that both sessions ultimately wanted to write to
the database, but they made no attempt to relinquish their locks. Ultimately, it was the shared lock that
caused the problem. If both sessions had started with begin immediate, then the deadlock would not
have occurred. In this case, only one of the sessions would have been able to enter begin immediate at
one time, while the other would have to wait. The one that has to wait could keep retrying with the
assurance that it would eventually get in. begin immediate and begin exclusive, if used by all sessions
that want to write to the database, provide a synchronization mechanism, thereby preventing deadlocks.
For this approach to work, though, everyone has to follow the rules.

The bottom line is this: if you are using a database that no other connections are using, then a
simple begin will suffice. If, however, you are using a database that other connections are also writing to,
both you, and they should use begin immediate or begin exclusive to initiate transactions. It works out
best that way for both of you. Transactions and locks are covered in more detail in Chapter 5.

Database Administration
Database administration is generally concerned with controlling how a database operates. Many of the
database administration tasks you’ll want to perform are done via SQL commands. SQLite includes
some unique administrative features of its own, such the means to “attach” multiple databases to a
single session, as well as database pragmas, which can be used for setting various configuration
parameters.

Attaching Databases
SQLite allows you to “attach” multiple databases to the current session using the attach command.
When you attach a database, all of its contents are accessible in the global scope of the current database
file. attach has the following syntax:

attach [database] filename as database_name;

Here, filename refers to the path and name of the SQLite database file, and database_name refers to the
logical name with which to reference that database and its objects. The main database is automatically
assigned the name main. If you create any temporary objects, then SQLite will create an attached
database name temp. (You can see these objects using the database_list pragma, described later.) The
logical name may be used to reference objects within the attached database. If there are tables or other
database objects that share the same name in both databases, then the logical name is required to
reference such objects in the attached database. For example, if both databases have a table called foo,

CHAPTER 4 ■ ADVANCED SQL FOR SQLITE

119

and the logical name of the attached database is db2, then the only way to query foo in db2 is by using the
fully qualified name db2.foo, as follows:

sqlite> attach database '/tmp/db' as db2;
sqlite> select * from db2.foo;

x

bar

If you really want to, you can qualify objects in the main database using the name main:

sqlite> select * from main.foods limit 2;

id type_id name
---------- ---------- --------------
1 1 Bagels
2 1 Bagels, raisin
The same is true with the temporary database:
sqlite> create temp table foo as select * from food_types limit 3;
sqlite> select * from temp.foo;

id name
--- -------------
1 Bakery
2 Cereal
3 Chicken/Fowl

You detach databases with the detach database command, defined as follows:

detach [database] database_name;

This command takes the logical name of the attached database (given by database_name) and
detaches the associated database file. You get a list of attached databases using the database_list
pragma, explained in the section “Database Configuration.”

Cleaning Databases
SQLite has two commands designed for cleaning—reindex and vacuum. reindex is used to rebuild
indexes. It has two forms:

reindex collation_name;
reindex table_name|index_name;

The first form rebuilds all indexes that use the collation name given by collation_name. It is needed only
when you change the behavior of a user-defined collating sequence (for example, multiple sort orders in
Chinese). All indexes in a table (or a particular index given its name) can be rebuilt with the second form.

Vacuum cleans out any unused space in the database by rebuilding the database file. Vacuum will not
work if there are any open transactions. An alternative to manually running VACUUM statements is
autovacuum. This feature is enabled using the auto_vacuum pragma, described in the next section.

CHAPTER 4 ■ ADVANCED SQL FOR SQLITE

120

Database Configuration
SQLite doesn’t have a configuration file. Rather, all of its configuration parameters are implemented
using pragmas. Pragmas work in different ways. Some are like variables; others are like commands. They
cover many aspects of the database, such as runtime information, database schema, versioning, file
format, memory use, and debugging. Some pragmas are read and set like variables, while others require
arguments and are called like functions. Many pragmas have both temporary and permanent forms.
Temporary forms affect only the current session for the duration of its lifetime. The permanent forms are
stored in the database and affect every session. The cache size is one such example.

This section covers the most commonly used pragmas. You can find a complete list of all SQLite
pragmas.

The Connection Cache Size
The cache size pragmas influence how many database pages a session can hold in memory. To set the
default cache size for the current session, you use the cache_size pragma:

sqlite> pragma cache_size;

cache_size

2000

sqlite> pragma cache_size=10000;
sqlite> pragma cache_size;

cache_size

10000

You can permanently set the cache size for all sessions using the default_cache_size pragma. This
setting is stored in the database. This will take effect only for sessions created after the change, not for
currently active sessions.

One of the uses for the cache is in storing pending changes when a session is in a reserved state (it
has a reserved lock), as described earlier in the section “Transactions.” If the session fills up the cache, it
will not be able to continue further modifications until it gets an exclusive lock, which means that it
may have to first wait for readers to clear.

If you or your programs perform many updates or deletes on a database that is being used by many
other sessions, it may help you to increase the cache size. The larger the cache size, the more
modifications a session can cache change before it has to get an exclusive lock. This not only allows a
session to get more work done before having to wait, it also cuts down on the time the exclusive locks
needs to be held, because all the work is done up front. In this case, the exclusive lock only needs to be
held long enough to flush the changes in the cache to disk. Some tips for tuning the cache size are
covered in Chapter 5.

Getting Database Information
You can obtain database information using the database schema pragmas, defined as follows:

CHAPTER 4 ■ ADVANCED SQL FOR SQLITE

121

• database_list: Lists information about all attached databases.

• index_info: Lists information about the columns within an index. It takes an index
name as an argument.

• index_list: Lists information about the indexes in a table. It takes a table name as
an argument.

• table_info: Lists information about all columns in a table.

The following illustrates some information provided by these pragmas:

sqlite> pragma database_list;

seq name file
---- ------- --------------------
0 main /tmp/foods.db
2 db2 /tmp/db

sqlite> create index foods_name_type_idx on foods(name,type_id);
sqlite> pragma index_info(foods_name_type_idx);

seqn cid name
---- ------- --------------------
0 2 name
1 1 type_id

sqlite> pragma index_list(foods);

seq name unique
----- ------------------- ---------------
0 foods_name_type_idx 0

sqlite> pragma table_info(foods);

cid name type notn dflt pk
----- --------------- --------------- ---- ---- ----------
0 id integer 0 1
1 type_id integer 0 0
2 name text 0 0

Synchronous Writes
Normally, SQLite commits all changes to disk at critical moments to ensure transaction durability. This
is similar to the checkpoint functionality in other databases. However, it is possible to turn this off for
performance gains. You do this with the synchronous pragma. There are three settings: full, normal, and
off. They are defined as follows:

• Full: SQLite will pause at critical moments to make sure that data has actually
been written to the disk surface before continuing. This ensures that if the
operating system crashes or if there is a power failure, the database will be
uncorrupted after rebooting. Full synchronous is very safe, but it is also slow.

CHAPTER 4 ■ ADVANCED SQL FOR SQLITE

122

• Normal: SQLite will still pause at the most critical moments but less often than in
full mode. There is a very small (though nonzero) chance that a power failure at
just the wrong time could corrupt the database in normal mode. But in practice,
you are more likely to suffer a catastrophic disk failure or some other
unrecoverable hardware fault.

• Off: SQLite continues operation without pausing as soon as it has handed data off
to the operating system. This can speed up some operations as much as 50 or
more times. If the application running SQLite crashes, the data will be safe.
However, if the operating system crashes or the computer loses power, the
database may be corrupted.

There is no persistent form of the synchronous pragma. Chapter 5 explains this setting’s crucial role in
transaction durability and how it works.

Temporary Storage
Temporary storage is where SQLite keeps transient data such as temporary tables, indexes, and other
objects. By default, SQLite uses a compiled-in location, which varies between platforms. There are two
pragmas that govern temporary storage: temp_store and temp_store_directory. The first pragma
determines whether SQLite uses memory or disk for temporary storage. There are actually three possible
values: default, file, or memory. default uses the compiled-in default, file uses an operating system file,
and memory uses RAM. If file is set as the storage medium, then the second pragma,
temp_store_directory, can be used to set the directory in which the temporary storage file is placed.

Page Size, Encoding, and Autovacuum
The database page size, encoding, and autovacuuming must be set before a database is created. That is,
to alter the defaults, you must first set these pragmas before creating any database objects in a new
database. The defaults are a page size derived from a number of host-specific factors such as disk sector
size and UTF-8 encoding. SQLite supports page sizes ranging from 512 to 32,786 bytes, in powers of 2.
Supported encodings are UTF-8, UTF-16le (little-endian UTF-16 encoding), and UTF-16be (big-endian
UTF-16 encoding).

A database’s size can be automatically kept to a minimum using the auto_vacuum pragma. Normally,
when a transaction that deletes data from a database is committed, the database file remains the same
size. When the auto_vacuum pragma is enabled, the database file shrinks when a transaction that deletes
data is committed. To support this functionality, the database stores extra information internally,
resulting in slightly larger database files than would otherwise be possible. The vacuum command has no
effect on databases that use auto_vacuum.

Debugging
There are four pragmas for various debugging purposes. The integrity_check pragma looks for out-of-
order records, missing pages, malformed records, and corrupted indexes. If any problems are found,
then a single string is returned describing the problems. If everything is in order, SQLite returns ok. The
other pragmas are used for tracing the parser and virtual database engine and can be enabled only if
SQLite is compiled with debugging information. You can find detailed information on these pragmas in
Chapter 11.

CHAPTER 4 ■ ADVANCED SQL FOR SQLITE

123

The System Catalog
The sqlite_master table is a system table that contains information about all the tables, views, indexes,
and triggers in the database. For example, the current contents of the foods database are as follows:

sqlite> select type, name, rootpage from sqlite_master;

type name rootpage
---------- ------------------------- ----------
table episodes 2
table foods 3
table foods_episodes 4
table food_types 5
index foods_name_idx 30
table sqlite_sequence 50
trigger foods_update_trg 0
trigger foods_insert_trg 0
trigger foods_delete_trg 0

The type column refers to the type of object, name is of course the name of the object, and rootpage refers
to the first B-tree page of the object in the database file. This latter column is relevant only for tables and
indexes.

The sqlite_master table also contains another column called sql, which stores the DML used to
create the object. Here’s an example:

sqlite> select sql from sqlite_master where name='foods_update_trg';

create trigger foods_update_trg
before update of type_id on foods
begin
 select case
 when (select id from food_types where id=new.type_id) is null
 then raise(abort,
 'Foreign Key Violation: foods.type_id is not in food_types.id')
 end;
end

Viewing Query Plans
You can view the way SQLite goes about executing a query by using the explain query plan command.
The explain query plan command lists the steps SQLite carries out to access and process tables and
data to satisfy your query.

To use explain query plan, just issue the command followed by your normal query text. For
instance, here’s what explain query plan has to say about how a query on the foods table is processed:

sqlite> explain query plan select * from foods where id = 145;
order from detail
---------- ---------- -----------------------------
0 0 TABLE foods USING PRIMARY KEY

CHAPTER 4 ■ ADVANCED SQL FOR SQLITE

124

This means that SQLite is accessing the foods table and using the primary key (on id) to perform the
access (rather than scanning the table’s data in a brute-force fashion).
Studying these query plans is the key to understanding how SQLite is approaching your data and
satisfying your query. You can spot when and how indices are used and the order in which tables are
used in joins. This is of immense help when troubleshooting long-running queries and other issues.

Summary
SQL may be a simple language to use, but there is quite a bit of it, and it’s taken us two chapters just to
introduce the major concepts for SQLite’s implementation of SQL. But that shouldn’t be too surprising,
because it is the sole interface through which to interact with a relational database. Whether you are a
casual user, system administrator, or developer, you have to know SQL if you are going to work with a
relational database.

If you are programming with SQLite, then you should be off to a good start on the SQL side of things.
Now you need to know a little about how SQLite goes about executing all of these commands. This is
where Chapter 5 should prove useful. It will introduce you to the API and show you how it works in
relation to the way SQLite functions internally.

C H A P T E R 5

■ ■ ■

125

SQLite Design and Concepts

This chapter sets the stage for the following chapters, each of which focuses on a different aspect of
programming with SQLite. It addresses the things that you as a programmer should know about SQLite
when using it in your code. Whether you are programming with SQLite in its native C or in your favorite
scripting language, it helps to understand not only its API but also a little about its architecture and
implementation. Armed with this knowledge, you will be better equipped to write code that runs faster
and avoids potential pitfalls such as deadlocks or unexpected errors. You will see how SQLite works in
relation to your code, and you can be more confident that you are attacking the problem from the right
direction.

You don’t have to comb through the bowels of the source code to understand these things, and you
don’t have to be a C programmer. SQLite’s design and concepts are all very straightforward and easy to
understand. And there are only a few things you need to know. This chapter lays out the main concepts
and components on which to build your understanding.

Key to understanding SQLite is knowing how the API works. So, this chapter starts with a conceptual
introduction to the API, illustrating its major data structures, its general design, and its major functions.
It also looks at some of the major SQLite subsystems that play important roles in query processing.

Beyond just knowing what functions do what, we’ll also look above the API, seeing how everything
operates in terms of transactions. Everything involving a SQLite database is done within the context of a
transaction. Then you need to look beneath the API, seeing how transactions work in terms of locks.
Locks can cause problems if you don’t know how they operate. By understanding locks, not only can you
avoid potential concurrency problems, but you can also optimize your queries by controlling how your
program uses them.

Finally, you have to understand how all of these things apply to writing code. The last part of the
chapter brings all three topics—the API, transactions, and locks—together and looks at different
examples of good and bad code. It specifically identifies scenarios that could cause problems and
provides some insight on how to address them.

With these things in order, you will be well on your way to conquering the C API and the API of any
language extension.

The API
Functionally, the SQLite API can be separated into two general parts: the core API and the extension API.
The core API consists all the functions used to perform basic database operations: connecting to the
database, processing SQL, and iterating through results. It also includes various utility functions that
help with tasks such as string formatting, operational control, debugging, and error handling. The

CHAPTER 5 ■ SQLITE DESIGN AND CONCEPTS

126

extension API offers different ways to extend SQLite by creating your own user-defined SQL extensions,
which you can integrate into SQLite’s SQL dialect.

The Principal Data Structures
As you saw in Chapter 1, there are many components in SQLite—parser, tokenizer, virtual machine, and
so on. But from a programmer’s point of view, the main things to know about are connections,
statements, the B-tree, and the pager. Figure 5-1 shows their relationships to one another. These objects
collectively address the three principal things you must know about SQLite to write good code: the API,
transactions, and locks.

Figure 5-1. SQLite C API object model

Technically, the B-tree and pager are not part of the API; they are off-limits. But they play a critical
role in transactions and locks. We will explore their involvement in these matters here in this section and
later in the section “Transactions.”

Connections and Statements
The two fundamental data structures in the API associated with query processing are the connection
and the statement. In most language extensions, you will see both a connection object and a statement
object, which are used to execute queries. In the C API, they correspond directly to the sqlite3 and

CHAPTER 5 ■ SQLITE DESIGN AND CONCEPTS

127

sqlite3_stmt handles, respectively. Every major operation in the API is done using one of these two
structures.

A connection represents a single connection to a database as well as a single transaction context.
Statements are derived from connections. That is, every statement has an associated connection object.
A statement represents a single compiled SQL statement. Internally, it is expressed in the form of VDBE
byte code—a program that when executed will carry out the SQL command. Statements contain
everything needed to execute a command. They include resources to hold the state of the VDBE program
as it is executed in a stepwise fashion, B-tree cursors that point to records on disk, and other things such
as bound parameters, which are addressed later in the section “Parameter Binding.” Although they
contain many different things, you can simply think of them as cursors with which to iterate through a
result set, or as opaque handles referencing a single SQL command.

The B-tree and Pager
Each connection can have multiple database objects—one main database followed by any attached
databases. Each database object has one B-tree object, which in turn has one pager object.

Statements use their connection’s B-tree and pager objects to read and write data to and from the
database. Statements that read the database iterate over B-trees using cursors. Cursors iterate over
records, and records are stored in pages. As a cursor traverses records, it also traverses pages. For a
cursor to access a page, it must first be loaded from disk into memory. This is the pager’s job. Whenever
the B-tree needs a particular page in the database, it asks the pager to fetch it from disk. The pager then
loads the page into its page cache, which is a memory buffer. Once it is in the page cache, the B-tree and
its associated cursor can get to the records inside the page.

If the cursor modifies the page, then the pager must also take special measures to preserve the
original page in the event of a transaction rollback. Thus, the pager is responsible for reading and writing
to and from the database, maintaining a memory cache or pages, and managing transactions. In
addition to this, it manages locks and crash recovery. All of these responsibilities are covered later in
“Transactions.”

There are two things you should know about connections and transactions in general. First, when it
comes to any operation on the database, a connection always operates under a transaction. Second, a
connection never has more than one transaction open at a time. That means all statements derived from
a given connection operate within the same transaction context. If you want the two statements to run
in separate transactions, then you have to use multiple connections—one connection for each
transaction context.

The Core API
As mentioned earlier, the core API is concerned with executing SQL commands. It is made of various
functions for performing queries as well as various utility functions for managing other aspects of the
database. There are two essential methods for executing SQL commands: prepared queries and wrapped
queries. Prepared queries are the way in which SQLite ultimately executes all commands, both in the API
and internally. It is a three-phase process consisting of preparation, execution, and finalization. There is
a single API function associated with each phase. Associated with the execution phase are functions with
which to obtain record and column information from result sets.

CHAPTER 5 ■ SQLITE DESIGN AND CONCEPTS

128

In addition to the standard query method, there are two wrapper functions, which wrap the three
phases into a single function call. They provide a convenient way to execute a SQL command all at once.
These functions are just a few of the many miscellaneous utility functions in the API. We will look at all
of the query methods along with their associated utility functions in this section. Before we do however,
let’s first look at how to connect to a database.

Connecting to a Database
Connecting to a database involves little more than opening a file. Every SQLite database is stored in a
single operating system file—one database to one file. The function used to connect, or open, a database
in the C API is sqlite3_open() and is basically just a system call for opening a file. SQLite can also create
in-memory databases. In most extensions, if you use :memory: or an empty string as the name for the
database, it will create the database in RAM. The database will be accessible only to the connection that
created it (it cannot be shared with other connections). Furthermore, the database will only last for the
duration of the connection. It is deleted from memory when the connection closes.

When you connect to a database on disk, SQLite opens a file, if it exists. If you try to open a file that
doesn’t exist, SQLite will assume that you want to create a new database. In this case, SQLite doesn’t
immediately create a new operating system file. It will create a new file only if you put something into
the new database—create a table or view or other database object. If you just open a new database, do
nothing, and close it, SQLite does not bother with creating a database file—it would just be an empty file
anyway.

There is an important reason for not creating a new file right away. Certain database options, such
as encoding, page size, and autovacuum, can be set only before you create a database. By default, SQLite
uses a 1,024-byte page size. However, you can use different page sizes ranging from 512 to 32,768 bytes
by powers of 2. You might want to use different page sizes for performance reasons. For example, setting
the page size to match the operating system’s page size can make I/O more efficient. Larger page sizes
can help with applications that deal with a lot of binary data. You set the database page size using the
page_size pragma.

Encoding is another permanent database setting. You specify a database’s encoding using the
encoding pragma, which can be UTF-8, UTF-16, UTF-16le (little endian), and UTF-16be (big endian).

Finally there is autovacuum, which you set with the auto_vacuum pragma. When a transaction
deletes data from a database, SQLite’s default behavior is to keep the deleted pages around for recycling.
The database file remains the same size. To free the pages, you must explicitly issue a vacuum command
to reclaim the unused space. The autovacuum feature causes SQLite to automatically shrink the
database file when data is deleted. This feature is often more useful in embedded applications where
storage is a premium.

Once you open a database—file or memory—it will be represented internally by an opaque sqlite3
connection handle. This handle represents a single connection to a database. Connection objects in
extensions abstract this handle and sometimes implement methods that correspond to API functions
that take the handle as an argument.

CHAPTER 5 ■ SQLITE DESIGN AND CONCEPTS

129

Executing Prepared Queries
As stated earlier, the prepared query method is the actual process by which SQLite executes all SQL
commands. Executing a SQL command is a three-step process:

• Preparation: The parser, tokenizer, and code generator prepare the SQL
statement by compiling it into VDBE byte code. In the C API, this is performed by
the sqlite3_prepare_v2() function, which talks directly to the compiler. The
compiler creates a sqlite3_stmt handle (statement handle) that contains the byte
code and all other resources needed to execute the command and iterate over the
result set (if the command produces one).

• Execution: The VDBE executes the byte code. Execution is a stepwise process. In
the C API, each step is initiated by sqlite3_step(), which causes the VDBE to step
through the byte code. The first call to sqlite3_step() usually acquires a lock of
some kind, which varies according to what the command does (reads or writes).
For SELECT statements, each call to sqlite3_step() positions the statement
handle’s cursor on the next row of the result set. For each row in the set, it returns
SQLITE_ROW until it reaches the end, whereupon it returns SQLITE_DONE. For other
SQL statements (insert, update, delete, and so on), the first call to sqlite3_step()
causes the VDBE to process the entire command.

• Finalization: The VDBE closes the statement and deallocates resources. In the C
API, this is performed by sqlite3_finalize(), which causes the VDBE to
terminate the program, freeing resources and closing the statement handle.

Each step—preparation, execution, finalization—corresponds to a respective statement handle
state—prepared, active, or finalized. Prepared means that all necessary resources have been allocated
and the statement is ready to be executed, but nothing has been started. No lock has been acquired, nor
will a lock be acquired until the first call to sqlite3_step(). The active state starts with the first call to
sqlite3_step(). At that point, the statement is in the process of being executed, and some kind of lock is
in play. Finalized means that the statement is closed and all associated resources have been freed. Figure
5-2 shows these steps and states.

CHAPTER 5 ■ SQLITE DESIGN AND CONCEPTS

130

Figure 5-2. Statement processing

The following pseudocode illustrates the general process of executing a query in SQLite:

1. Open the database, create a connection object (db)
db = open('foods.db')

2.A. Prepare a statement
stmt = db.prepare('select * from episodes')

CHAPTER 5 ■ SQLITE DESIGN AND CONCEPTS

131

2.B. Execute. Call step() is until cursor reaches end of result set.
while stmt.step() == SQLITE_ROW
 print stmt.column('name')
end

2.C. Finalize. Release read lock.
stmt.finalize()

3. Insert a record
stmt = db.prepare('INSERT INTO foods VALUES (…)')
stmt.step()
stmt.finalize()

4. Close database connection.
db.close()

This pseudocode is an object-oriented analog of the API, similar to what you might find in a scripting
language. The methods all correspond to SQLite API functions. For example, prepare() mirrors
sqlite3_prepare()_v2, and so on. This example performs a SELECT, iterating over all returned rows,
followed by an INSERT, which is processed by a single call to step().

TEMPORARY STORAGE

Temporary storage is an important part of query processing. SQLite occasionally needs to store
intermediate results produced in the process of executing commands—for instance, when results need to
be sorted for an order by clause or rows in one table are joined with rows in another table. This
information is often stored in temporary storage. Temporary storage is kept either in RAM or in a file.
Although SQLite has suitable defaults for all platforms, you may want to control how and where it uses this
storage. The temp_store pragma lets you specify whether to use RAM or file-based storage. If you use
file-based storage, you can use the temp_store_directory pragma to specify where the storage file is
created.

Using Parameterized SQL
SQL statements can contain parameters. Parameters are placeholders in which values may be provided
(or “bound”) at a later time after compilation. The following statements are examples of parameterized
queries:

insert into foods (id, name) values (?,?);
insert into episodes (id, name) (:id, :name);

These statements represent two forms of parameter binding: positional and named. The first command
uses positional parameters, and the second command uses named parameters.

Positional parameters are defined by the position of the question mark in the statement. The first
question mark has position 1, the second 2, and so on. Named parameters use actual variable names,
which are prefixed with a colon. When sqlite3_prepare_v2() compiles a statement with parameters, it
allocates placeholders for the parameters in the resulting statement handle. It then expects values to be

CHAPTER 5 ■ SQLITE DESIGN AND CONCEPTS

132

provided for these parameters before the statement is executed. If you don’t bind a value to a parameter,
SQLite will use NULL as the default when it executes the statement.

The advantage of parameter binding is that you can execute the same statement multiple times
without having to recompile it. You just reset the statement, bind a new set of values, and reexecute. This
is where resetting rather than finalizing a statement comes in handy: it avoids the overhead of SQL
compilation. By resetting a statement, you are reusing the compiled SQL code. You completely avoid the
tokenizing, parsing, and code generation overhead. Resetting a statement is implemented in the API by
the sqlite3_reset() function.

The other advantage of parameters is that SQLite takes care of escaping the string values you bind to
parameters. For example, if you had a parameter value such as 'Kenny's Chicken', the parameter
binding process will automatically convert it to 'Kenny''s Chicken'—escaping the single quote for you,
helping you avoid syntax errors and possible SQL injection attacks (covered in the section “Formatting
SQL Statements”). The following pseudocode illustrates the basic process of using bound parameters:

db = open('foods.db')
stmt = db.prepare('insert into episodes (id, name) values (:id, :name)')

stmt.bind('id', '1')
stmt.bind('name', 'Soup Nazi')
stmt.step()

Reset and use again
stmt.reset()
stmt.bind('id', '2')
stmt.bind('name', 'The Junior Mint')

Done
stmt.finalize()

db.close()

Here, reset() simply deallocates the statement’s resources but leaves its VDBE byte code and
parameters intact. The statement is ready to run again without the need for another call to prepare().
This can significantly improve performance of repetitive queries such as this because the compiler
completely drops out of the equation.

Executing Wrapped Queries
As mentioned earlier, there are two very useful utility functions that wrap the prepared query process,
allowing you to execute SQL commands in a single function call. One function—sqlite3_exec()—is
typically for queries that don’t return data. The other—sqlite3_get_table()—is typically for queries that
do. In many language extensions, you will see analogs to both functions. Most extensions refer to the
first method simply as exec() and the second as just get_table().

The exec() function is a quick and easy way to execute insert, update, and delete statements or
DDL statements for creating and destroying database objects. It works straight from the database
connection, taking a sqlite3 handle to an open database along with a string containing one or more SQL
statements. That’s right; exec() is capable of processing a string of multiple SQL statements delimited by
semicolons and running them all together.

Internally, exec() parses the SQL string, identifies individual statements, and then processes them
one by one. It allocates its own statement handles and prepares, executes, and finalizes each statement.

CHAPTER 5 ■ SQLITE DESIGN AND CONCEPTS

133

If multiple statements are passed to it and one of them fails, exec() terminates execution on that
command, returning the associated error code. Otherwise, it returns a success code. The following
pseudocode illustrates conceptually how exec() works in an extension:

db = open('foods.db')
db.exec("insert into episodes (id, name) values (1, 'Soup Nazi')")
db.exec("insert into episodes (id, name) values (2, 'The Fusilli Jerry')")
db.exec("begin; delete from episodes; rollback")
db.close()

Although you can also use exec() to process records returned from SELECT, it involves subtle methods for
doing so that are generally supported only by the C API.

The second query function, sqlite3_get_table(), is somewhat of a misnomer because it is not
restricted to just querying a single table. Rather, its name refers to the tabular results of a select query.
You can certainly process joins with it just as well. In many respects, get_table() works in the same way
as exec(), but it returns a complete result set in memory. This result set is represented in various ways
depending on the extension. The following pseudocode illustrates how it is typically used:

db = open('foods.db')
table = db.get_table("select * from episodes limit 10")

for i=0; i < table.rows; i++
 for j=0; j < table.cols; j++
 print table[i][j]
 end
end

db.close()

The upside of get_table() is that it provides a one-step method to query and get results. The
downside is that it stores the results completely in memory. So, the larger the result set, the more
memory it consumes. Not surprisingly, then, it is not a good idea to use get_table() to retrieve large
result sets. The prepared query method, on the other hand, holds only one record (actually its associated
database page) in memory at a time, so it is much better suited for traversing large result sets.

Notice that although these functions buy you convenience, you also lose a bit of control simply by
not having access to a statement handle. For example, you can’t use parameterized SQL statements with
either of them. So, they are not going to be as efficient for repetitive tasks that could benefit from
parameters. Also, the API includes functions that work with statement handles that provide lots of
information about columns in a result set—both data and metadata. These are not available with
wrapped queries either. Wrapped queries have their uses, to be sure. But prepared queries do as well.

Handling Errors
The previous examples are greatly oversimplified to illustrate the basic parts of query processing. In real
life, you always have to consider the possibility of errors. Almost every function you have seen so far can
encounter errors of some sort. Common error codes you need to be prepared to handle include
SQLITE_ERROR and SQLITE_BUSY. The latter error code refers to busy conditions that arise when a
connection can’t get a lock. Busy conditions are addressed in the “Transactions” section, while schema
errors are covered in detail in Chapter 6.

CHAPTER 5 ■ SQLITE DESIGN AND CONCEPTS

134

With regard to general errors, the API provides the return code of the last-called function with the
sqlite3_errcode() function. You can get more specific error information using the sqlite3_errmsg()
function, which provides a text description of the last error. Most language extensions support this
function in some way or another.

With this in mind, each call in the previous example should check for the appropriate errors using
something like the following:

Check and report errors
if db.errcode() != SQLITE_OK
 print db.errmsg(stmt)
end

In general, error handling is not difficult. The way you handle any error depends on what exactly
you are trying to do. The easiest way to approach error handling is the same as with any other API—read
the documentation on the function you are using and code defensively.

Formatting SQL Statements
Another nice convenience function you may see some extensions support is sqlite3_mprintf(). It is a
variant of the standard C library sprintf(). It has special substitutions that are specific to SQL that can
be very handy. These substitutions are denoted %q and %Q, and they escape SQL-specific values. %q works
like %s in that it substitutes a null-terminated string from the argument list. But it also doubles every
single-quote character, making your life easier and helping guard against SQL injection attacks (see the
sidebar “SQL Injection Attacks”). Here’s an example:

char* before = "Hey, at least %q no pig-man.";
char* after = sqlite3_mprintf(before, "he's");

The value after produced here is 'Hey, at least he''s no pig-man'. The single quote in he’s is
doubled, making it acceptable as a string literal in a SQL statement. The %Q formatting does everything %q
does, but it additionally encloses the resulting string in single quotes. Furthermore, if the argument for
%Q is a NULL pointer (in C), it produces the string NULL without single quotes. For more information, see
the sqlite3_mprintf() documentation in the C API reference in Appendix B.

SQL INJECTION ATTACKS

If your application relies on any user input with which to construct SQL statements, you could be
vulnerable to a SQL injection attack. If you are not careful to filter user input, it could be possible for
someone to craft input that could alter the SQL statement, injecting a new SQL statement into the string.
For example, say your program uses user input to fill in the value of the following SQL statement:

select * from foods where name='%s';

You replace the %s with whatever the user supplies. If users have any knowledge of your database, they
could provide input that can dramatically alter the SQL statement. For example, say the user were to
provide the following string value for the name input:

nothing' limit 0; select name from sqlite_master where name='%

CHAPTER 5 ■ SQLITE DESIGN AND CONCEPTS

135

After substituting the user’s input into your SQL statement, the new statement turns into two statements:

select * from foods where name='nothing' limit 0; select name from
sqlite_master where name='%';

The first statement will return nothing, and the second will return the names of all objects in your
database. Granted, the odds of this happening require quite a bit of knowledge on the attacker’s part, but it
is nevertheless possible. Some major (commercial) web applications have been known to keep SQL
statements embedded in their JavaScript, which can provide plenty of hints about the database being
used. In the previous example, all a malicious user has to do now is insert drop table statements for
every table found in sqlite_master, and you could find yourself fumbling through backups.

Operational Control
The API includes a variety of commands that allow you to monitor, control, or generally limit what can
happen in a database. SQLite implements them in the form of filters or callback functions that you can
register to be called for specific events. There are three “hook” functions: sqlite3_commit_hook(), which
monitors transaction commits on a connection; sqlite3_rollback_hook(), which monitors rollbacks;
and sqlite3_update_hook(), which monitors changes to rows from insert, update, and delete
operations.

■ Note The forthcoming release of SQLite 3.7 will include many new features, one of which is the Write Ahead
Log (WAL). With this, a further type of hook named wal_hook() will be implemented. This is a little different to the
hooks discussed here. More details on WAL will be covered in Chapter 11.

These hooks are called at runtime—while a command is executed. Each hook allows you to register a
callback function on a connection-by-connection basis and lets you provide some kind of application-
specific data to be passed to the callback as well. The general use of operational control functions is as
follows:

def commit_hook(cnx)
 log('Attempted commit on connection %x', cnx)
 return -1
end
db = open('foods.db')
db.set_commit_hook(rollback_hook, cnx)
db.exec("begin; delete from episodes; rollback")
db.close()

A hook’s return value has the power to alter the event in specific ways, depending on the hook. In this
example, because the commit hook returns a nonzero value, the commit will be rolled back.

Additionally, the API provides a very powerful compile time hook called sqlite3_set_authorizer().
This function provides you with fine-grained control over almost everything that happens in the
database as well as the ability to limit both access and modification on a database, table, and column
basis. This function is covered in detail in Chapter 6.

CHAPTER 5 ■ SQLITE DESIGN AND CONCEPTS

136

Using Threads
SQLite has a number of functions for using it in a multithreaded environment. With version 3.3.1, SQLite
introduced a unique operational mode called shared cache mode, which is designed for multithreaded
embedded servers. This model provides a way for a single thread to host multiple connections that share
a common page cache, thus lowering the overall memory footprint of the server. It also employs a
different concurrency model. Included with this feature are various functions for managing memory and
fine-tuning the server. This operational mode is explained further later in the section “Shared Cache
Mode” and in full detail in Chapter 6.

The Extension API
The extension API in the SQLite C API offers support for user-defined functions, aggregates, and
collations. A user-defined function is a SQL function that maps to some handler function that you
implement in C or another language. When using the C API, you implement this handler in C or C++. In
language extensions, you implement the handler in the same language as the extension.

User-defined extensions must be registered on a connection-by-connection basis as they are stored
in program memory. That is, they are not stored in the database, like stored procedures in larger
relational database systems. They are stored in your program. When your program or script starts up, it
is responsible for registering the desired user-defined extensions for each connection that it intends to
use them.

Creating User-Defined Functions
Implementing a user-defined function is a two-step process. First, you write the handler. The handler
does something that you want to perform from SQL. Next, you register the handler, providing its SQL
name, its number of arguments, and a pointer (or reference) to the handler.

For example, say you wanted to create a special SQL function called hello_newman(), which returns
the text 'Hello Jerry'. In the SQLite C API, you would first create a C function to implement this, such
as the following:

void hello_newman(sqlite3_context* ctx, int nargs, sqlite3_value** values)
{
 /* Create Newman's reply */
 const char *msg = "Hello Jerry";

 /* Set the return value.*/
 sqlite3_result_text(ctx, msg, strlen(msg), SQLITE_STATIC);
}

Don’t worry if you don’t know C or the C API. This handler just returns 'Hello Jerry'. Next, to actually
use it, you register this handler using the sqlite3_create_function() (or the equivalent function in your
language):

sqlite3_create_function(db, "hello_newman", 0, hello_newman);

CHAPTER 5 ■ SQLITE DESIGN AND CONCEPTS

137

The first argument (db) is the database connection. The second argument is the name of the function as
it will appear in SQL, and the third argument means that the function takes zero arguments. (If you
provide -1, then it means that the function accepts a variable number of arguments.) The last argument
is a pointer to the hello_newman() C function, which will be called when the SQL function is called.

Once registered, SQLite knows that when it encounters the SQL function hello_newman(), it needs to
call the C function hello_newman() to obtain the result. Now, you can execute select hello_newman()
within your program, and it will return a single row with one column containing the text 'Hello Jerry'.
As mentioned in Chapter 4, user-defined functions are a handy way to implement specialized domain
constraints by embedding them in check constraints.

Creating User-Defined Aggregates
Aggregate functions are functions that are applied to all records in a result set and compute some kind of
aggregate value from them. sum(), count(), and avg() are examples of standard SQL aggregate functions
in SQLite.

Implementing user-defined aggregates is a three-step process in which you register the aggregate,
implement a step function to be called for each record in the result set, and implement a finalize
function to be called after record processing. The finalize function allows you to compute the final
aggregate value and do any necessary cleanup.

The following is an example of implementing a simple SUM() aggregate called pysum in one of the
SQLite Python extensions:

connection=apsw.Connection("foods.db")

def step(context, *args):
 context['value'] += args[0]

def finalize(context):
 return context['value']

def pysum():
 return ({'value' : 0}, step, finalize)

connection.createaggregatefunction("pysum", pysum)

c = connection.cursor()
print c.execute("select pysum(id) from foods").next()[0]

The createaggregatefunction() function registers the aggregate, passing in the step() function and the
finalize function. SQLite passes step() a context, which it uses to store the intermediate value between
calls to step(). In this case, it is the running sum. SQLite calls finalize() after it has processed the last
record. Here, finalize() just returns the aggregated sum. SQLite automatically takes care of cleaning up
the context.

CHAPTER 5 ■ SQLITE DESIGN AND CONCEPTS

138

Creating User-Defined Collations
Collations define how string values are compared. User-defined collations therefore provide a way to
create different text comparison and sorting methods. This is done in the API by the
sqlite3_create_collation() function. SQLite provides three default collations: BINARY, NOCASE, and
RTRIM. BINARY compares string values using the C function memcmp() (which for all intents and purposes is
case sensitive). NOCASE is just the opposite—its sorting is case insensitive. The RTRIM collation works like
BINARY except that it ignores trailing spaces.

User-defined collations are especially helpful for locales that are not well served by the default
BINARY collation or those that need support for UTF-16. They can also be helpful in specific applications
such as sorting date formats that don’t lend themselves to both lexicographical and chronological order.
Chapter 7 illustrates implementing a user-defined collation to sort Oracle dates natively in SQLite.

Transactions
By now you should have a picture of how the API is laid out. You’ve seen different ways to execute SQL
commands along with some helpful utility functions. Executing SQL commands, however, involves more
than just knowing what’s in the API. Transactions and locks are closely intertwined with query
processing. Queries are always performed within transactions, transactions involve locks, and locks can
cause problems if not managed properly. You can control both the type and duration of locks by how
you use SQL and the way you write code.

Chapter 4 illustrated a specific scenario where deadlocks can arise just by the way that two
connections manage transactions through SQL alone. As a programmer, you will have another variable
to juggle—code—which can contain multiple connections in multiple states with multiple statement
handles on multiple tables at any given time. All it takes is a single statement handle, and your code may
be holding an EXCLUSIVE lock without you even realizing it, preventing other connections from getting
anything done.

That is why it is critical that you have good grasp of how both transactions and locks work and how
they relate to the various API functions used to perform queries. Ideally, you should be able to look at the
code you write and tell what transaction states it will be in or at least be able to spot potential problems.
In this section, we will explore the mechanics behind transactions and locks and in the next section
observe them at work in actual code.

Transaction Life Cycles
There are a couple of things to consider with code and transactions. First there is the issue of knowing
which objects run under which transactions. Next there is the question of duration—when does a
transaction start and when does it end, and at what point does it start to affect other connections? The
first question relates directly to the API. The second relates to SQL in general and SQLite’s
implementation in particular.

CHAPTER 5 ■ SQLITE DESIGN AND CONCEPTS

139

As you know, multiple statement handles can be allocated from a single connection. As shown in
Figure 5-2, each connection has exactly one B-tree and one pager object associated with it per database.
The pager plays a bigger role than the connection in this discussion because it manages transactions,
locks, the memory cache, and crash recovery—all of which will be covered in the next few sections. You
could just as easily say that the connection object handles all of this, but in reality it is the pager within it.
The important thing to remember is that when you write to the database, you do so with one
connection, one transaction at a time. Thus, all statement objects run within the single transaction
context of the connections from which they are derived. This answers the first question.

As for the second question, transaction duration (or the transaction life cycle) is as short as a single
statement, or as long as you like—until you say stop. By default, a connection operates in autocommit
mode, which means that every command you issue runs under a separate transaction. Conversely, when
you issue a begin, the transaction endures until you call either a COMMIT or a rollback, or until one of your
SQL commands causes a constraint violation that results in a rollback. The next question is how
transactions relate to locks.

Lock States
For the most part, lock duration shadows transaction duration. Although the two don’t always start
together, they do always finish together. When you conclude a transaction, you free its associated lock. A
better way of saying this is that a lock is never released until its associated transaction concludes or, in
the worse case, the program crashes. And if the program or system crashes, the transaction doesn’t
conclude in which case there is still an implicit lock on the database that will be resolved by the next
connection to access it. This is covered later in the sidebar “Locking and Crash Recovery.”

There are five different locks states in SQLite, and a connection is always in one of them no matter
what it’s doing. Figure 5-3 shows SQLite’s lock states and transitions. This diagram details every possible
lock state a connection can be in as well as every path it can take through the life of a transaction. The
diagram is represented in terms of lock states, lock transitions, and transaction life cycles. What you are
really looking at in the figure are the lives of transactions in terms of locks.

CHAPTER 5 ■ SQLITE DESIGN AND CONCEPTS

140

Figure 5-3. SQLite lock transitions

Each state has a corresponding lock with the exception of UNLOCKED. So, you can say a connection
“has a RESERVED lock” or “is in the RESERVED state” or just “is in RESERVED,” and it all means the same thing.
With the exception of UNLOCKED, for a connection to be in a given state it must first obtain the associated
lock.

Every transaction starts at UNLOCKED, RESERVED, or EXCLUSIVE. By default, everything begins in
UNLOCKED, as you can see in Figure 5-3. The locks states in white—UNLOCKED, PENDING, SHARED, and
RESERVED—can all exist at the same time between connections in a database. Starting with PENDING in
gray, however, things become more restrictive. The gray PENDING state represents the lock being held by a
single connection, namely, a writer that wants to get to EXCLUSIVE. Conversely, the white PENDING state
represents a path where connections acquire and release the lock on their way to SHARED. Despite all of
these different lock states, every transaction in SQLite boils down to one of two types: transactions that

CHAPTER 5 ■ SQLITE DESIGN AND CONCEPTS

141

read and transactions that write. That ultimately is what paints the locking picture: readers versus
writers and how they get along with each other.

Read Transactions
To start with, let’s go through the lock process of a select statement. Its path is very simple. A
connection that executes a select statement starts a transaction, which goes from UNLOCKED to SHARED
and upon commit back to UNLOCKED. End of story.

Now, out of curiosity, what happens when you execute two statements? What is the lock path then?
Well, it depends on whether you are running in autocommit or not. Consider the following example:

db = open('foods.db')
db.exec('begin')
db.exec('select * from episodes')
db.exec('select * from episodes')
db.exec('commit')
db.close()

Here, with an explicit begin, the two select commands execute within a single transaction and therefore
are executed in the same SHARED state. The first exec() runs, leaving the connection in SHARED, and then
the second exec() runs. Finally, the manual commit takes the connection from SHARED back to UNLOCKED.
The code’s lock path would be as follows:

UNLOCKED→PENDING →SHARED →UNLOCKED

Now consider the case where there are no begin and commit lines in the example. Then the two
select commands run in autocommit mode. They will therefore go through the entire path
independently. The lock path for the code now would be as follows:

UNLOCKED →PENDING →SHARED →UNLOCKED →PENDING →SHARED →UNLOCKED

Since the code is just reading data, it may not make much of a difference, but it does have to go
through twice the file locks in autocommit mode than it does otherwise. And, as you will see, a writer
could sneak in between the two select commands and modify the database between exec() calls, so you
can’t be sure that the two commands will return the same results. With begin..commit, on the other
hand, they are guaranteed to be identical in their results.

Write Transactions
Now let’s consider a statement that writes to the database, such as an update. First, the connection has
to follow the same path as select and get to SHARED. Every operation—read or write—has to start by
going through UNLOCKED →PENDING →SHARED, PENDING, as you will soon see, is a gateway lock.

The Reserved State
The moment the connection tries to write anything to the database, it has to go from SHARED to RESERVED.
If it gets the RESERVED lock, then it is ready to start making modifications. Even though the connection

CHAPTER 5 ■ SQLITE DESIGN AND CONCEPTS

142

cannot actually modify the database at this point, it can store modifications in a localized memory cache
inside the pager, called the page cache, mentioned earlier. This cache is the same cache you configure
with the cache_size pragma, as described in Chapter 4.

When the connection enters RESERVED, the pager initializes the rollback journal. This is a file (shown
in Figure 5-1) that is used in rollbacks and crash recovery. Specifically, it holds the database pages
needed to restore the database to its original state before the transaction. These database pages are put
there by the pager when the B-tree modifies a page. In this example, for every record the update
command modifies, the pager takes the database page associated with the original record and copies it
out to the journal. The journal then holds some of the contents of the database before the transaction.
Therefore, all the pager has to do in order to undo any transaction is to simply copy the contents in the
journal back into the database file. Then the database is restored to its state before the transaction.

In the RESERVED state, there are actually three sets of pages that the pager manages: modified pages,
unmodified pages, and journal pages. Modified pages are just that—pages containing records that the B-
tree has changed. These are stored in the page cache. Unmodified pages are pages the B-tree read but
did not change. These are a product of commands such as select. Finally, there are journal pages, which
are the original versions of modified pages. These are not stored in the page cache but rather written to
the journal before the B-tree modifies a page.

Because of the page cache, a writing connection can indeed get real work done in the RESERVED state
without interfering with other (reading) connections. Thus, SQLite can effectively have multiple readers
and one writer both working on the same database at the same time. The only catch is that the writing
connection has to store its modifications in its page cache, not in the database file. Note also that there
can be only one connection in RESERVED or EXCLUSIVE for a given database at a given time—multiple
readers but only one writer.

The Pending State
When the connection finishes making changes for the update and the time comes to commit the
transaction, the pager begins the process of entering the EXCLUSIVE state. You already know how this
works from Chapter 4, but we will repeat it for the sake of completeness. From the RESERVED state, the
pager tries to get a PENDING lock. Once it does, it holds onto it, preventing any other connections from
getting a PENDING lock. Look at Figure 5-3 and see what effect this has. Remember we told you that
PENDING was a gateway lock. Now you see why. Since the writer is holding onto the PENDING lock, nobody
else can get to SHARED from UNLOCKED anymore. The result is that no new connections can enter the
database: no new readers, no new writers. This PENDING state is the attrition phase. The writer is
guaranteed that it can wait in line for the database and—as long as everyone behaves properly—get it.
Only other sessions that already have SHARED locks can continue to work as normal. In PENDING, the
writer waits for these connections to finish and release their locks. What’s involved with waiting for locks
is a separate issue, which will be addressed shortly in the section “Waiting for Locks.”

When the other connections release their locks, the database then belongs to the writer. Then, the
pager moves from PENDING to EXCLUSIVE.

The Exclusive State
During EXCLUSIVE, the main job is to flush the modified pages from the page cache to the database file.
This is when things get serious, because the pager is going to actually modify the database. It goes about
this with extreme caution.

Before the pager begins writing the modified pages, it first tends to the journal. It checks that the
complete contents of the journal have been written to disk. At this point, it is very likely that even though
the pager has written pages to the journal file, the operating system has buffered many if not all of them

CHAPTER 5 ■ SQLITE DESIGN AND CONCEPTS

143

in memory. The pager tells the operating system to literally write all of these pages to the disk. This is
where the synchronous pragma comes into play, as described in Chapter 4. The method specified by
synchronous determines how careful the pager is to ensure that the operating system commits journal
pages to disk. The normal setting is to perform a single “sync” before continuing, telling the operating
system to confirm that all buffered journal pages are written to the disk surface. If synchronous is set to
FULL, then the pager does two full “syncs” before proceeding. If synchronous is set to NONE, the pager
doesn’t bother with the journal at all (and while it can be 50 times faster, you can kiss transaction
durability goodbye).

The reason that committing the journal to disk is so important is that if the program or system
crashes while the pager is writing to the database file, the journal is the only way to restore the database
file later. If the journal’s pages weren’t completely written to disk before a system crash, then the
database cannot be restored fully to its original state, because the journal pages that were in memory
were lost in the crash. In this case, you have an inconsistent database at best and a corrupted one at
worse.

■ Caution Even if you use the most conservative setting for the synchronous pragma, you still may not be
guaranteed that the journal is truly committed to disk. This is no fault of SQLite, but rather of certain types of
hardware and operating systems. SQLite uses the fsync() system call on Unix and FlushFileBuffers() on
Windows to force journal pages to disk. But it has been reported that these functions don’t always work, especially
with cheap IDE disks. Apparently, some manufacturers of IDE disks use controller chips that tend to bend the truth
about actually committing data to disk. In some cases, the chips cache the data in volatile memory while reporting
that they wrote it to the drive surface. Also, there have been (unconfirmed) reports that Windows occasionally
ignores FlushFileBuffers(). If you have hardware or software that lies to you, your transactions may not be as
durable as you might think.

Once the journal is taken care of, the pager then copies all of the modified pages to the database file.
What happens next depends on the transaction mode. If, as in this case, the transaction autocommits,
then the pager cleans up the journal, clears the page cache, and proceeds from EXCLUSIVE to UNLOCKED. If
the transaction does not commit, then the pager continues to hold the EXCLUSIVE lock, and the journal
stays in play until either a COMMIT or ROLLBACK is issued.

Autocommit and Efficiency
With all this in mind, consider what happens with UPDATEs that run in an explicit transaction versus ones
that run in autocommit. In autocommit, every command that modifies the database runs in a separate
transaction and travels through the following path:

UNLOCKED →PENDING →SHARED →RESERVED →PENDING →EXCLUSIVE →UNLOCKED

Additionally, each trip through this path involves creating, committing, and clearing out the
rollback journal. This all adds up. Although running multiple SELECTs in autocommit mode is perhaps
not that big of a deal performance-wise, you should really rethink autocommit mode for frequent writes.
And, as mentioned in the SELECT case, when running multiple commands in autocommit, there is

CHAPTER 5 ■ SQLITE DESIGN AND CONCEPTS

144

nothing stopping another connection from coming along and modifying the database in between
commands. If you have two updates that depend on specific values in the database, you should always
run them in the same transaction for this reason.

LOCKING AND CRASH RECOVERY

SQLite’s lock implementation is based on standard file locking. SQLite keeps three different file locks on
the database file: a reserved byte, a pending byte, and a shared region.

Everything starts at the pending byte. To move from UNLOCKED to SHARED, a connection first attempts to get
a read-lock on the pending byte. If successful, it gets a read lock on a random byte in the shared region
and releases the read lock on the pending byte. To move from SHARED to RESERVED, a connection attempts
to obtain a write lock on the reserved byte. To get from RESERVED to EXCLUSIVE, a connection attempts to
get a write lock on the pending byte. If successful, this is what causes the attrition process, because it is
no longer possible for other connections to get a read lock on the pending byte to enter SHARED. Finally, to
get the EXCLUSIVE lock, the connection attempts to get a write lock on the entire shared region. Since the
shared region holds read locks by all other active connections, this step guarantees that an EXCLUSIVE
lock is granted only after all other SHARED locks are first released.

SQLite’s crash recovery mechanism uses the reserved byte to determine when a database needs to be
restored. Since the journal file and the RESERVED lock go hand in hand, if the pager sees the former
without the latter, then something is wrong. Every time the pager opens a database file or tries to fetch a
page from the database, it does a simple consistency check. If it finds a journal file but no RESERVED lock
on the database, then the process that created the journal file must have crashed, or the system went
down. In this case, the journal is called a hot journal, and the database is potentially in an inconsistent
state. To make things right, the journal needs to be “played back” to restore the database to its original
state before the interrupted transaction.

To start the play back, the pager puts the database into recovery mode. To do this, it goes directly from
SHARED to PENDING as shown by the gray line in the illustration (and also in Figure 5-3). This is the only
time it ever makes this transition. The reason it skips the reserved lock is twofold. First, by locking the
pending byte, it keeps all new connections out of the database. Second, connections that are already in the
database (in SHARED) will also see the hot journal the next time they try to access a page. Those
connections will attempt to go into recovery mode and replay the journal as well. However, they won’t be
able to because the first connection already has the PENDING lock. Thus, by going straight from SHARED to
PENDING, the first connection ensures that (1) no new connections can enter the database and (2) active

CHAPTER 5 ■ SQLITE DESIGN AND CONCEPTS

145

connections in SHARED cannot go into recovery mode. Everyone but the restoring connection is temporarily
suspended.

Basically, a hot journal is an implicit EXCLUSIVE lock. If a writer crashes, no further activity can transpire in
the database until some connection restores it. The next pager to access a page will see the hot journal,
lock everyone out, and start recovery. If there are no other active connections, then the first program to
connect to the database will detect the hot journal and start recovery.

Tuning the Page Cache
If we change the previous example and say that it started with a begin, followed by the update, and in the
middle of making all those modifications the page cache fills up (runs out of memory), how should
SQLite respond? That is, the update results in more modified pages than will fit in the page cache. What
happens now?

Transitioning to Exclusive
The real question is, when exactly does the pager move from RESERVED to EXCLUSIVE and why? There are
two scenarios, and you’ve just seen them both. Either the connection reaches the commit point and
deliberately enters EXCLUSIVE or the page cache fills up and it has no other option. We just looked at the
commit point scenario. So, what happens when the page cache fills up? Put simply, the pager can no
longer store any more modified pages and therefore can no longer do any work. It is forced to move into
EXCLUSIVE in order to continue. In reality, this is not entirely true because there is a soft limit and a hard
limit.

The soft limit corresponds to the first time the page cache fills up. At this point, the cache is a mixed
bag of modified and unmodified pages. In this case, the pager tries to clean out the page cache. It goes
through the cache page by page looking for unmodified pages and clearing them out. Once it does that,
it can sputter along with what memory has freed up until the cache fills up again. It repeats the process
until the cache is completely made up of modified pages. And that is that hard limit. At this point, the
pager has no other recourse but to proceed into EXCLUSIVE.

The RESERVED state, then, is where the cache_size pragma makes a difference. Just as explained in
Chapter 4, cache_size controls the size of the page cache. The bigger the page cache, the more modified
pages the pager can store, and the more work the connection can do before having to enter EXCLUSIVE.
Also, as mentioned, by doing all the database work in RESERVED, you minimize the time in EXCLUSIVE. If
you get all your work done in RESERVED, then EXCLUSIVE is held only long enough to flush modified pages
to disk—not compile more queries and process more results and then write to disk. Doing the processing
in RESERVED can significantly increase overall concurrency. Ideally, if you have a large transaction or a
congested database and you can spare the memory, try to ensure that your cache size is large enough to
hold your connection in RESERVED as long as possible.

Sizing the Page Cache
So, how do you determine what the cache size should be? It depends on what you are doing. Say that you
want to update every record in the episodes table. In this case, you know that every page in the table will
be modified. Therefore, you figure out how many pages are in episodes and adjust the cache size
accordingly. You can get all the information you need on episodes using sqlite3_analyzer. For each

CHAPTER 5 ■ SQLITE DESIGN AND CONCEPTS

146

table, it will dump detailed statistics, including the total page count. For example, if you run it on the
foods database, you get the following information about episodes:

*** Table EPISODES ***

Percentage of total database.......... 20.0%
Number of entries..................... 181
Bytes of storage consumed............. 5120
Bytes of payload...................... 3229 63.1%
Average payload per entry............. 17.84
Average unused bytes per entry........ 5.79
Average fanout........................ 4.00
Maximum payload per entry............. 38
Entries that use overflow............. 0 0.0%
Index pages used...................... 1
Primary pages used.................... 4
Overflow pages used................... 0
Total pages used...................... 5
Unused bytes on index pages........... 990 96.7%
Unused bytes on primary pages......... 58 1.4%
Unused bytes on overflow pages........ 0
Unused bytes on all pages............. 1048 20.5%

The total page count is 5. But of those, only 4 pages of actual table are used—1 page is an index.
Since the default cache size is 2,000 pages, you have nothing to worry about. There are about 400 records
in episodes, which means there are about 100 records per page. You wouldn’t have to worry about
adjusting the page cache before updating every record unless there were at least 196,000 rows in
episodes. And remember, you would only need to do this in environments where there are other
connections using the database and concurrency is an issue. If you are the only one using the database,
then it really wouldn’t matter.

Waiting for Locks
We talked earlier about the pager waiting to go from PENDING to EXCLUSIVE. What exactly is involved with
waiting on a lock? First, any call to exec() or step() can involve waiting on a lock. Whenever SQLite
encounters a situation where it can’t get a lock, the default behavior is to return Delete SQLITE_BUSY to
the function that caused it to seek the lock. Regardless of the command you execute, you can potentially
encounter SQLITE_BUSY. SELECT commands, as you know by now, can fail to get a SHARED lock if a writer is
pending or writing. The simple thing to do when you get SQLITE_BUSY is to just retry the call. However,
we will see shortly that this is not always the best course of action.

Using a Busy Handler
Instead of just retrying the call over and over, you can use a busy handler. Rather than having the API
return SQLITE_BUSY if a connection cannot get a lock, you can get it to call the busy handler instead.

A busy handler is a function you create that kills time or does whatever else you want it to do—it can
send spam to your mother-in-law for all SQLite cares. It’s just going to get called when SQLite can’t get a
lock. The only thing the busy handler has to do is provide a return value, telling SQLite what to do next.

CHAPTER 5 ■ SQLITE DESIGN AND CONCEPTS

147

By convention, if the handler returns true, then SQLite will continue to try for the lock. If it returns false,
SQLite will then return SQLITE_BUSY to the function requesting the lock. Consider the following example:

counter = 1

def busy()
 counter = counter + 1
 if counter == 2
 return 0
 end

 spam_mother_in_law(100)
 return 1
end

db.busy_handler(busy)
stmt = db.prepare('select * from episodes;')
stmt.step()
stmt.finalize()

The implementation of spam_mother_in_law() is left as an exercise for the reader.

The step() function has to get a SHARED lock on the database to perform the select. However, say
there is a writer active. Normally, step() would return SQLITE_BUSY. However, in this case it doesn’t. The
pager (which is one that deals with locks) calls the busy() function instead, because it has been
registered as the busy handler. busy() increments a counter, forwards your mother-in-law 100 random
messages from your spam folder, and returns 1, which the pager interprets as true—keep trying to get
the lock. The pager then tries again to get the SHARED lock. Say the database is still locked. The pager calls
the busy handler again. Only this time, busy() returns 0, which the pager interprets as false. In this case,
rather than retrying the lock, the pager sends SQLITE_BUSY up the stack, and that’s what step() ends up
returning.

If you just want to kill time waiting for a lock, you don’t have to write your own busy handler. The
SQLite API has one for you. It is a simple busy handler that sleeps for a given period of time waiting for a
lock. In the API, the function is called sqlite3_busy_timeout(), and it is supported by some extension
libraries. You can essentially say “try sleeping for 10 seconds when you can’t get a lock,” and the pager
will do that for you. If it sleeps for 10 seconds and still can’t get the lock, then it will return SQLITE_BUSY.

Using the Right Transaction
Let’s consider the previous example again, but this time the command is an update rather than a select.
What does SQLITE_BUSY actually mean now? In select, it just means, “I can’t get a SHARED lock.” But what
does is mean for an update? The truth is, you don’t really know what it means. SQLITE_BUSY could mean
that the connection failed to get a SHARED lock because there is a writer pending. It could also mean that
it got a SHARED lock but couldn’t get to RESERVED. The point is you don’t know the state of the database or
the state of your connection for that matter. In autocommit mode, SQLITE_BUSY for a write operation is
completely indeterminate. So, what do you do next? Should you just keep calling step() over and over
until the command goes through?

Here’s the thing to think about. Suppose SQLITE_BUSY was the result of you getting a SHARED lock but
not RESERVED, and now you are holding up a connection in RESERVED from getting to EXCLUSIVE. Again,
you don’t know the state of the database. And just using a brute-force method to push your transaction
through is not necessarily going to work, for you or any other connection. If you just keep calling step(),

CHAPTER 5 ■ SQLITE DESIGN AND CONCEPTS

148

you are just going to butt heads with the connection that has the RESERVED lock, and if neither of you
backs down, you’ll deadlock.

■ Note SQLite tries to help with deadlock prevention in this particular scenario by ignoring the busy handler of the
offending connection. The SHARED connection’s busy handler will not be invoked if it is preventing a RESERVED
connection from proceeding. However, it is up to the code to get the hint. The code can still just repeatedly call
step() over and over, in which case there is nothing more SQLite can do to help.

Since you know you want to write to the database, then you need to start by issuing begin
IMMEDIATE. If you get a SQLITE_BUSY, then at least you know what state you’re in. You know you can safely
keep trying without holding up another connection. And once you finally do succeed, you know what
state you are in then as well—RESERVED. Now you can use brute force if you have to because you are the
one in the right. If you start with a begin exclusive, on the other hand, then you are assured that you
won’t have any busy conditions to deal with at all. Just remember that in this case you are doing your
work in EXCLUSIVE, which is not as good for concurrency as doing the work in RESERVED.

LOCKS AND NETWORK FILE SYSTEMS

At this point, you should have a good appreciation for what can go wrong when a database is shared over
a network file system. SQLite handles concurrency by placing file locks on the database file. It is very
important that these locks be both set and released at the right times. SQLite is completely dependent on
the file system to manage locks correctly for concurrent use. SQLite uses the same locking mechanisms
regardless of whether it is running on a normal file system or network file system. It uses POSIX advisory
locks on Unix, Linux, and OS X, and the LockFile(), LockFileEx(), and UnlockFile() system calls on
Windows. These calls are standard system calls and work correctly on normal file systems. It is the
network file system’s job to emulate a normal file system. And unfortunately, this doesn’t always work
correctly with some implementations. And even if the network file system works correctly, there still other
things to consider.

Take NFS, for example. It’s a great network file system. However, many original NFS implementations
were known to have buggy or in some cases unimplemented locking. And with a SQLite database, this can
cause serious problems. Without locking, two connections can get an EXCLUSIVE lock on the same
database and write to it at the same time, leading to an almost certain database corruption. This is not a
problem with the NFS protocol in general, but with some implementations of it in particular. Thankfully,
most modern implementations of NFS have overcome these issues, and some implementations—such as
those from Sun—are now rock-solid.

NFS can still have issues with locking if one of the clients goes down (taking their database lock with it)
and does not come back up. For NFSv3, a locked file would need administrative intervention to clear it. For
NFSv4, there would be a timeout period. But how long is the timeout? Thirty seconds? A minute? The real
issue is not NFS but specific applications of it. Network file systems, even if perfectly implemented, are not
necessarily going to work exactly like a local file system.

CHAPTER 5 ■ SQLITE DESIGN AND CONCEPTS

149

The bottom line is, if you are going to mix concurrency and network file systems, there are many issues to
consider, even if you are using the best network file system out there. It’s not as simple as running on a
local file system.

Code
By now, you have a pretty good picture of the API, transactions, and locks. To finish up, let’s put all three
of these things together in the context of your code and consider a few scenarios for which you might
want to watch.

Using Multiple Connections
If you have written code that uses other relational databases, you may have written code that used
multiple connections within a single block of code. The classic example is having one connection iterate
over a table while another connection modifies records in place.

In SQLite, using multiple connections in the same block of code can cause problems. You have to be
careful of how you go about it. Consider the following example:

c1 = open('foods.db')
c2 = open('foods.db')

stmt = c1.prepare('select * from episodes')

while stmt.step()
 print stmt.column('name')
 c2.exec('update episodes set <some columns, criteria, etc.>)
end

stmt.finalize()

c1.close()
c2.close()

We bet you can easily spot the problem here. In the while loop, c2 attempts an update, while c1 has a
SHARED lock open. That SHARED lock won’t be released until stmt is finalized after the while loop.
Therefore, it is impossible to write to the database within the while loop. Either the updates will silently
fail, or if you have a busy handler, then it will only delay the program. The best thing to do here is to use
one connection for the job and to run it under a single begin immediate transaction. The new version
might be as follows:

c1 = open('foods.db')

Keep trying until we get it
while c1.exec('begin immediate') != SQLITE_SUCCESS
end

stmt = c1.prepare('select * from episodes')

CHAPTER 5 ■ SQLITE DESIGN AND CONCEPTS

150

while stmt.step()
 print stmt.column('name')
 c1.exec('update episodes set <some columns, criteria, etc.>)
end

stmt.finalize()
c1.exec('commit')
c1.close()

In cases like this, you should use statements from a single connection for reading or writing. Then
you won’t have to worry about database locks causing problems. However, as it turns out, this particular
example still won’t work. If you are iterating over a table with one statement and updating it with
another, there is an additional locking issue that you need to know about as well, which we’ll cover next.

The Importance of Finalizing
A common gotcha in processing select statements is the failure to realize that the SHARED lock is not
necessarily released until finalize() (or reset()) is called—well, most of the time. Consider the
following example:

stmt = c1.prepare('select * from episodes')

while stmt.step()
 print stmt.column('name')
end

c2.exec('begin immediate; update episodes set …; commit;')

stmt.finalize()

Although you should never do this in practice, you might end up doing it anyway by accident simply
because you can get away with it. If you write the equivalent of this program in the C API, it will actually
work. Even though finalize() has not been called, the second connection can modify the database
without any problem. Before we tell you why, take a look at the next example:

c1 = open('foods.db')
c2 = open('foods.db')

stmt = c1.prepare('select * from episodes')

stmt.step()
stmt.step()
stmt.step()

c2.exec('begin immediate; update episodes set …; commit;')

stmt.finalize()

CHAPTER 5 ■ SQLITE DESIGN AND CONCEPTS

151

Let’s say that episodes has 100 records. And the program stepped through only three of them. What
happens here? The second connection will get SQLITE_BUSY.

In the first example, SQLite released the SHARED lock when the statement reached the end of the
result set. That is, in the final call to step(), where the API returns SQLITE_DONE, the VDBE encountered
the Close instruction, and SQLite closed the cursor and dropped the SHARED lock. Thus, c2 was able to
push its insert through even though c1 had not called finalize().

In the second case, the statement had not reached the end of the set. The next call to step() would
have returned SQLITE_RESULT, which means there are more rows in the results set and that the SHARED
lock is still active. Thus, c2 could not get the insert through this time because of the SHARED lock from c1.

The moral of the story is don’t do this, even though sometimes you can. Always call finalize() or
reset() before you write with another connection. The other thing to remember is that in autocommit
mode step() and finalize() are more or less transaction and lock boundaries. They start and end
transactions. They acquire and release locks. You should be very careful about what you do with other
connections in between these functions.

Shared Cache Mode
Now that you are clear on the concurrency rules, it’s time for some new confusion. SQLite offers an
alternative concurrency model called shared cache mode, which relates to how connections can operate
within individual threads.

In shared cache mode, a thread can create multiple connections that share the same page cache.
Furthermore, this group of connections can have multiple readers and a single writer (in EXCLUSIVE)
working on the same database at the same time. The catch is that these connections cannot be shared
across threads—they are strictly limited to the thread (running specifically in shared cache mode) that
created them. Furthermore, writers and readers have to be prepared to handle a special condition
involving table locks.

When readers read tables, SQLite automatically puts table locks on them. This prevents writers from
modifying those tables. If a writer tries to modify a read-locked table, it will get SQLITE_LOCKED. The same
logic applies to readers trying to read from write-locked tables. However, in this latter case, readers can
still go ahead and read tables that are being modified by a writer if they run in read-uncommitted mode,
which is enabled by the read_uncommitted pragma. In this case, SQLite does not place read locks on the
tables read by these readers. As a result, these readers don’t interfere with writers at all. However, these
readers can get inconsistent query results, because a writer can modify tables as the readers read them.
This is similar to the “dirty read” concept you might have seen in other relational databases.

Shared cache mode is designed for embedded servers that need to conserve memory and have
slightly higher concurrency under certain conditions. More information on using it with the C API can
be found in Chapter 6.

Summary
The SQLite API is flexible, intuitive, and easy to use. It has two basic parts: the core API and the extension
API. The core API revolves around two basic data structures used to execute SQL commands: the
connection and the statement. Commands are executed in three steps: compilation, execution, and
finalization. SQLite’s wrapper functions exec() and get_table() wrap these steps into a single function
call, automatically handling the associated statement object for you. The extension API provides you
with the means to customize SQLite in three difference ways: user-defined functions, user-defined
aggregates, and user-defined collations.

CHAPTER 5 ■ SQLITE DESIGN AND CONCEPTS

152

Because SQLite’s concurrency model is somewhat different from other databases, it is important
that you understand a bit about how it manages transactions and locks, how they work behind the
scenes, and how they work within your code. Overall, the concepts are not difficult to understand, and
there are just a few simple rules to keep in mind when you write code that uses SQLite.

The following chapters will draw heavily on what you’ve have learned here, because these concepts
apply not only to the C API but to language extensions as well as they are built on top of the C API.

C H A P T E R 6

■ ■ ■

153

The Core C API

This chapter covers the part of the SQLite API used to work with databases. You already saw an overview
of how the API works in Chapter 5. Now let’s concentrate on the specifics.

Starting with a few easily understood examples, we will take an in-depth tour through the C API and
expand upon the examples, filling in various details with a variety of useful functions. As we go along,
you should see the C equivalents of the model all fall into place, with some additional features you may
not have seen before—features that primarily exist only in the C API. By the time we reach the end of this
chapter, you should have a good feel for all of the API functions related to running commands, managing
transactions, fetching records, handling errors, and performing many other tasks related to general
database work.

The SQLite version 3 API consists of dozens and dozens of functions. Only about eight functions,
however, are needed to actually connect, process queries, and disconnect from a database. The
remaining functions can be arranged into small groups that specialize in accomplishing specific tasks.

Although it is best to read the chapter straight through, if at any point you want more detailed
information on a particular function, you can consult the C API reference at www.sqlite.org/
c3ref/intro.html.

You can find all the examples in this chapter in self-contained example programs in the examples
zip file, available on the Apress web site at www.apress.com. For every example presented, we specifically
identify the name of the corresponding source file from which the example was taken.

Wrapped Queries
You are already familiar with the way that SQLite executes queries, as well as its various wrapper
functions for executing SQL commands in a single function call. We will start with the C API versions of
these wrappers because they are simple, self-contained, and easy to use. They are a good starting point,
which will let you have some fun and not get too bogged down with details. Along the way, I’ll introduce
some other handy functions that go hand in hand with query processing. By the end of this section, you
will be able connect, disconnect, and query a database using the wrapped queries.

Connecting and Disconnecting
Before you can execute SQL commands, you first have to connect to a database. Connecting to a
database is perhaps best described as opening a database, because SQLite databases are contained in
single operating system files (one file to one database). Similarly, the preferred term for disconnecting is
closing the database.

http://www.sqlite.org
http://www.apress.com

CHAPTER 6 ■ THE CORE C API

154

You open a database with the sqlite3_open_v2(), sqlite3_open(), or sqlite3_open16() functions,
which have the following declaration(s):

int sqlite3_open_v2(
 const char *filename, /* Database filename (UTF-8) */
 sqlite3 **ppDb /* OUT: SQLite db handle */
 int flags, /* Flags */
 const char *zVfs /* Name of VFS module to use */
);

int sqlite3_open (
 const void *filename, /* Database filename (UTF-8) */
 sqlite3 **ppDb /* OUT: SQLite db handle */
);

int sqlite3_open16(
 const void *filename, /* Database filename (UTF-16) */
 sqlite3 **ppDb /* OUT: SQLite db handle */
);

Typically, you’ll use sqlite3_open_v2(), because this is the latest and greatest function in SQLite for
opening your database, and it accommodates more options and capabilities over the old
sqlite3_open(). Regardless of the function chosen, the filename argument can be the name of an
operating system file, the text string ':memory:', or an empty string or a NULL pointer. If you use
':memory:', sqlite3_open_v2() will create an in-memory database in RAM that lasts only for the
duration of the session. If filename is an empty string or a NULL, sqlite3_open_v2() opens a temporary
disk file that is automatically deleted when the connection closes. Otherwise, sqlite3_open_v2()
attempts to open the database file by using its value. If no file by that name exists, sqlite3_open_v2()
will open a new database file by that name if the SQLITE_OPEN_CREATE flag is included in the third
parameter, or it will return an error if the SQLITE_OPEN_CREATE flag is omitted.

■ Note Here we have included both the UTF-8 and UTF-16 declarations for sqlite3_open(), as well as the more
modern sqlite3_open_v2(). From here on out, we will refer to the UTF-8 declarations only for the sake of brevity,
and where they exist, we’ll deal with the latest function signatures that incorporate SQLite’s latest functionality,
rather than cover all the legacy functions as well. Therefore, please keep in mind that there are many functions in
the API that have UTF-16 forms, as well as older UTF-8 forms for backward compatibility. The complete C API
reference is available on the SQLite web site at www.sqlite.org/c3ref/intro.html.

The flags parameter is a bit vector that can include the following values: SQLITE_OPEN_READONLY,
SQLITE_OPEN_READWRITE, and SQLITE_OPEN_CREATE. The names are reasonable self-explanatory, but a few
subtleties are worth noting. SQLITE_OPEN_READONLY and SQLITE_OPEN_READWRITE open a SQLite database
in read-only or read/write mode as their names suggest. Both options require that the database file
already exist; otherwise, an error will be returned. SQLITE_OPEN_CREATE combined with
SQLITE_OPEN_READWRITE exhibits the behavior we’ve seen in the first five chapters, which is the legacy
sqlite3_open() behavior. Where a database already exists, it is opened for reading and writing. If the

http://www.sqlite.org/c3ref/intro.html

CHAPTER 6 ■ THE CORE C API

155

database specified doesn’t exist, it is created (though as we’ve pointed out quite a few times, the act of
persisting the database to disk will be pending the creation of the first object).

The flags parameter can also be combined with the SQLITE_OPEN_NOMUTEX, SQLITE_OPEN_FULLMUTEX,
SQLITE_OPEN_SHAREDCACHE, or SQLITE_OPEN_PRIVATECACHE flags to further control transactional behavior
for the database handle. The final parameter, zVfs, allows the caller to override the default sqlite3_vfs
operating system interface.

Upon completion, sqlite3_open_v2() will initialize the sqlite3 structure passed into it by the ppDb
argument. This structure should be considered as an opaque handle representing a single connection to
a database. This is more of a connection handle than a database handle since it is possible to attach
multiple databases to a single connection. However, this connection still represents exactly one
transaction context regardless of how many databases are attached.

You close a connection by using the sqlite3_close() function, which is declared as follows:

int sqlite3_close(sqlite3*);

For sqlite3_close() to complete successfully, all prepared queries associated with the connection
must be finalized. If any queries remain that have not been finalized, sqlite3_close() will return
SQLITE_BUSY with the error message “Unable to close due to unfinalized statements.”

■ Note If there is a transaction open on a connection when it is closed by sqlite3_close(), the transaction will
automatically be rolled back.

The exec Query
The sqlite3_exec() function provides a quick, easy way to execute SQL commands and is especially
handy for commands that modify the database (that is, don’t return any data). This is often also referred
to as a convenience function, which nicely wraps up a lot of other tasks in one easy API call. This function
has the following declaration:

int sqlite3_exec(
 sqlite3*, /* An open database */
 const char *sql, /* SQL to be executed */
 sqlite_callback, /* Callback function */
 void *data /* 1st argument to callback function */
 char **errmsg /* Error msg written here */
);

The SQL provided in the sql argument can consist of more than one SQL command. sqlite3_exec()
will parse and execute every command in the sql string until it reaches the end of the string or
encounters an error. Listing 6-1 (taken from create.c) illustrates how to use sqlite3_exec().The
example opens a database called test.db and creates within it a single table called episodes. After that, it
inserts one record. The create table command will physically create the database file if it does not
already exist.

CHAPTER 6 ■ THE CORE C API

156

Listing 6-1. Using sqlite3_exec() for Simple Commands

int main(int argc, char **argv)
{
 sqlite3 *db;
 char *zErr;
 int rc;
 char *sql;

 rc = sqlite3_open_v2("test.db", &db);

 if(rc) {
 fprintf(stderr, "Can't open database: %s\n", sqlite3_errmsg(db));
 sqlite3_close(db);
 exit(1);
 }

 sql = "create table episodes(id int, name text)";
 rc = sqlite3_exec(db, sql, NULL, NULL, &zErr);

 if(rc != SQLITE_OK) {
 if (zErr != NULL) {
 fprintf(stderr, "SQL error: %s\n", zErr);
 sqlite3_free(zErr);
 }
 }

 sql = "insert into episodes values (10, 'The Dinner Party')";
 rc = sqlite3_exec(db, sql, NULL, NULL, &zErr);

 sqlite3_close(db);
 return 0;
}

As mentioned in Chapter 5, it is actually possible to get records from sqlite3_exec(), although you don’t
see it implemented much outside of the C API. sqlite3_exec() contains a callback mechanism that
provides a way to obtain results from select statements. This mechanism is implemented by the third
and fourth arguments of the function. The third argument is a pointer to a callback function. If it’s
provided, SQLite will call the function for each record processed in each select statement executed
within the sql argument. The callback function has the following declaration:

typedef int (*sqlite3_callback)(
 void*, /* Data provided in the 4th argument of sqlite3_exec() */
 int, /* The number of columns in row */
 char**, /* An array of strings representing fields in the row */
 char** /* An array of strings representing column names */
);

The fourth argument to sqlite3_exec() is a void pointer to any application-specific data you want
to supply to the callback function. SQLite will pass this data as the first argument of the callback
function.

CHAPTER 6 ■ THE CORE C API

157

The final argument (errmsg) is a pointer to a string to which an error message can be written should
an error occur during processing. Thus, sqlite3_exec() has two sources of error information. The first is
the return value. The other is the human-readable string, assigned to errmsg. If you pass in a NULL for
errmsg, then SQLite will not provide any error message. Note that if you do provide a pointer for errmsg,
the memory used to create the message is allocated on the heap. You should therefore check for a non-
NULL value after the call and use sqlite3_free() to free the memory used to hold the errmsg string if an
error occurs.

■ Note Note that you can pass a NULL into sqlite3_free(). The result is a harmless no-op. So, you can, if you
want, call sqlite3_free(errmsg) without having to check to see whether errmsg is not NULL. It mainly depends
on where and how you want to interrogate any actual errors and respond accordingly.

Putting it all together, sqlite3_exec() allows you to issue a batch of commands, and you can collect
all the returned data by using the callback interface. For example, let’s insert a record into the episodes
table and then select all of its records, all in a single call to sqlite3_exec(). The complete code, shown in
Listing 6-2, is taken from exec.c.

Listing 6-2. Using sqlite3_exec() for Record Processing

int callback(void* data, int ncols, char** values, char** headers);

int main(int argc, char **argv)
{
 sqlite3 *db;
 int rc;
 char *sql;
 char *zErr;

 rc = sqlite3_open_v2("test.db", &db);

 if(rc) {
 fprintf(stderr, "Can't open database: %s\n", sqlite3_errmsg(db));
 sqlite3_close(db);
 exit(1);
 }

 const char* data = "Callback function called";
 sql = "insert into episodes (id, name) values (11,'Mackinaw Peaches');"
 "select * from episodes;";
 rc = sqlite3_exec(db, sql, callback, data, &zErr);

CHAPTER 6 ■ THE CORE C API

158

 if(rc != SQLITE_OK) {
 if (zErr != NULL) {
 fprintf(stderr, "SQL error: %s\n", zErr);
 sqlite3_free(zErr);
 }
 }

 sqlite3_close(db);
 return 0;
}

int callback(void* data, int ncols, char** values, char** headers)
{
 int i;
 fprintf(stderr, "%s: ", (const char*)data);
 for(i=0; i < ncols; i++) {
 fprintf(stderr, "%s=%s ", headers[i], values[i]);
 }

 fprintf(stderr, "\n");
 return 0;
}

SQLite parses the sql string; runs the first command, which inserts a record; and then runs the
second command, consisting of the select statement. For the second command, SQLite calls the
callback function for each record returned. Running the program produces the following output:

 Callback function called: id=10 name=The Dinner Party
 Callback function called: id=11 name=Mackinaw Peaches

Notice that the callback function returns 0. This return value actually exerts some control over
sqlite3_exec(). If the callback function returns a nonzero value, then sqlite3_exec() will abort (in
other words, it will terminate all processing of this and subsequent commands in the sql string).

So, sqlite3_exec() provides an easy way to modify the database and also provides an interface with
which to process records. Why then should you bother with prepared queries? Well, as you will see in the
next section, there are quite a few advantages:

• Prepared queries don’t require a callback interface, which makes coding simple
and more linear.

• Prepared queries have associated functions that provide better column
information. You can obtain a column’s storage type, declared type, schema name
(if it is aliased), table name, and database name. sqlite3_exec()’s callback
interface provides just the column names.

• Prepared queries provide a way to obtain field/column values in other data types
besides text and in native C data types such as int and double, whereas
sqlite3_exec()’s callback interface only provides fields as string values.

CHAPTER 6 ■ THE CORE C API

159

• Prepared queries can be rerun, allowing you to reuse the compiled SQL.

• Prepared queries support parameterized SQL statements.

EXAMINING CHANGES

If you are performing an update or a delete, you may want to know how many records were affected. You
can get this information from sqlite3_changes(). It provides the number of affected records for the last
executed update, insert, or delete statement. Obviously, if you are running a batch of queries (multiple
commands in the sql argument of sqlite3_exec()), this function will be good only for the last command
in the batch. Note also that sqlite3_changes() does not include changes activated from the result of
triggers fired from your original command.

If you are performing an insert on a table with an autoincrement column, odds are you will eventually want
to know the primary key value of an inserted record. In such cases, you can use sqlite3_last_
insert_rowid() to obtain this value. You can also do this from within SQL as well via the last_insert_
rowid() SQL function.

The Get Table Query
The sqlite3_get_table() function returns an entire result set of a command in a single function call.
Just as sqlite3_exec() wraps the prepared query API functions, allowing you to run them all at once,
sqlite3_get_table() wraps sqlite3_exec() for commands that return data with just as much
convenience. Using sqlite3_get_table(), you don’t have to bother with the sqlite3_exec() callback
function, thus making it easier to fetch records. sqlite3_get_table() has the following declaration:

int sqlite3_get_table(
 sqlite3*, /* An open database */
 const char *sql, /* SQL to be executed */
 char ***resultp, /* Result written to a char *[] that this points to */
 int *nrow, /* Number of result rows written here */
 int *ncolumn, /* Number of result columns written here */
 char **errmsg /* Error msg written here */
);

This function takes all the records returned from the SQL statement in sql and stores them in the
resultp argument using memory declared on the heap (using sqlite3_malloc()). The memory must be
freed using sqlite3_free_table(), which takes the resultp pointer as its sole argument. The first record
in resultp is actually not a record but contains the names of the columns in the result set. Examine the
code fragment in Listing 6-3 (taken from get_table.c).

CHAPTER 6 ■ THE CORE C API

160

Listing 6-3. Using sqlite3_get_table

int main(int argc, char **argv)
{
 /* Connect to database, etc. */

 char *result[];
 sql = "select * from episodes;";
 rc = sqlite3_get_table(db, sql, &result, &nrows, &ncols, &zErr);

 /* Do something with data */

 /* Free memory */
 sqlite3_free_table(result)
}

If, for example, the result set returned is of the following form:

 name | id

 The Junior Mint | 43
 The Smelly Car | 28
 The Fusilli Jerry | 21

then the format of the result array will be structured as follows:

 result [0] = "name";
 result [1] = "id";
 result [2] = "The Junior Mint";
 result [3] = "43";
 result [4] = "The Smelly Car";
 result [5] = "28";
 result [6] = "The Fusilli Jerry";
 result [7] = "21";

The first two elements contain the column headings of the result set. Therefore, you can think of the
result set indexing as 1-based with respect to rows but 0-based with respect to columns. An example
may help clarify this. Listing 6-4 shows the code to print out each column of each row in the result set.

Listing 6-4. Iterating Through sqlite3_get_table() Results

rc = sqlite3_get_table(db, sql, &result, &nrows, &ncols, &zErr);

for(i=0; i < nrows; i++) {
 for(j=0; j < ncols; j++) {
 /* the i+1 term skips over the first record,
 which is the column headers */
 fprintf(stdout, "%s", result[(i+1)*ncols + j]);
 }
}

CHAPTER 6 ■ THE CORE C API

161

Prepared Queries
Our Chapter 5 overview of SQLite’s API introduced the concepts of the prepare, step, and finalize
functions. This section covers all aspects of this process, including stepping through result sets, fetching
records, and using parameterized queries. We told you prepared statements were infinitely preferable to
the convenience wrapper functions, and this is where we prove the point.

The wrapper functions simply wrap all these steps into a single function call, making it more
convenient in some situations to run specific commands. Each query function provides its own way of
getting at rows and columns. As a general rule, the more packaged the method is, the less control you
have over execution and results. Therefore, prepared queries offer the most features, the most control,
and the most information, with sqlite3_exec() offering slightly fewer features and sqlite3_get_table()
offering fewer still.

Prepared queries use a special group of functions to access field and column information from a
row. You get column values using sqlite3_column_xxx(), where xxx represents the data type of the value
to be returned (for example, int, double, blob). You can retrieve data in whatever format you like. You
can also obtain the declared types of columns (as they are defined in the create table statement) and
other miscellaneous metadata such as storage format and both associated table and database names.
sqlite3_exec(), by comparison, provides only a fraction of this information through its callback
function. The same is true with sqlite3_get_table(), which only includes the result set’s column
headers with the data.

In practice, you will find that each query method has its uses. sqlite3_exec() is especially good for
running commands that modify the database (create, drop, insert, update, and delete). One function
call, and it’s done. Prepared queries are typically better for select statements because they offer so
much more information, more linear coding (no callback functions), and more control by using cursors
to iterate over results.

As you’ll recall from Chapter 5, prepared queries are performed in three basic steps: compilation,
execution, and finalization. You compile the query with sqlite3_prepare_v2(), execute it step-by-step
using sqlite3_step(), and close it using sqlite3_finalize(), or you can reuse it using sqlite3_reset().
This process and the individual steps are all explained in detail in the following sections.

Compilation
Compilation, or preparation, takes a SQL statement and compiles it into byte code readable by the
virtual database engine (VDBE). It is performed by sqlite3_prepare_v2(), which is declared as follows:

int sqlite3_prepare_v2(
 sqlite3 *db, /* Database handle */
 const char *zSql, /* SQL text, UTF-8 encoded */
 int nBytes, /* Length of zSql in bytes. */
 sqlite3_stmt **ppStmt, /* OUT: Statement handle */
 const char **pzTail /* OUT: Pointer to unused portion of zSql */
);

sqlite3_prepare_v2() compiles the first SQL statement in the zSQL string (which can contain
multiple SQL statements). It allocates all the resources necessary to execute the statement and
associates it along with the byte code into a single statement handle (also referred to as simply a
statement), designated by the out parameter ppStmt, which is a sqlite3_stmt structure. From the
programmer’s perspective, this structure is little more than an opaque handle used to execute a SQL
statement and obtain its associated records. However, this data structure contains the command’s byte

CHAPTER 6 ■ THE CORE C API

162

code, bound parameters, B-tree cursors, execution context, and any other data sqlite3_step() needs to
manage the state of the query during execution.

sqlite3_prepare_v2() does not affect the connection or database in any way. It does not start a
transaction or get a lock. It works directly with the compiler, which simply prepares the query for
execution. Statement handles are highly dependent on the database schema with which they were
compiled. If another connection alters the database schema, between the time you prepare a statement
and the time you actually run it, your prepared statement will expire. However, sqlite3_prepare_v2() is
built to automatically attempt to recompile (re-prepare) your statement if possible and will do this
silently if a schema change has invalidated your existing statement. If the schema has changed in such a
way as to make recompilation impossible, your call to sqlite3_step() with the statement will lead to a
SQLITE_SCHEMA error, which is discussed later in the section “Errors and the Unexpected.” At this point,
you would need to examine the error associated with SQLITE_SCHEMA by using the sqlite3_errmsg()
function.

Execution
Once you prepare the query, the next step is to execute it using sqlite3_step(), declared as follows:

int sqlite3_step(sqlite3_stmt *pStmt);

sqlite3_step() takes the statement handle and talks directly to the VDBE, which steps through its
byte-code instructions one by one to carry out the SQL statement. On the first call to sqlite3_step(), the
VDBE obtains the requisite database lock needed to perform the command. If it can’t get the lock,
sqlite3_step() will return SQLITE_BUSY, if there is no busy handler installed. If one is installed, it will call
that handler instead.

For SQL statements that don’t return data, the first call to sqlite3_step() executes the command in
its entirety, returning a result code indicating the outcome. For SQL statements that do return data, such
as select, the first call to sqlite3_step() positions the statement’s B-tree cursor on the first record.
Subsequent calls to sqlite3_step() position the cursor on subsequent records in the result set.
sqlite3_step() returns SQLITE_ROW for each record in the set until it reaches the end, whereupon it
returns SQLITE_DONE, indicating that the cursor has reached the end of the set.

■ Note For those of you familiar with older versions of SQLite, these result codes are part of the more advanced—
and some would say more correct—set of result codes that replace the legacy simple return values like
SQLITE_ERROR. A full list of result codes and extended result codes is available at www.sqlite.org/c3ref/
c_abort.html

All other API functions related to data access use the statement’s cursor to obtain information about
the current record. For example, the sqlite3_column_xxx() functions all use the statement handle,
specifically its cursor, to fetch the current record’s fields.

http://www.sqlite.org/c3ref

CHAPTER 6 ■ THE CORE C API

163

Finalization and Reset
Once the statement has reached the end of execution, it must be finalized. You can either finalize or
reset the statement using one of the following functions:

int sqlite3_finalize(sqlite3_stmt *pStmt);
int sqlite3_reset(sqlite3_stmt *pStmt);

sqlite3_finalize() will close out the statement. It frees resources and commits or rolls back any
implicit transactions (if the connection is in autocommit mode), clearing the journal file and freeing the
associated lock.

If you want to reuse the statement, you can do so using sqlite3_reset(). It will keep the compiled
SQL statement (and any bound parameters) but commits any changes related to the current statement
to the database. It also releases its lock and clears the journal file if autocommit is enabled. The primary
difference between sqlite3_finalize() and sqlite3_reset() is that the latter preserves the resources
associated with the statement so that it can be executed again, avoiding the need to call sqlite3_
prepare() to compile the SQL command.

Let’s go through an example. Listing 6-5 shows a simple, complete program using a prepared query.
It is taken from select.c in the examples.

Listing 6-5. Using Prepared Queries

int main(int argc, char **argv)
{
 int rc, i, ncols;
 sqlite3 *db;
 sqlite3_stmt *stmt;
 char *sql;
 const char *tail;

 rc = sqlite3_open_v2("foods.db", &db);
 if(rc) {
 fprintf(stderr, "Can't open database: %s\n", sqlite3_errmsg(db));
 sqlite3_close(db);
 exit(1);
 }

 sql = "select * from episodes;";

 rc = sqlite3_prepare_v2(db, sql, -1, &stmt, &tail);

 if(rc != SQLITE_OK) {
 fprintf(stderr, "SQL error: %s\n", sqlite3_errmsg(db));
 }

 rc = sqlite3_step(stmt);
 ncols = sqlite3_column_count(stmt);

CHAPTER 6 ■ THE CORE C API

164

 while(rc == SQLITE_ROW) {

 for(i=0; i < ncols; i++) {
 fprintf(stderr, "'%s' ", sqlite3_column_text(stmt, i));
 }

 fprintf(stderr, "\n");

 rc = sqlite3_step(stmt);
 }

 sqlite3_finalize(stmt);
 sqlite3_close(db);

 return 0;
}

This example connects to the foods.db database, queries the episodes table, and prints out all
columns of all records within it. Keep in mind this is a simplified example—there are a few other things
we need to check for when calling sqlite3_step(), such as errors and busy conditions, but we will
address them later.

Like sqlite3_exec(), sqlite3_prepare_v2() can accept a string containing multiple SQL statements.
However, unlike sqlite3_exec(), it will process only the first statement in the string. But it does make it
easy for you to process subsequent SQL statements in the string by providing the pzTail out parameter.
After you call sqlite3_prepare(), it will point this parameter (if provided) to the starting position of the
next statement in the zSQL string. Using pzTail, processing a batch of SQL commands in a given string
can be executed in a loop as follows:

while(sqlite3_complete(sql)){
 rc = sqlite3_prepare(db, sql, -1, &stmt, &tail);

 /* Process query results */

 /* Skip to next command in string. */
 sql = tail;
}

This example uses another API function not yet covered—sqlite3_complete(), which does as its
name suggests. It takes a string and returns true if there is at least one complete (but not necessarily
valid) SQL statement in it, and it returns false otherwise. In reality, sqlite_complete() looks for a
semicolon terminator for the string (and accounting for literals in the SQL). So, although its name
suggests some kind of infallible observer checking your statements, it’s really just a handy tool for things
such as showing you the continuation prompt in the sqlite command line when writing multiline
statements and doing other similar useful tasks.

Fetching Records
So far, you have seen how to obtain records and columns from sqlite3_exec() and
sqlite3_get_table(). Prepared queries, by comparison, offer many more options when it comes to
getting information from records in the database.

CHAPTER 6 ■ THE CORE C API

165

For a statement that returns records, the number of columns in the result set can be obtained using
sqlite3_column_count() and sqlite3_data_count(), which are declared as follows:

int sqlite3_column_count(sqlite3_stmt *pStmt);
int sqlite3_data_count(sqlite3_stmt *pStmt);

sqlite3_column_count() returns the number of columns associated with a statement handle. You can
call it on a statement handle before it is actually executed. If the query in question is not a select
statement, sqlite3_column_count() will return 0. Similarly, sqlite3_data_count() returns the number of
columns for the current record, after sqlite3_step() returns SQLITE_ROW. This function will work only if
the statement handle has an active cursor.

Getting Column Information
You can obtain the name of each column in the current record using sqlite3_column_name(), which is
declared as follows:

const char *sqlite3_column_name(sqlite3_stmt*, /* statement handle */
 int iCol /* column ordinal */);

Similarly, you can get the associated storage class for each column using sqlite3_column_type(),
which is declared as follows:

int sqlite3_column_type(sqlite3_stmt*, /* statement handle */
 int iCol /* column ordinal */);

This function returns an integer value that corresponds to one of five storage class codes, defined as
follows:

#define SQLITE_INTEGER 1
#define SQLITE_FLOAT 2
#define SQLITE_TEXT 3
#define SQLITE_BLOB 4
#define SQLITE_NULL 5

These are SQLite’s native data types, or storage classes, as described in Chapter 4. All data stored within
a SQLite database is stored in one of these five forms, depending on its initial representation and the
affinity of the column. For our purposes, the terms storage class and data type are synonymous. For more
information on storage classes, see the sections “Storage Classes” and “Type Affinity” in Chapter 4.

You can obtain the declared data type of a column as it is defined in the table’s schema using the
sqlite3_column_decltype() function, which is declared as follows:

const char *sqlite3_column_decltype(sqlite3_stmt*, /* statement handle */
 int /* column ordinal */);

If a column in a result set does not correspond to an actual table column (say, for example, the column is
the result of a literal value, expression, function, or aggregate), this function will return NULL as the
declared type of that column. For example, suppose you have a table in your database defined as
follows:

CHAPTER 6 ■ THE CORE C API

166

CREATE TABLE t1(c1 INTEGER);

Then you execute the following query:

SELECT c1 + 1, 0 FROM t1;

In this case, sqlite3_column_decltype() will return INTEGER for the first column and NULL for the second.

In addition to the declared type, you can obtain other information on a column using the following
functions:

const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int iCol);
const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int iCol);
const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int iCol);

The first function will return the database associated with a column, the second will return its table, and
the last function will return the column’s actual name as defined in the schema. That is, if you assigned
the column an alias in the SQL statement, sqlite3_column_origin_name() will return its actual name as
defined in the schema. Note that these functions are available only if you compile SQLite with the
SQLITE_ENABLE_COLUMN_METADATA preprocessor directive.

Getting Column Values
You can obtain the values for each column in the current record using the sqlite3_column_xxx()
functions, which are of the following general form:

xxx sqlite3_column_xxx(sqlite3_stmt*, /* statement handle */
 int iCol /* column ordinal */);

Here xxx is the data type you want the data represented in (for example, int, blob, double, and so
on). These are the most commonly used of the sqlite3_column_xxx() functions:

int sqlite3_column_int(sqlite3_stmt*, int iCol);
double sqlite3_column_double(sqlite3_stmt*, int iCol);
long long int sqlite3_column_int64(sqlite3_stmt*, int iCol);
const void *sqlite3_column_blob(sqlite3_stmt*, int iCol);
const unsigned char *sqlite3_column_text(sqlite3_stmt*, int iCol);
const void *sqlite3_column_text16(sqlite3_stmt*, int iCol);

For each function, SQLite converts the internal representation (storage class in the column) to the
type specified in the function name. There are a number of rules SQLite uses to convert the internal data
type representation to that of the requested type. Table 6-1 lists these rules.

CHAPTER 6 ■ THE CORE C API

167

Table 6-1. Column Type Conversion Rules

Internal Type Requested Type Conversion

NULL INTEGER Result is 0.

NULL FLOAT Result is 0.0.

NULL TEXT Result is a NULL pointer.

NULL BLOB Result is a NULL pointer.

INTEGER FLOAT Convert from integer to float.

INTEGER TEXT Result is the ASCII rendering of the integer.

INTEGER BLOB Result is the ASCII rendering of the integer.

FLOAT INTEGER Convert from float to integer.

FLOAT TEXT Result is the ASCII rendering of the float.

FLOAT BLOB Result is the ASCII rendering of the float.

TEXT INTEGER Use atoi().

TEXT FLOAT Use atof().

TEXT BLOB No change.

BLOB INTEGER Convert to TEXT and then use atoi().

BLOB FLOAT Convert to TEXT and then use atof().

BLOB TEXT Add a \000 terminator if needed.

Like the sqlite3_bind_xxx() functions described later, BLOBs require a little more work in that you

must specify their length in order to copy them. For BLOB columns, you can get the actual length of the
data using sqlite3_column_bytes(), which is declared as follows:

int sqlite3_column_bytes(sqlite3_stmt*, /* statement handle */
 int /* column ordinal */);

Once you get the length, you can copy the binary data using sqlite3_column_blob(). For example,
say the first column in the result set contains binary data. One way to get a copy of that data would be as
follows:

CHAPTER 6 ■ THE CORE C API

168

int len = sqlite3_column_bytes(stmt,0);
void* data = malloc(len);
memcpy(data, len, sqlite3_column_blob(stmt,0));

A Practical Example
To help solidify all these column functions, Listing 6-6 (taken from columns.c) illustrates using the
functions we’ve described to retrieve column information and values for a simple select statement.

Listing 6-6. Obtaining Column Information

int main(int argc, char **argv)
{
 int rc, i, ncols, id, cid;
 char *name, *sql;
 sqlite3 *db;
 sqlite3_stmt *stmt;

 sql = "select id, name from episodes";
 sqlite3_open_v2("test.db", &db);

 sqlite3_prepare_v2(db, sql, strlen(sql), &stmt, NULL);

 ncols = sqlite3_column_count(stmt);
 rc = sqlite3_step(stmt);

 /* Print column information */
 for(i=0; i < ncols; i++) {
 fprintf(stdout, "Column: name=%s, storage class=%i, declared=%s\n",
 sqlite3_column_name(stmt, i),
 sqlite3_column_type(stmt, i),
 sqlite3_column_decltype(stmt, i));
 }

 fprintf(stdout, "\n");

 while(rc == SQLITE_ROW) {
 id = sqlite3_column_int(stmt, 0);
 cid = sqlite3_column_int(stmt, 1);
 name = sqlite3_column_text(stmt, 2);
 if(name != NULL){
 fprintf(stderr, "Row: id=%i, cid=%i, name='%s'\n", id,cid,name);
 } else {
 /* Field is NULL */
 fprintf(stderr, "Row: id=%i, cid=%i, name=NULL\n", id,cid);
 }
 rc = sqlite3_step(stmt);
 }

CHAPTER 6 ■ THE CORE C API

169

 sqlite3_finalize(stmt);
 sqlite3_close(db);
 return 0;
}

This example connects to the database, selects records from the episodes table, and prints the
column information and the fields for each row (using their internal storage class). Running the program
produces the following output:

Column: name=id, storage class=1, declared=integer
Column: name=name, storage class=3, declared=text

Row: id=1, name='The Dinner Party'
Row: id=2, name='The Soup Nazi'
Row: id=3, name='The Fusilli Jerry'

FINDING A STATEMENT'S CONNECTION

In practice, you may find yourself writing code where some of your functions have access only to the
statement handle, not the connection handle. If these functions encounter an error while working with the
statement handle, they will not have a way to get error information from sqlite3_errmsg(), because it
requires a connection handle to work. This is where sqlite3_db_handle() comes in handy. It is declared
as follows:

int sqlite3_db_handle(sqlite3_stmt*);

Given a statement handle, sqlite3_db_handle() returns the associated connection handle. This way, you
don’t need to worry about having to pass the connection handle along with the statement handle
everywhere you process query results.

Parameterized Queries
The API includes support for designating parameters in a SQL statement, allowing you to provide (or
“bind”) values for them at a later time. Bound parameters are used in conjunction with
sqlite3_prepare(). For example, you could create a SQL statement like the following:

insert into foo values (?,?,?);

Then you can, for example, bind the integer value 2 to the first parameter (designated by the first ?
character), the string value 'pi' to the second parameter, and the double value 3.14 for the third
parameter, as illustrated in the following code (taken from parameters.c):

const char* sql = "insert into foo values(?,?,?)";
sqlite3_prepare(db, sql, strlen(sql), &stmt, &tail);

CHAPTER 6 ■ THE CORE C API

170

sqlite3_bind_int(stmt, 1, 2);
sqlite3_bind_text(stmt, 2, "pi");
sqlite3_bind_double(stmt, 3, 3.14);

sqlite3_step(stmt);
sqlite3_finalize(stmt);

This generates and executes the following statement:

insert into foo values (2, 'pi', 3.14)

This particular method of binding uses positional parameters (as described in Chapter 5) where
each parameter is designated by a question mark (?) character and later identified by its index or relative
position in the SQL statement.

Before delving into the other parameter methods, it is helpful to first understand the process by
which parameters are defined, bound, and evaluated. When you write a parameterized statement such
as the following, the parameters within it are identified when sqlite3_prepare() compiles the query:

insert into episodes (id,name) values (?,?)

sqlite3_prepare() recognizes that there are parameters in a SQL statement. Internally, it assigns
each parameter a number to uniquely identify it. In the case of positional parameters, it starts with 1 for
the first parameter found and uses sequential integer values for subsequent parameters. It stores this
information in the resulting statement handle (sqlite3_stmt structure), which will then expect a specific
number of values to be bound to the given parameters before execution. If you do not bind a value to a
parameter, sqlite3_step() will use NULL for its value by default when the statement is executed.

After you prepare the statement, you then bind values to it. You do this using the
sqlite3_bind_xxx() functions, which have the following general form:

sqlite3_bind_xxx(sqlite3_stmt*, /* statement handle */
 int i, /* parameter number */
 xxx value /* value to be bound */
);

The xxx in the function name represents the data type of the value to bind. For example, to bind a
double value to a parameter, you would use sqlite3_bind_double(), which is declared as follows:

sqlite3_bind_double(sqlite3_stmt* stmt, int i, double value);

The common bind functions are as follows:

int sqlite3_bind_int(sqlite3_stmt*, int, int);
int sqlite3_bind_double(sqlite3_stmt*, int, double);
int sqlite3_bind_int64(sqlite3_stmt*, int, long long int);
int sqlite3_bind_null(sqlite3_stmt*, int);
int sqlite3_bind_blob(sqlite3_stmt*, int, const void*, int n, void(*)(void*));
int sqlite3_bind_zeroblob(sqlite3_stmt*, int, int n);
int sqlite3_bind_text(sqlite3_stmt*, int, const char*, int n, void(*)(void*));
int sqlite3_bind_text16(sqlite3_stmt*, int, const void*, int n, void(*)(void*));

CHAPTER 6 ■ THE CORE C API

171

In general, the bind functions can be divided into two classes, one for scalar values (int, double,
int64, and NULL) and the other for arrays (blob, text, and text16). They differ only in that the array bind
functions require a length argument and a pointer to a cleanup function. Also, sqlite3_bind_text()
automatically escapes quote characters like sqlite3_mprintf(). Using the BLOB variant, the array bind
function has the following declaration:

int sqlite3_bind_blob(sqlite3_stmt*, /* statement handle */
 int, /* ordinal */
 const void*, /* pointer to blob data */
 int n, /* length (bytes) of data */
 void(*)(void*)); /* cleanup hander */

There are two predefined values for the cleanup handler provided by the API that have special meanings,
defined as follows:

#define SQLITE_STATIC ((void(*)(void *))0)
#define SQLITE_TRANSIENT ((void(*)(void *))-1)

Each value designates a specific cleanup action. SQLITE_STATIC tells the array bind function that the
array memory resides in unmanaged space, so SQLite does not attempt to clean it up. SQLITE_TRANSIENT
tells the bind function that the array memory is subject to change, so SQLite makes its own private copy
of the data, which it automatically cleans up when the statement is finalized. The third option is to
provide a pointer to your own cleanup function, which must be of the following form:

void cleanup_fn(void*)

If provided, SQLite will call your cleanup function, passing in the array memory when the statement is
finalized.

■ Note Bound parameters remain bound throughout the lifetime of the statement handle. They remain bound even
after a call to sqlite3_reset() and are freed only when the statement is finalized (by calling sqlite3_
finalize()).

Once you have bound all the parameters you want, you can then execute the statement. You do this
using the next function in the sequence: sqlite3_step(). sqlite3_step() will take the bound values,
substitute them for the parameters in the SQL statement, and then begin executing the command.

Now that you understand the binding process, the four parameter-binding methods differ only by
the following:

• The way in which parameters are represented in the SQL statement (using a
positional parameter, explicitly defined parameter number, or alphanumeric
parameter name)

• The way in which parameters are assigned numbers

CHAPTER 6 ■ THE CORE C API

172

For positional parameters, sqlite3_prepare() assigns numbers using sequential integer values
starting with 1 for the first parameter. In the previous example, the first ? parameter is assigned 1, and
the second ? parameter is assigned 2. With positional parameters, it is your job to keep track of which
number corresponds to which parameter (or question mark) in the SQL statement and correctly specify
that number in the bind functions.

Numbered Parameters
Numbered parameters, on the other hand, allow you to specify your own numbers for parameters,
rather than use an internal sequence. The syntax for numbered parameters uses a question mark
followed by the parameter number. Take, for example, the following piece of code (taken from
parameters.c):

name = "Mackinaw Peaches";
sql = "insert into episodes (id, cid, name) "
 "values (?100,?100,?101)";

rc = sqlite3_prepare(db, sql, strlen(sql), &stmt, &tail);

if(rc != SQLITE_OK) {
 fprintf(stderr, "sqlite3_prepare() : Error: %s\n", tail);
 return rc;
}

sqlite3_bind_int(stmt, 100, 10);
sqlite3_bind_text(stmt, 101, name, strlen(name), SQLITE_TRANSIENT);
sqlite3_step(stmt);
sqlite3_finalize(stmt);

This example uses 100 and 101 for its parameter numbers. Parameter number 100 has the integer
value 10 bound to it. Parameter 101 has the string value 'Mackinaw Peaches' bound to it. Note how
numbered parameters come in handy when you need to bind a single value in more than one place in a
SQL statement. Consider the values part of the previous SQL statement:

 insert into episodes (id, cid, name) values (?100,?100,?101)";

Parameter 100 is being used twice—once for id and again for cid. Thus, numbered parameters save time
when you need to use a bound value in more than one place.

■ Note When using numbered parameters in a SQL statement, keep in mind that the allowable range consists of
the integer values 1–999, and for optimal performance and memory utilization, you should choose smaller
numbers.

CHAPTER 6 ■ THE CORE C API

173

Named Parameters
The third parameter binding method is using named parameters. Whereas you can assign your own
numbers using numbered parameters, you can assign alphanumeric names with named parameters.
Likewise, because numbered parameters are prefixed with a question mark (?), you identify named
parameters by prefixing a colon (:) or at-sign (@) to the parameter name. Consider the following code
snippet (taken from parameters.c):

 name = "Mackinaw Peaches";
 sql = "insert into episodes (id, cid, name) values (:cosmo,:cosmo,@newman)";

 rc = sqlite3_prepare(db, sql, strlen(sql), &stmt, &tail);

 sqlite3_bind_int(stmt,
 sqlite3_bind_parameter_index(stmt, ":cosmo"), 10);

 sqlite3_bind_text(stmt,
 sqlite3_bind_parameter_index(stmt, "@newman"),
 name,
 strlen(name), SQLITE_TRANSIENT);

 sqlite3_step(stmt);
 sqlite3_finalize(stmt);

This example is identical to the previous example using numbered parameters, except it uses two
named parameters called :cosmo and @newman instead. Like positional parameters, named parameters
are automatically assigned numbers by sqlite3_prepare(). Although the numbers assigned to each
parameter are unknown, you can resolve them using sqlite3_bind_parameter_index(), which takes
a parameter name and returns the corresponding parameter number. This is the number you use to
bind the value to its parameter. All in all, named parameters mainly help with legibility more than
anything else.

■ Note While the function sqlite3_bind_parameter_index() seems to refer to a parameter number as an
index, for all intents and purposes the two terms (number and index) are synonymous.

Tcl Parameters
The final parameter scheme is called Tcl parameters and is specific more to the Tcl extension than it is to
the C API. Basically, it works identically to named parameters except that rather than using
alphanumeric values for parameter names, it uses Tcl variable names. In the Tcl extension, when the Tcl
equivalent of sqlite3_prepare() is called, the Tcl extension automatically searches for Tcl variables with
the given parameter names in the active Tcl program environment and binds them to their respective
parameters. Despite its current application in the Tcl interface, nothing prohibits this same mechanism
from being applied to other language interfaces, which can in turn implement the same feature. In this
respect, referring to this parameter method solely as Tcl parameters may be a bit of a misnomer. The Tcl
extension just happened to be the first application that utilized this method. Basically, the Tcl parameter

CHAPTER 6 ■ THE CORE C API

174

syntax does little more than provide an alternate syntax to named parameters—rather than prefixing the
parameters with a colon (:) or an at-sign (@), it uses a dollar sign ($).

Errors and the Unexpected
Up to now, we have looked at the API from a rather optimistic viewpoint, as if nothing could ever go
wrong. But things do go wrong, and there is part of the API devoted to that. The three things you always
have to guard against in your code are errors, busy conditions, and, my personal favorite, schema
changes.

Handling Errors
Many of the API functions return integer result codes. That means they can potentially return error
codes of some sort. The most common functions to watch are typically the most frequently used, such as
sqlite3_open_v2(), sqlite3_prepare_v2(), and friends, as well as sqlite3_exec(). You should always
program defensively and review every API function before you use it to ensure that you deal with error
conditions that can arise. Of all the error results defined in SQLite, only a fraction of them will really
matter to your application in practice. All of the SQLite result codes are listed in Table 6-2. API functions
that can return them include the following:

sqlite3_bind_xxx()
sqlite3_close()
sqlite3_create_collation()
sqlite3_collation_needed()
sqlite3_create_function()
sqlite3_prepare_v2()
sqlite3_exec()
sqlite3_finalize()
sqlite3_get_table()
sqlite3_open_v2()
sqlite3_reset()
sqlite3_step()

You can get extended information on a given error using sqlite3_errmsg(), which is declared as follows:

const char *sqlite3_errmsg(sqlite3*);

It takes a connection handle as its only argument and returns the most recent error resulting from an API
call on that connection. If no error has been encountered, it returns the string “not an error.”

CHAPTER 6 ■ THE CORE C API

175

Table 6-2. SQLite Result Codes

Code Description

SQLITE_OK The operation was successful.

SQLITE_ERROR General SQL error or missing database. It may be possible to obtain more
error information depending on the error condition (SQLITE_SCHEMA, for
example).

SQLITE_INTERNAL Internal logic error.

SQLITE_PERM Access permission denied.

SQLITE_ABORT A callback routine requested an abort.

SQLITE_BUSY The database file is locked.

SQLITE_LOCKED A table in the database is locked.

SQLITE_NOMEM A call to malloc() has failed within a database operation.

SQLITE_READONLY An attempt was made to write to a read-only database.

SQLITE_INTERRUPT Operation was terminated by sqlite3_interrupt().

SQLITE_IOERR Some kind of disk I/O error occurred.

SQLITE_CORRUPT The database disk image is malformed. This will also occur if an attempt is
made to open a non-SQLite database file as a SQLite database.

SQLITE_FULL Insertion failed because the database is full. There is no more space on the
file system or the database file cannot be expanded.

SQLITE_CANTOPEN SQLite was unable to open the database file.

SQLITE_PROTOCOL The database is locked or there has been a protocol error.

SQLITE_EMPTY (Internal only.) The database table is empty.

SQLITE_SCHEMA The database schema has changed.

SQLITE_CONSTRAINT Abort due to constraint violation.

CHAPTER 6 ■ THE CORE C API

176

Continued

Code Description

SQLITE_MISMATCH Data type mismatch. An example of this is an attempt to insert
noninteger data into a column labeled INTEGER PRIMARY KEY. For most
columns, SQLite ignores the data type and allows any kind of data to be
stored. But an INTEGER PRIMARY KEY column is allowed to store integer
data only.

SQLITE_MISUSE Library was used incorrectly. This error might occur if one or more of the
SQLite API routines is used incorrectly.

SQLITE_NOLFS Uses OS features not supported on host. This value is returned if the
SQLite library was compiled with large file support (LFS) enabled but LFS
isn’t supported on the host operating system.

SQLITE_AUTH Authorization denied. This occurs when a callback function installed
using sqlite3_set_authorizer() returns SQLITE_DENY.

SQLITE_FORMAT Auxiliary database format error.

SQLITE_RANGE Second parameter to sqlite3_bind() out of range.

SQLITE_NOTADB File opened is not a SQLite database file.

SQLITE_ROW sqlite3_step() has another row ready.

SQLITE_DONE sqlite3_step() has finished executing.

Although it is very uncommon outside of embedded systems, one of the most critical errors you can

encounter is SQLITE_NOMEM, which means that no memory can be allocated on the heap (for example,
malloc() failed). SQLite is quite robust in this regard, recovering gracefully from out-of-memory error
conditions. It will continue to work assuming the underlying operating system completes memory
allocation system calls like malloc().

Handling Busy Conditions
Two important functions related to processing queries are sqlite3_busy_handler() and
sqlite3_busy_timeout(). If your program uses a database on which there are other active connections,
odds are it will eventually have to wait for a lock and therefore will have to deal with SQLITE_BUSY.
Whenever you call an API function that causes SQLite to seek a lock and SQLite is unable to get it, the
function will return SQLITE_BUSY. There are three ways to deal with this:

CHAPTER 6 ■ THE CORE C API

177

• Handle SQLITE_BUSY yourself, either by rerunning the statement or by taking some
other action

• Have SQLite call a busy handler

• Ask SQLite to wait (block or sleep) for some period of time for the lock to clear

The last option involves using sqlite3_busy_timeout(). This function tells SQLite how long to wait for a
lock to clear before returning SQLITE_BUSY. Although it can ultimately result in you still having to handle
SQLITE_BUSY, in practice setting this value to a sufficient period of time (say 30 seconds) usually provides
enough time for even the most intensive transaction to complete. Nevertheless, you should still have
some contingency plan in place to handle SQLITE_BUSY.

User-Defined Busy Handlers
The second option entails using sqlite3_busy_handler(). This function provides a way to call a user-
defined function rather than blocking or returning SQLITE_BUSY right away. It’s declared as follows:

int sqlite3_busy_handler(sqlite3*, int(*)(void*,int), void*);

The second argument is a pointer to a function to be called as the busy handler, and the third
argument is a pointer to application-specific data to be passed as the first argument to the handler. The
second argument to the busy handler is the number of prior calls made to the handler for the same lock.

Such a handler might call sleep() for a period to wait out the lock, or it may send some kind of
notification. It may do whatever you like, because it is yours to implement. Be warned, though, that
registering a busy handler does not guarantee that it will always be called. As mentioned in Chapter 5,
SQLite will forego calling a busy handler for a connection if it perceives a deadlock might result.
Specifically, if your connection in SHARED is interfering with another connection in RESERVED, SQLite will
not invoke your busy handler, hoping you will take the hint. In this case, you are trying to write to the
database from SHARED (starting the transaction with BEGIN) when you really should be starting from
RESERVED (starting the transaction with BEGIN IMMEDIATE).

The only restriction on busy handlers is that they may not close the database. Closing the database
from within a busy handler can delete critical data structures out from under the executing query and
result in crashing your program.

Advice
All things considered, the best route may be to set the timeout to a reasonable value and then take some
precautions if and when you receive a SQLITE_BUSY value. In general, if you are going to write to the
database, start in RESERVED. If you don’t do this, then the next best thing is to install a busy handler, set
the timeout to a known value, and if SQLite returns SQLITE_BUSY, check the response time. If the time is
less than the busy handler’s delay, then SQLite is telling you that your query (and connection) is
preventing a writer from proceeding. If you want to write to the database at this point, you should
finalize or reset and then reexecute the statement, this time starting with BEGIN IMMEDIATE.

Handling Schema Changes
Whenever a connection changes the database schema, all other prepared statements that were compiled
before the change are invalidated. The result is that the first call to sqlite3_step() for such statements

CHAPTER 6 ■ THE CORE C API

178

will attempt to recompile the relevant SQL and proceed normally from there if possible. If recompilation
is impossible (for example, if an object has been dropped entirely), the sqlite3_step() returns
SQLITE_SCHEMA. From a locking standpoint, the schema change occurs between the time a reader calls
sqlite3_prepare() to compile a statement and calling sqlite3_step() to execute it.

When this happens, the only course of action for you is to handle the change in circumstances and
start over. Several events can cause SQLITE_SCHEMA errors:

• Detaching databases

• Modifying or installing user-defined functions or aggregates

• Modifying or installing user-defined collations

• Modifying or installing authorization functions

• Vacuuming the database

The reason the SQLITE_SCHEMA condition exists ultimately relates to the VDBE. When a connection
changes the schema, other compiled queries may have VDBE code that points to database objects that
no longer exist or are in a different location in the database. Rather than running the risk of a bizarre
runtime error later, SQLite invalidates all statements that have been compiled but not executed. They
must be recompiled.

TRACING SQL

If you are having a hard time figuring out exactly what your program is doing with the database, you can
track what SQL statements it has executed using sqlite3_trace(). Its declaration is as follows:

void *sqlite3_trace(sqlite3*, void(*xTrace)(void*,const char*), void*);

This function is analogous to putting a wiretap on a connection. You can use it to generate a log file of all
SQL executed on a given connection as well provide helpful debugging information. Every SQL statement
that is processed is passed to the callback function specified in the second argument. SQLite passes the
data provided in the third argument of sqlite3_trace() to the first argument of the callback function.

Operational Control
The API provides several functions you can use to monitor and/or manage SQL commands at compile
time and runtime. These functions allow you to install callback functions with which to monitor and
control various database events as they happen.

Commit Hooks
The sqlite3_commit_hook() function allows you to monitor when transactions commit on a given
connection. It is declared as follows:

CHAPTER 6 ■ THE CORE C API

179

void *sqlite3_commit_hook(sqlite3 *cnx, /* database handle */
 int(*xCallback)(void *data), /* callback function */
 void *data); /* application data */

This function registers the callback function xCallback, which will be invoked whenever a
transaction commits on the connection given by cnx. The third argument (data) is a pointer to
application-specific data, which SQLite passes to the callback function. If the callback function returns a
nonzero value, then the commit is converted into a rollback.

Passing a NULL value in for the callback function effectively disables the currently registered callback
(if any). Also, only one callback can be registered at a time for a given connection. The return value for
sqlite3_commit_hook() is NULL unless another callback function was previously registered, in which case
the previous data value is returned.

Rollback Hooks
Rollback hooks are similar to commit hooks except that they watch for rollbacks for a given connection.
Rollback hooks are registered with the following function:

void *sqlite3_rollback_hook(sqlite3 *cnx, void(*xCallback)(void *data), void *data);

This function registers the callback function xCallback, which will be invoked in the event of a
rollback on cnx, whether by an explicit ROLLBACK command or by an implicit error or constraint violation.
The callback is not invoked if a transaction is automatically rolled back because of the database
connection being closed. The third argument (data) is a pointer to application-specific data, which
SQLite passes to the callback function.

As in sqlite3_commit_hook(), each time you call sqlite3_rollback_hook(), the new callback
function you provide will replace any currently registered callback function. If a callback function was
previously registered, sqlite3_rollback_hook() returns the previous data argument.

Update Hooks
The sqlite3_update_hook() is used to monitor all update, insert, and delete operations on rows for a
given database connection. It has the following form:

void *sqlite3_update_hook(
 sqlite3 *cnx,
 void(*)(void *, int, char const*, char const*, sqlite_int64),
 void *data);

The first argument of the callback function is a pointer to application-specific data, which you provide in
the third argument. The callback function has the following form:

void callback (void * data,
 int operation_code,
 char const *db_name,
 char const *table_name,
 sqlite_int64 rowid),

CHAPTER 6 ■ THE CORE C API

180

The operation_code argument corresponds to SQLITE_INSERT, SQLITE_UPDATE, and SQLITE_DELETE for
insert, update, and delete operations, respectively. The third and fourth arguments correspond to the
database name and table name the operation took place on. The final argument is the rowid of the
affected row. The callback is not invoked for operations on system tables (for example, sqlite_master
and sqlite_sequence). The return value is a pointer to the previously registered callback function’s data
argument, if it exists.

Authorizer Functions
Perhaps the most powerful event filter is sqlite3_set_authorizer(). It allows you to monitor and control
queries as they are compiled. This function is declared as follows:

int sqlite3_set_authorizer(
 sqlite3*,
 int (*xAuth)(void*,int,
 const char*, const char*,
 const char*,const char*),
 void *pUserData
);

This routine registers a callback function that serves as an authorization function. SQLite will invoke
the callback function at statement compile time (not at execution time) for various database events. The
intent of the function is to allow applications to safely execute user-supplied SQL. It provides a way to
restrict such SQL from certain operations (for example, anything that changes the database) or to deny
access to specific tables or columns within the database.

For clarity, the form of the authorization callback function is as follows:

int auth(void*, /* user data */
 int, /* event code */
 const char*, /* event specific */
 const char*, /* event specific */
 const char*, /* database name */
 const char* /* trigger or view name */);

The first argument is a pointer to application-specific data, which is passed in on the fourth
argument of sqlite3_set_authorizer(). The second argument to the authorization function will be one
of the defined constants listed in Table 6-3. These values signify what kind of operation is to be
authorized. The third and fourth arguments to the authorization function are specific to the event code.
These arguments are listed with their respective event codes shown earlier in Table 6-2.

The fifth argument is the name of the database (main, temp, and so on) if applicable. The sixth
argument is the name of the innermost trigger or view that is responsible for the access attempt or NULL if
this access attempt is directly from top-level SQL.

The return value of the authorization function should be one of the constants SQLITE_OK,
SQLITE_DENY, or SQLITE_IGNORE. The meaning of the first two values is consistent for all events—permit or
deny the SQL statement. SQLITE_DENY will abort the entire SQL statement and generate an error.

The meaning of SQLITE_IGNORE is specific to the event in question. Statements that read or modify
records generate SQLITE_READ or SQLITE_UPDATE events for each column the statement attempts to
operate on. In this case, if the callback returns SQLITE_IGNORE, the column in question will be excluded
from the operation. Specifically, attempts to read data from this column yield only NULL values, and
attempts to update it will silently fail.

CHAPTER 6 ■ THE CORE C API

181

Table 6-3. SQLite Authorization Events

Event Code Argument 3 Argument 4

SQLITE_CREATE_INDEX Index name Table name

SQLITE_CREATE_TABLE Table name NULL

SQLITE_CREATE_TEMP_INDEX Index name Table name

SQLITE_CREATE_TEMP_TABLE Table name NULL

SQLITE_CREATE_TEMP_TRIGGER Trigger name Table name

SQLITE_CREATE_TEMP_VIEW View name NULL

SQLITE_CREATE_TRIGGER Trigger name Table name

SQLITE_CREATE_VIEW View name NULL

SQLITE_DELETE Table name NULL

SQLITE_DROP_INDEX Index name Table name

SQLITE_DROP_TABLE Table name NULL

SQLITE_DROP_TEMP_INDEX Index name Table name

SQLITE_DROP_TEMP_TABLE Table name NULL

SQLITE_DROP_TEMP_TRIGGER Trigger name Table name

SQLITE_DROP_TEMP_VIEW View name NULL

SQLITE_DROP_TRIGGER Trigger name Table name

SQLITE_DROP_VIEW View name NULL

SQLITE_INSERT Table name NULL

SQLITE_PRAGMA Pragma name First argument or NULL

SQLITE_READ Table name Column name

SQLITE_SELECT NULL NULL

CHAPTER 6 ■ THE CORE C API

182

Continued

Event Code Argument 3 Argument 4

SQLITE_TRANSACTION NULL NULL

SQLITE_UPDATE Table name Column name

SQLITE_ATTACH File name NULL

SQLITE_DETACH Database name NULL

To illustrate this, the following example (the complete source of which is in authorizer.c) will create

a table foo, defined as follows:

create table foo(x int, y int, z int)

It registers an authorizer function, which will do the following:

• Block reads of column z

• Block updates to column x

• Monitor ATTACH and DETACH database events

• Log database events as they happen

This is a rather long example, which uses the authorizer function to filter many different database
events, so for clarity I am going to break the code into pieces. The authorizer function has the general
form shown in Listing 6-7.

Listing 6-7. Example Authorizer Function

int auth(void* x, int type,
 const char* a, const char* b,
 const char* c, const char* d)
{
 const char* operation = a;

 printf(" %s ", event_description(type));

 /* Filter for different database events
 ** from SQLITE_TRANSACTION to SQLITE_INSERT,
 ** UPDATE, DELETE, ATTACH, etc. and either allow or deny
 ** them.
 */

 return SQLITE_OK;
}

CHAPTER 6 ■ THE CORE C API

183

The first thing the authorizer looks for is a change in transaction state. If it finds a change, it prints a
message:

 if((a != NULL) && (type == SQLITE_TRANSACTION)) {
 printf(": %s Transaction", operation);
 }

Next the authorizer filters events that result in a schema change:

 switch(type) {
 case SQLITE_CREATE_INDEX:
 case SQLITE_CREATE_TABLE:
 case SQLITE_CREATE_TRIGGER:
 case SQLITE_CREATE_VIEW:
 case SQLITE_DROP_INDEX:
 case SQLITE_DROP_TABLE:
 case SQLITE_DROP_TRIGGER:
 case SQLITE_DROP_VIEW:
 {
 // Schema has been modified somehow.
 printf(": Schema modified");
 }

The next filter looks for read attempts (which are fired on a column-by-column basis). Here, all read
attempts are allowed unless the column name is z, in which case the function returns SQLITE_IGNORE.
This will cause SQLite to return NULL for any field in column z, effectively blocking access to its data.

if(type == SQLITE_READ) {
 printf(": Read of %s.%s ", a, b);

 /* Block attempts to read column z */
 if(strcmp(b,"z")==0) {
 printf("-> DENIED\n");
 return SQLITE_IGNORE;
 }
 }

Next come insert and update filters. All insert statements are allowed. However, update statements
that attempt to modify column x are denied. This will not block the update statement from executing;
rather, it will simply filter out any attempt to update column x.

 if(type == SQLITE_INSERT) {
 printf(": Insert records into %s ", a);
 }

 if(type == SQLITE_UPDATE) {
 printf(": Update of %s.%s ", a, b);

CHAPTER 6 ■ THE CORE C API

184

 /* Block updates of column x */
 if(strcmp(b,"x")==0) {
 printf("-> DENIED\n");
 return SQLITE_IGNORE;
 }
 }

Finally, the authorizer filters delete, attach, and detach statements and simply issues notifications
when it encounters them:

 if(type == SQLITE_DELETE) {
 printf(": Delete from %s ", a);
 }

 if(type == SQLITE_ATTACH) {
 printf(": %s", a);
 }

 if(type == SQLITE_DETACH) {
 printf("-> %s", a);
 }

 printf("\n");
 return SQLITE_OK;
}

The (abbreviated) program is implemented as follows. As with the authorizer function, I will break it
into pieces. The first part of the program connects to the database and registers the authorization
function:

int main(int argc, char **argv)
{
 sqlite3 *db, *db2;
 char *zErr, *sql;
 int rc;

 /** Setup */

 /* Connect to test.db */
 rc = sqlite3_open_v2("test.db", &db);

 /** Authorize and test

 /* 1. Register the authorizer function */
 sqlite3_set_authorizer(db, auth, NULL);

CHAPTER 6 ■ THE CORE C API

185

Step 2 illustrates the transaction filter:

 /* 2. Test transactions events */

 printf("program : Starting transaction\n");
 sqlite3_exec(db, "BEGIN", NULL, NULL, &zErr);

 printf("program : Committing transaction\n");
 sqlite3_exec(db, "COMMIT", NULL, NULL, &zErr);

Step 3 tests schema modifications by creating the test table foo:

 /* 3. Test table events */

 printf("program : Creating table\n");
 sqlite3_exec(db, "create table foo(x int, y int, z int)", NULL, NULL, &zErr);

Step 4 tests read (select) and write (insert/update) control. It inserts a test record, selects it, updates it,
and selects it again to observe the results of the update.

 /* 4. Test read/write access */
 printf("program : Inserting record\n");
 sqlite3_exec(db, "insert into foo values (1,2,3)", NULL, NULL, &zErr);

 printf("program : Selecting record (value for z should be NULL)\n");
 print_sql_result(db, "select * from foo");

 printf("program : Updating record (update of x should be denied)\n");
 sqlite3_exec(db, "update foo set x=4, y=5, z=6", NULL, NULL, &zErr);

 printf("program : Selecting record (notice x was not updated)\n");
 print_sql_result (db, "select * from foo");

 printf("program : Deleting record\n");
 sqlite3_exec(db, "delete from foo", NULL, NULL, &zErr);

 printf("program : Dropping table\n");
 sqlite3_exec(db, "drop table foo", NULL, NULL, &zErr);

Several things are going on here. The program selects all records in the table, one of which is column z.
We should see in the output that column z’s value is NULL. All other fields should contain data from the
table. Next, the program attempts to update all fields, the most important of which is column x. The
update should succeed, but the value in column x should be unchanged, because the authorizer denies
it. This is confirmed on the following select statement, which shows that all columns were updated
except for column x, which is unchanged. The program then drops the foo table, which should issue a
schema change notification from the previous filter.

Step 5 tests the attach and detach database commands. The thing to notice here is how the
authorizer function is provided with the name of the database and that you can distinguish the
operations being performed under the attached database as opposed to the main database.

CHAPTER 6 ■ THE CORE C API

186

 /* 5. Test attach/detach */

 /* Connect to test2.db */
 rc = sqlite3_open_v2("test2.db", &db2);

 if(rc) {
 fprintf(stderr, "Can't open database: %s\n", sqlite3_errmsg(db2));
 sqlite3_close(db2);
 exit(1);
 }

 sqlite3_exec(db2, "drop table foo2", NULL, NULL, &zErr);
 sqlite3_exec(db2, "create table foo2(x int, y int, z int)",
 NULL, NULL, &zErr);

 printf("program : Attaching database test2.db\n");
 sqlite3_exec(db, "attach 'test2.db' as test2", NULL, NULL, &zErr);

 printf("program : Selecting record from attached database test2.db\n");
 sqlite3_exec(db, "select * from foo2", NULL, NULL, &zErr);

 printf("program : Detaching table\n");
 sqlite3_exec(db, "detach test2", NULL, NULL, &zErr);

Again for clarity, I will break up the program output into pieces. Upon executing it, the first thing we
see is the transaction filter catching changes in transaction state:

program : Starting transaction
 SQLITE_TRANSACTION : BEGIN Transaction
program : Committing transaction
 SQLITE_TRANSACTION : COMMIT Transaction
program : Starting transaction
 SQLITE_TRANSACTION : BEGIN Transaction
program : Aborting transaction
 SQLITE_TRANSACTION : ROLLBACK Transaction

Next we see a schema change notification as the result of creating the test table foo. The interesting
thing to notice here is all the other events that transpire in the sqlite_master table as a result of creating
the table:

program : Creating table
 SQLITE_INSERT : Insert records into sqlite_master
 SQLITE_CREATE_TABLE : Schema modified
 SQLITE_READ : Read of sqlite_master.name
 SQLITE_READ : Read of sqlite_master.rootpage
 SQLITE_READ : Read of sqlite_master.sql
 SQLITE_UPDATE : Update of sqlite_master.type
 SQLITE_UPDATE : Update of sqlite_master.name
 SQLITE_UPDATE : Update of sqlite_master.tbl_name

CHAPTER 6 ■ THE CORE C API

187

 SQLITE_UPDATE : Update of sqlite_master.rootpage
 SQLITE_UPDATE : Update of sqlite_master.sql
 SQLITE_READ : Read of sqlite_master.ROWID
 SQLITE_READ : Read of sqlite_master.name
 SQLITE_READ : Read of sqlite_master.rootpage
 SQLITE_READ : Read of sqlite_master.sql
 SQLITE_READ : Read of sqlite_master.tbl_name

Next the program inserts a record, which the authorizer detects:

program : Inserting record
 SQLITE_INSERT : Insert records into foo

This is where things get more interesting. We are going to be able to see the authorizer block access
to individual columns. The program selects all records from the foo table. We see the SQLITE_SELECT
event take place, followed by the subsequent SQLITE_READ events generated for each attempted access of
each column in the select statement. When it comes to column z, the authorizer denies access.
Immediately following that, SQLite executes the statement, and print_sql_result() prints the column
information and rows for the result set:

program : Selecting record (value for z should be NULL)
 SQLITE_SELECT
 SQLITE_READ : Read of foo.x
 SQLITE_READ : Read of foo.y
 SQLITE_READ : Read of foo.z -> DENIED
 Column: x (1/int)
 Column: y (1/int)
 Column: z (5/(null))
 Record: '1' '2' '(null)'

Look at what goes on with column z. Its value is NULL, which confirms that the authorizer blocked
access. But also look at the column information. Although SQLite revealed the storage class of column z,
it denied access to its declared type in the schema.

Next comes the update. Here we are interested in column x. The update statement will attempt to
change every value in the record. But an update of column x will be denied:

program : Updating record (update of x should be denied)
 SQLITE_UPDATE : Update of foo.x -> DENIED
 SQLITE_UPDATE : Update of foo.y
 SQLITE_UPDATE : Update of foo.z

To confirm this, the program then selects the record to show what happened. The update did
execute, but column x was not changed. Even more interestingly, while z was updated (trust me, it was),
the authorizer will not let us see its value:

CHAPTER 6 ■ THE CORE C API

188

program : Selecting record (notice x was not updated)
 SQLITE_SELECT
 SQLITE_READ : Read of foo.x
 SQLITE_READ : Read of foo.y
 SQLITE_READ : Read of foo.z -> DENIED
 Column: x (1/int)
 Column: y (1/int)
 Column: z (5/(null))
 Record: '1' '5' '(null)'

Next the program deletes the record and drops the table. The latter operation generates all sorts of
events on the sqlite_master table, just like when the table was created:

program : Deleting record
 SQLITE_DELETE : Delete from foo
program : Dropping table
 SQLITE_DELETE : Delete from sqlite_master
 SQLITE_DROP_TABLE : Schema modified
 SQLITE_DELETE : Delete from foo
 SQLITE_DELETE : Delete from sqlite_master
 SQLITE_READ : Read of sqlite_master.tbl_name
 SQLITE_READ : Read of sqlite_master.type
 SQLITE_UPDATE : Update of sqlite_master.rootpage
 SQLITE_READ : Read of sqlite_master.rootpage

Finally, the program creates another database on a separate connection and then attaches it on the
main connection. The main connection then selects records from a table in the attached database, and
we can see how the authorizer reports these operations as happening in the attached database:

program : Attaching database test2.db
 SQLITE_ATTACH : test2.db
 SQLITE_READ : Read of sqlite_master.name
 SQLITE_READ : Read of sqlite_master.rootpage
 SQLITE_READ : Read of sqlite_master.sql
program : Selecting record from attached database test2.db
 SQLITE_SELECT
 SQLITE_READ : Read of foo2.x
 SQLITE_READ : Read of foo2.y
 SQLITE_READ : Read of foo2.z -> DENIED
program : Detaching table
 SQLITE_DETACH -> test2

As you can see, sqlite3_set_authorizer() and its event-filtering capabilities are quite powerful. It
gives you a great deal of control over what the user can and cannot do on a given database. You can
monitor events and, if you want, stop them before they happen. Or, you can allow them to proceed but
impose specific restrictions on them. sqlite3_set_authorizer() can be a helpful tool for dealing with

CHAPTER 6 ■ THE CORE C API

189

SQLITE_SCHEMA conditions. If you know you don’t need any changes to your database schema in your
application, you can simply install an authorizer function to deny any operations that attempt to modify
the schema in certain ways.

■ Caution Keep in mind that denying schema changes in an authorizer is by no means a cure-all for
SQLITE_SCHEMA events. You need to be careful about all the implications of denying various changes to the
schema. Just blindly blocking all events resulting in a schema change can restrict other seemingly legitimate
operations such as VACUUM.

HELP FOR INTERACTIVE PROGRAMS

SQLite provides two functions that make it easier to work with interactive programs. The first is
sqlite3_interrupt(), which is declared as follows:

void sqlite3_interrupt(sqlite3* /* connection handle */);

sqlite3_interrupt() causes any pending database operation on the given connection to abort and
return at its earliest opportunity. This routine is design to be called in response to a user interrupt action
such as clicking a Cancel button in a graphical application or pressing Ctrl+C in a command-line program.
It is intended to make it easier to accommodate cases where the user wants a long query operation to halt
immediately. For a command-line program, you might put this function in a signal handler or an event
handler in a graphical application.

Another function that can be useful for interactive programs is sqlite3_progress_handler(). It is
somewhat related in functionality to the sqlite3_interrupt() function, but with a few twists. It is
declared as follows:

void sqlite3_progress_handler(sqlite3*, /* connection handle */
 int frq, /* frequency of callback */
 int(*)(void*), /* callback function */
 void*); /* application data */

This function installs a callback function that will be invoked during calls to sqlite3_exec(),
sqlite3_step(), and sqlite3_get_table(). The intent of this function is to give applications a way to
provide feedback to the user during long-running queries.

The second argument (frq) specifies the frequency of the callback in terms of VDBE instructions. That is,
the progress callback (provided in the third argument) will be called for every frq VDBE instruction
performed in query execution. If a call to sqlite3_exec(), sqlite3_step(), or sqlite3_get_table()
requires less than frq instructions to be executed, then the progress callback will not be invoked. The
fourth argument is a pointer to application-specific data, which is passed back to the progress handler (as
its one and only argument). If NULL is provided for the callback function argument, then the currently
installed progress handler (if any) is disabled.

CHAPTER 6 ■ THE CORE C API

190

If the progress callback returns a nonzero value, the current query will be immediately terminated, and any
database changes will be rolled back. If the query was part of a larger transaction, then the transaction is
not rolled back and remains active. The sqlite3_exec() call in that case will return SQLITE_ABORT.

Threads
SQLite has enjoyed threading support for many releases. Although normal defensive coding techniques
in multithreaded code apply to SQLite as well, there are a few additional precautions to take.

 One limitation that is somewhat thread-related pertains to the fork() system call on Unix. You
should never try to pass a connection across a fork() call to a child process. It will not work correctly.

Shared Cache Mode
Starting with SQLite version 3.3.0, SQLite supports something called shared cache mode, which allows
multiple connections in a single process to use a common page cache, as shown in Figure 6-1. This
feature is designed for embedded servers where a single thread can efficiently manage multiple database
connections on behalf of other threads. The connections in this case share a single page cache as well as
a different concurrency model. Because of the shared cache, the server thread can operate with
significantly lower memory usage and better concurrency than if each thread were to manage its own
connection. Normally, each connection allocates enough memory to hold 2,000 pages in the page cache.
Rather than each thread consuming that much memory with its own connection, it shares that memory
with other threads using a single page cache.

In this model, threads rely on a server thread to manage their database connections for them. A
thread sends SQL statements to the server through some communication mechanism; the server
executes them using the thread’s assigned connection and then sends the results back. The thread can
still issue commands and control its own transactions; only its actual connection exists in, and is
managed by, another thread.

CHAPTER 6 ■ THE CORE C API

191

Thread ThreadThread

con con con

Server Thread

Page Cache

Database

Figure 6-1. The shared cache model

Connections in shared cache mode use a different concurrency model and isolation level.
Furthermore, an option exists to allow connections in a shared cache can see what their kindred
connections have changed. If the pragma read_committed is set to true, this kind of change inspection is
possible. That is, there can be both multiple readers and an active writer in the database at the same
time. That writer can write to the database—performing complete write transactions—without having to
wait for other readers to clear. Therefore, data can change in the database within a reader’s transaction.
Although SQLite normally runs in a serialized isolation level, meaning that readers and writers always
see a consistent view of the database, in shared cache mode, readers are subject to the database
changing underneath them.

There are some control measures in place to keep connections out of one another’s way. By default,
shared cache mode uses table locks to keep reader connections and writer connections separated. Table
locks are not the same as database locks and exist only within connections of the shared cache.
Whenever a connection reads a table, SQLite first tries to get a read lock on it. The same is true for
writing to a table. A connection may not write to a table that another connection has a read lock on, and
vice versa. Furthermore, table locks are tied to their respective connection and last for the duration of its
transaction.

Read Uncommitted Isolation Level
Although table locks help keep connections in shared cache mode out of one another’s way, it is possible
for connections to elect not to be in the way at all. That is, a connection can choose to have a read-
uncommitted isolation level by using the read_uncommitted pragma. If it is set to true, then the

CHAPTER 6 ■ THE CORE C API

192

connection will not put read locks on the tables it reads. Therefore, another writer can actually change a
table as the connection reads it. This can lead to inconsistent query results, but it also means that a
connection in read-uncommitted mode can neither block nor be blocked by any other connections.

Some large changes have happened as of version 3.7 of SQLite, with the introduction of Write-Ahead
Log mode. We’ll cover Write-Ahead Logging in detail in Chapter 11.

SCHEMA CHANGES IN SHARED CACHE MODE

There are additional things to consider in shared cache mode when a thread wants to modify the database
schema. As it turns out, before SQLite issues a table lock, it first gets a read table lock on the
sqlite_master table. For a thread to alter the schema, it must first get a write table lock on
sqlite_master. It can do this only if there are no read locks on it from other tables. When a thread does get
a write lock on sqlite_master, then no other threads are allowed to compile SQL statements during that
time. They will get SQLITE_SCHEMA errors.

Unlock Notification
If the thought of operating in the wilds of read-uncommitted isolation doesn’t appeal to you, SQLite
provides for an alternative where shared cache mode is in use. Recent versions of SQLite have included
the sqlite3_unlock_notify() function to provide additional flexibility in locking situations. The function
profile looks as follows:

int sqlite3_unlock_notify(
 sqlite3 *pBlocked, /* Waiting connection */
 void (*xNotify)(void **apArg, int nArg), /* Callback function to invoke */
 void *pNotifyArg /* Argument to pass to xNotify */
)

If your code encounters a failure to gain a shared lock because of a contending lock, SQLITE_LOCKED
will be returned. At this point, you can call sqlite3_unlock_notify() to allow registering of your callback
function xNotify (the second parameter) with any desired parameters to that function (access via the
pNotifyArg pointer as the third parameter) against your blocked connection (the first parameter).

The connection that holds the blocking lock will trigger the xNotify callback as part of the
sqlite3_step() or sqlite3_close() call that completes its transaction. It is also possible, particularly
within a multithreaded application, that in the time it takes you to invoke sqlite3_unlock_notify(), the
competing transaction will have completed. In this case, your callback function will be initiated
immediately from within sqlite3_unlock_notify().

There are some caveats to the use of sqlite3_unlock_notify(), including the following:

• You can register only one unlock/notify callback per blocked connection (newer
calls replace any existing callback).

• sqlite3_unlock_notify() is not reentrant, meaning you should not include other
SQLite function calls in your callback function. You’re likely to crash your
application.

CHAPTER 6 ■ THE CORE C API

193

• Special care must be taken if you plan to use with drop table or drop index
commands. Because these can be “blocked” by select statements, there is no
real blocking transaction to include as the pBlocked parameter. Refer to the details
on the SQLite web site for using the extended return codes to detect and handle
this scenario at www.sqlite.org/c3ref/unlock_notify.html.

Threads and Memory Management
Since shared cache mode is about conserving memory, SQLite has several functions associated with
threads and memory management. They allow you to specify an advisory heap limit—a soft heap limit—
as well as manually initiate memory cleanups. These functions are as follows:

void sqlite3_soft_heap_limit(int N);
int sqlite3_release_memory(int N);

The sqlite3_soft_heap_limit() function sets the current soft heap limit of the calling thread to N
bytes. If the thread’s heap usage exceeds N, then SQLite automatically calls sqlite3_release_memory(),
which attempts to free at least N bytes of memory from the caches of all database connections
associated with the calling thread. The return value of sqlite3_release_memory() is the number of bytes
actually freed.

These routines are no-ops unless you have enabled memory management by compiling SQLite with
the SQLITE_ENABLE_MEMORY_MANAGEMENT preprocessor directive.

Summary
The core C API contains everything you need to process SQL commands and then some. It contains a
variety of convenient query methods that are useful in different ways. These include sqlite3_exec() and
sqlite3_get_table(), which allow you to execute commands in a single function call. The API includes
many utility functions as well, allowing you to determine the number of affected records in a query, get
the last inserted ROWID of an INSERT statement, trace SQL commands run on a connection, and
conveniently format strings for SQL statements.

The sqlite3_prepare_v2(), sqlite3_step(), and sqlite3_finalize() methods provide you with a lot
of flexibility and control over statement execution through the use of statement handles. Statement
handles provide more detailed row and column information, the convenience of bound parameters, and
the ability to reuse prepared statements, avoiding the overhead of query compilation.

SQLite provides a variety of ways to manage runtime events through the use of event filters. Its
commit, rollback, and update hooks allow you to monitor and control specific changes in database state.
You can watch changes to rows and columns as they happen and use an authorizer function to monitor
and restrict what queries can do as they are compiled.

And believe it or not, you’ve seen only half of the API! Actually, you’ve seen more like three-quarters,
but you are likely to find that what is in the next chapter—user-defined functions, aggregates, and
collations—is every bit as useful and interesting as what is in this one.

http://www.sqlite.org/c3ref/unlock_notify.html

C H A P T E R 7

■ ■ ■

195

The Extension C API

This chapter is about teaching SQLite new tricks. The previous chapter dealt with generic database work;
this chapter is about being creative. The Extension API offers several basic ways to extend or customize
SQLite, through the creation of user-defined functions, aggregates, collation sequences, and virtual tables.
At a lower level, many more options present themselves, including interchangeable VFSs, start-time
changeable page cache, and malloc and mutex implementation. We’ll cover the first three options in this
chapter: functions, aggregates, and collation sequences.

User-defined functions are SQL functions that map to some implementation that you write. They
are callable from within SQL. For example, you could create a function hello_newman() that returns the
string 'Hello Jerry' and, once it is registered, call it from SQL as follows:

sqlite > select hello_newman() as reply;
reply

'Hello Jerry'

This is a special version of the SQLite command-line program we’ve customized that includes
hello_newman().

Aggregates are a special form of function and work in much the same way except that they operate
on sets of records and return aggregated values or expressions computed over a particular column in the
set. Or they may be computed from multiple columns. Standard aggregates that are built into SQLite
include SUM(), COUNT(), and AVG(), for example.

Collations are methods of comparing and sorting text. That is, given two strings, a collation would
decide which one is greater or whether the two are equal. The default collation in SQLite is BINARY—it
compares strings byte by byte using memcmp(). Although this collation happens to work well for words in
the English language (and other languages that use UTF-8 encoding), it doesn’t necessarily work so well
for other languages that use different encodings. Thus, SQLite includes the ability to build your own
user-defined collations to better handle those alternative languages.

This chapter covers each of these three user-defined extension facilities and their associated API
functions. As you will see, the user-defined extensions API can prove to be a powerful tool for creating
nontrivial features that extend SQLite.

All of the code in this chapter is included in examples that you can obtain online from the Apress
web site (www.apress.com). The examples for this particular chapter are located in the ch7 subdirectory of
the examples folder. We will specifically point out all the source files corresponding to the examples as
they are introduced in the text. Some of the error-checking code in the figures has been taken out for the
sake of clarity.

http://www.apress.com

CHAPTER 7 ■ THE EXTENSION C API

196

Also, many examples in this chapter use simple convenience functions from a common library
written to help simplify the examples. We will point out these functions and explain what they do as they
are introduced in the text. The common code is located in the common subdirectory of the examples folder
and must first be built before the examples are built. Please refer to the README file in the examples folder
for details on building the common library.

Finally, to clear up any confusion, the terms storage class and data type are interchangeable. You
know that SQLite stores data internally using five different data types, or storage classes. These classes
are INTEGER, FLOAT, TEXT, BLOB, and NULL, as described in Chapter 4. Throughout the chapter, we’ll use the
term that best fits the context. You’ll generally see the term data type, because it’s most broadly
applicable and easier for readers from different backgrounds to follow. When speaking about how
SQLite handles a specific value internally, the term storage class seems to work better. In either case, you
can equate either term as describing a specific form or representation of data.

The API
The basic method for implementing functions, aggregates, and collations consists of implementing a
callback function and then registering it in your program. Once registered, your functions can be used
from SQL. Functions and aggregates use the same registration function and similar callback functions.
Collation sequences, while using a separate registration function, are almost identical and can be
thought of as a particular class of user-defined function.

The lifetime of user-defined aggregates, functions, and collations is transient. They are registered on
a connection-by-connection basis; they are not stored in the database. It is up to you to ensure that your
application loads your custom extensions and registers them on each connection. Sometimes you may
find yourself thinking of your extensions in terms of stored procedures and completely forget about the
fact that they don’t actually reside in the database. Extensions exist in libraries, not in databases, and are
restricted to the life of your program. If you don’t grasp this concept, you may do something like try to
create a trigger (which is stored in the database) that references your extensions (which aren’t stored in
the database) and then turn around and try to call it from the SQLite shell or from an application that
knows nothing of your extensions. In this case, you will find that either it triggers an error or nothing
happens. Extensions require your program to register them on each and every connection; otherwise,
that connection’s SQL syntax will know nothing about them.

Registering Functions
You can register functions and aggregates on a connection using sqlite3_create_function(), which is
declared as follows:

int sqlite3_create_function(
 sqlite3 *cnx, /* connection handle */
 const char *zFunctionName, /* function/aggregate name in SQL */
 int nArg, /* number of arguments. -1 = unlimited. */
 int eTextRep, /* encoding (UTF8, 16, etc.) */
 void *pUserData, /* application data, passed to callback */
 void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
 void (*xStep)(sqlite3_context*,int,sqlite3_value**),
 void (*xFinal)(sqlite3_context*)
);

CHAPTER 7 ■ THE EXTENSION C API

197

int sqlite3_create_function16(
 sqlite3 *cnx,
 const void *zFunctionName,
 int nArg,
 int eTextRep,
 void *pUserData,
 void (*xFunc)(sqlite3_context*, int args, sqlite3_value**),
 void (*xStep)(sqlite3_context*, int args, sqlite3_value**),
 void (*xFinal)(sqlite3_context*)
);

As with our examples in the previous chapter, we’ve included both the UTF-8 and UTF-16 versions
of this function to underscore that the SQLite API has functions that support both encodings. From now
on, we will only refer to the UTF-8 versions for the sake of brevity.

The arguments for sqlite3_create_function() are defined as follows:

• cnx: The database connection handle. Functions and aggregates are connection
specific. They must be registered on the connection as it is opened in order to be
used.

• zFunctionName: The function name as it will be called in SQL. Up to 255 bytes in
length.

• nArg: The number of arguments expected by your function. SQLite will enforce
this as the exact number of arguments that must be provided to the function. If
you specify -1, SQLite will allow a variable number of arguments.

• eTextRep: The preferred text encoding. Allowable values are SQLITE_UTF8,
SQLITE_UTF16, SQLITE_UTF16BE, SQLITE_UTF16LE, and SQLITE_ANY. This field is a hint
to SQLite used only to help it choose between multiple implementations of the
same function. SQLITE_ANY means “no preference.” In other words, the
implementation works equally as well with any text encoding. When in doubt, use
SQLITE_ANY here.

• pUserData: Application-specific data. This data is made available through the
callback functions specified in xFunc, xStep, and xFinal below. Unlike other
functions, which receive the data as a void pointer in the argument list, these
functions must use a special API function to obtain this data.

• xFunc: The function callback. This is the actual implementation of the SQL
function. Functions only provide this callback and leave the xStep and xFinal
function pointers NULL. These latter two callbacks are exclusively for aggregate
implementations.

• xStep: The aggregate step function. Each time SQLite processes a row in an
aggregated result set, it calls xStep to allow the aggregate to process the relevant
field value(s) of that row and include the result in its aggregate computation.

• xFinal: The aggregate finalize function. When all rows have been processed,
SQLite calls this function to allow the aggregate to conclude its processing, which
usually consists of computing the final value and optionally cleaning up.

CHAPTER 7 ■ THE EXTENSION C API

198

You can register multiple versions of the same function differing only in the encoding (eTextRep
argument) and/or the number of arguments (nArg argument), and SQLite will automatically select the
best version of the function for the case in hand.

The Step Function
The function (callback) and aggregate step functions are identical and are declared as follows:

void fn(sqlite3_context* ctx, int nargs, sqlite3_value** values)

The ctx argument is the function/aggregate context. It holds state for a particular function call
instance and is the means through which you obtain the application data (pUserData) argument
provided in sqlite3_create_function(). The user data is obtained from the context using
sqlite3_user_data(), which is declared as follows:

void *sqlite3_user_data(sqlite3_context*);

For functions, this data is shared among all calls to like functions, so it is not really unique to a
particular instance of function call. That is, the same pUserData is passed or shared among all instances
of a given function. Aggregates, however, can allocate their own state for each particular instance using
sqlite3_aggregate_context(), declared as follows:

void *sqlite3_aggregate_context(sqlite3_context*, int nBytes);

The first time this routine is called for a particular aggregate, a chunk of memory of size nBytes is
allocated, zeroed, and associated with that context. On subsequent calls with the same context (for the
same aggregate instance), this allocated memory is returned. Using this, aggregates have a way to store
state in between calls in order to accumulate data (which, when you think about it, is the general
purpose for aggregating something). When the aggregate completes the final() callback, the memory is
automatically freed by SQLite.

■ Note One of the things you will see throughout the API is the use of user data in void pointers. Since many parts
of the API involve callback functions, these simply serve as a convenient way to maintain state when implementing
said callback functions.

The nargs argument of the callback function contains the number of arguments passed to the
function.

Return Values
The values argument is an array of SQLite value structures that are handles to the actual argument
values. The actual data for these values is obtained using the family of sqlite3_value_xxx() functions,
which have the following form:

CHAPTER 7 ■ THE EXTENSION C API

199

xxx sqlite3_value_xxx(sqlite3_value* value);

where xxx is the C data type to be returned from the value argument. If you read Chapter 6, you may be
thinking that these functions have a striking resemblance to the sqlite3_column_xxx() family of
functions—and you’d be right. They work in the same way, even down to the difference between the way
scalar and array values are obtained. The functions for obtaining scalar values are as follows:

int sqlite3_value_int(sqlite3_value*);
sqlite3_int64 sqlite3_value_int64(sqlite3_value*);
double sqlite3_value_double(sqlite3_value*);

The functions used to obtain array values are as follows:

int sqlite3_value_bytes(sqlite3_value*);
const void *sqlite3_value_blob(sqlite3_value*);
const unsigned char *sqlite3_value_text(sqlite3_value*);

The sqlite3_value_bytes() function returns the amount of data in the value buffer for a BLOB. The
sqlite3_value_blob() function returns a pointer to that data. Using the size and the pointer, you can
then copy out the data. For example, if the first argument in your function was a BLOB and you wanted to
make a copy, you would do something like this:

int len;
void* data;

len = sqlite3_value_bytes(values[0]);
data = sqlite3_malloc(len);
memcpy(data, sqlite3_value_blob(values[0]), len);

Just as the sqlite3_column_xxx() functions have sqlite_column_type() to provide the column types,
the sqlite3_value_xxx() functions likewise have sqlite3_value_type(), which works in the same way. It
is declared as follows:

int sqlite3_value_type(sqlite3_value*);

This function returns one of the following values, which correspond to SQLite’s internal, storage classes
(data types), defined as follows:

#define SQLITE_INTEGER 1
#define SQLITE_FLOAT 2
#define SQLITE_TEXT 3
#define SQLITE_BLOB 4
#define SQLITE_NULL 5

This covers the basic workings of the function/aggregate interface. We can now dive into some
examples and practical applications. The Collation interface is so similar that it will be immediately
understandable to you now that you’ve reviewed the interface for functions and aggregates.

CHAPTER 7 ■ THE EXTENSION C API

200

Functions
Let’s start our custom function development with a trivial example, one that is very easy to follow. Let’s
implement hello_newman(), but with a slight twist. We want to include using function arguments in the
example, so hello_newman() will take one argument: the name of the person addressing him. It will work
as follows:

sqlite > select hello_newman('Jerry') as reply;
reply

Hello Jerry

sqlite > select hello_newman('Kramer') as reply;
reply

Hello Kramer

sqlite > select hello_newman('George') as reply;
reply

Hello George

Listing 7-1 shows the basic program (taken from hello_newman.c). Some of the error-checking code has
been removed for clarity.

Listing 7-1. The hello_newman() Test Program

int main(int argc, char **argv)
{
 int rc; sqlite3 *db;

 sqlite3_open_v2("test.db", &db);
 sqlite3_create_function(db, "hello_newman", 1, SQLITE_UTF8, NULL,
 hello_newman, NULL, NULL);

 /* Log SQL as it is executed. */
 log_sql(db,1);

 /* Call function with one text argument. */
 fprintf(stdout, "Calling with one argument.\n");
 print_sql_result(db, "select hello_newman('Jerry')");

 /* Call function with two arguments.
 ** It will fail as we registered the function as taking only one argument.*/
 fprintf(stdout, "\nCalling with two arguments.\n");
 print_sql_result(db, "select hello_newman ('Jerry', 'Elaine')");

CHAPTER 7 ■ THE EXTENSION C API

201

 /* Call function with no arguments. This will fail too */
 fprintf(stdout, "\nCalling with no arguments.\n");
 print_sql_result(db, "select hello_newman()");

 /* Done */
 sqlite3_close(db);

 return 0;
}

This program connects to the database, registers the function, and then calls it three times. The
callback function is implemented as follows:

void hello_newman(sqlite3_context* ctx, int nargs, sqlite3_value** values)
{
 const char *msg;

 /* Generate Newman's reply */
 msg = sqlite3_mprintf("Hello %s", sqlite3_value_text(values[0]));

 /* Set the return value. Have sqlite clean up msg w/ sqlite_free(). */
 sqlite3_result_text(ctx, msg, strlen(msg), sqlite3_free);
}

Running the program yields the following output:

Calling with one argument.
 TRACE: select hello_newman('Jerry')
hello_newman('Jerry')

Hello Jerry

Calling with two arguments.
execute() Error: wrong number of arguments to function hello_newman()

Calling with no arguments.
execute() Error: wrong number of arguments to function hello_newman()

The first call consists of just one argument. Since the example registered the function as taking exactly
one argument, it succeeds. The second call attempts to use two arguments, which fails. The third call
uses no arguments and also fails.

And there you have it: a SQLite extension function. This does bring up a few new functions that we
have not addressed yet. We’ve created several helper functions for use with the book and to aid you in
your SQLite work. You’ll find these included for download on the Apress web site. Many of these
functions’ definitions can be found in the source file util.c. The function log_sql() simply calls
sqlite3_trace(), passing in a tracing function that prefixes the traced SQL with the word TRACE. We use
this so you can see what is happening in the example as the SQL is executed. The second function is
print_sql_result(), which has the following declaration:
int print_sql_result(sqlite3 *db, const char* sql, ...)

CHAPTER 7 ■ THE EXTENSION C API

202

This is a simple wrapper around sqlite3_prepare_v2() and friends that executes a SQL statement and
prints the results.

Return Values
Our hello_newman() example introduces a new SQLite function: sqlite3_result_text().This function is
just one of a family of sqlite_result_xxx() functions used to set return values for user-defined functions
and aggregates. The scalar functions are as follows:

void sqlite3_result_double(sqlite3_context*, double);
void sqlite3_result_int(sqlite3_context*, int);
void sqlite3_result_int64(sqlite3_context*, long long int);
void sqlite3_result_null(sqlite3_context*);

These functions simply take a (second) argument of the type specified in the function name and set it as
the return value of the function. The array functions are as follows:

void sqlite3_result_text(sqlite3_context*, const char*, int n, void(*)(void*));
void sqlite3_result_blob(sqlite3_context*, const void*, int n, void(*)(void*));

These functions take array data and set that data as the return value for the function. They have the
following general form:

void sqlite3_result_xxx(
 sqlite3_context *ctx, /* function context */
 const xxx* value, /* array value */
 int len, /* array length */
 void(*free)(void*)); /* array cleanup function */

Here xxx is the particular array type—void for BLOBs or char for TEXT. Again, if you read Chapter 6,
you may find these functions suspiciously similar to the sqlite3_bind_xxx() functions, which they are.
Setting a return value for a function is, for all intents and purposes, identical to binding a value to a
parameterized SQL statement. You could even perhaps refer to it as “binding a return value.”

Arrays and Cleanup Handlers
Just as in binding array values to SQL statements, these functions work in the same way as
sqlite3_bind_xxx(). They require a pointer to the array, the length (or size) of the array, and a function
pointer to a cleanup function. This cleanup function pointer can be assigned the same predefined
meanings as in sqlite3_bind_xxx():

 #define SQLITE_STATIC ((void(*)(void *))0)
 #define SQLITE_TRANSIENT ((void(*)(void *))-1)

SQLITE_STATIC means that the array memory resides in unmanaged space, and therefore SQLite
does not need to make a copy of the data for use, nor should it attempt to clean it up. SQLITE_TRANSIENT
tells SQLite that the array data is subject to change, and therefore SQLite needs to make its own copy

CHAPTER 7 ■ THE EXTENSION C API

203

using sqlite3_malloc(). The allocated memory will be freed when the function returns. The third option
is to pass in an actual function pointer to a cleanup function of the following form:

void cleanup(void*);

In this case, SQLite will call the cleanup function after the user-defined function completes. This is the
method used in the previous example. We used sqlite3_mprintf() to generate Newman’s reply, which
allocated a string on the heap. We then passed in sqlite3_free() as the cleanup function to
sqlite3_result_text(), which could free the string memory when the extension function completed.

Error Conditions
Sometimes functions encounter errors, in which case the return value should be set appropriately. This
is what sqlite3_result_error() is for. It is declared as follows:

void sqlite3_result_error(
 sqlite3_context *ctx, /* the function context */
 const char *msg, /* the error message */
 int len); /* length of the error message */

This tells SQLite that there was an error, the details of which are contained in msg. SQLite will abort the
command that called the function and set the error message to the value contained in msg.

Returning Input Values
Sometimes, you may want to pass back an argument as the return value in the same form. Rather than
you having to determine the argument’s type, extract its value with the corresponding sqlite3_
column_xxx() function, and then turn right around and set the return value with the appropriate
sqlite3_result_xxx() function, the API offers sqlite3_result_value() so you can do all of this in one
fell swoop. It is declared as follows:

void sqlite3_result_value(
 sqlite3_context *ctx, /* the function context */
 sqlite3_value* value); /* the argument value */

For example, say you wanted to create a function echo() that spits back its first argument. The
implementation is as follows:

void echo(sqlite3_context* ctx, int nargs, sqlite3_value** values)
{
 sqlite3_result_value(ctx, values[0]);
}

CHAPTER 7 ■ THE EXTENSION C API

204

It would work from SQL as follows:

sqlite > select echo('Hello Jerry') as reply;
reply

Hello Jerry

Even better, echo() works equally well with arguments of any storage class and returns them
accordingly:

sqlite> select echo(3.14) as reply, typeof(echo(3.14)) as type;
reply type
---------- ----------
3.14 real
sqlite> select echo(X'0128') as reply, typeof(echo(X'0128')) as type;
reply type
---------- ----------
(? blob
sqlite> select echo(NULL) as reply, typeof(echo(NULL)) as type;
reply type
---------- ----------
 null

Aggregates
Aggregates are only slightly more involved than functions. Whereas you had to implement only one
callback function to do the work in user-defined functions, you have to implement both a step function
to compute the ongoing value as well as a finalizing function to finish everything off and clean up. Figure
7-1 shows the general process. It still isn’t hard, though. Like functions, one good example will be all you
need to get the gist of it.

CHAPTER 7 ■ THE EXTENSION C API

205

Figure 7-1. Query processing with aggregates

Registration Function
As mentioned before, aggregates and functions use the same registration function,
sqlite3_create_function(), which is listed here again for convenience:

int sqlite3_create_function(
 sqlite3 cnx*, /* connection handle */
 const char *zFunctionName, /* function/aggregate name in SQL */
 int nArg, /* number of arguments. -1 = unlimited. */
 int eTextRep, /* encoding (UTF8, 16, etc.) */
 void *pUserData, /* application data, passed to callback */
 void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
 void (*xStep)(sqlite3_context*,int,sqlite3_value**),
 void (*xFinal)(sqlite3_context*)
);

CHAPTER 7 ■ THE EXTENSION C API

206

You do exactly the same thing here as you do with functions, but rather than proving a callback for
xFunc, you leave it NULL and provide functions for xStep and xFinal.

A Practical Example
The best way to illustrate implementing aggregates is by example. Here we will implement the aggregate
str_agg(). The idea of str_agg() is to act much like the strcat() C function, where two strings are
concatenated together (the eagle-eyed will spot that newer versions of SQLite include a function with a
similar purpose, group_concat()). But for our purposes, we want to aggregate any number of strings
involved in grouping and aggregations at the behest of your SQL in SQLite. You might well wonder
whether you really need such a string contatenation aggregation feature in SQLite, given you could write
your own in C. One advantage of the str_agg() approach is to enable semantically clear and easily
understood SQL to be written, rather than having to shuffle back and forth between SQL and C to
achieve the string aggregation. The other benefit of this example is, of course, to show you how to
aggregate. Listing 7-2 shows our example str_agg() function (taken from str_agg.c).

Listing 7-2. The str_agg() Test Program

int main(int argc, char **argv)
{
 int rc; sqlite3 *db; char *sql;

 sqlite3_open_v2("foods.db", &db);

 /* Register aggregate. */
 fprintf(stdout, "Registering aggregate str_agg()\n");

 /* Turn SQL tracing on. */
 log_sql(db, 1);

 /* Register aggregate. */
 sqlite3_create_function(db, "str_agg", 1, SQLITE_UTF8, db,
 NULL, str_agg_step, str_agg_finalize);

 /* Test. */
 fprintf(stdout, "\nRunning query: \n");
 sql = "select season, str_agg(name, ', ') from episodes group by season";
 print_sql_result(db, sql);

 sqlite3_close(db);

 return 0;
}

Note that our step function is called str_agg_step(), and our finalizing function is called
str_agg_finalize(). Also, this aggregate is registered as taking only one argument.

CHAPTER 7 ■ THE EXTENSION C API

207

The Step Function
Listing 7-3 shows the str_agg_step() function.

Listing 7-3. The str_agg() Step Function

void str_agg_step(sqlite3_context* ctx, int ncols, sqlite3_value** values)
{
 SAggCtx *p = (SAggCtx *) sqlite3_aggregate_context(ctx, sizeof(*p));

 static const char delim [] = ", ";

 char *txt = sqlite3_value_text(values[0]);

 int len = strlen(txt);

 if (!p->result) {
 p->result = sqlite_malloc(len + 1);
 memcpy(p->result, txt, len + 1);
 p->chrCnt = len;
 }
 else
 {
 const int delimLen = sizeof(delim);
 p->result = sqlite_realloc(p->result, p->chrCnt + len + delimLen + 1);
 memcpy(p->result + p->chrCnt, delim, delimLen);
 p->chrCnt += delimLen;
 memcpy(p->result + p->chrCnt, txt, len + 1);
 p->chrCnt += len;
 }
}

The value SAggCtx is a struct that is specific to this example and is defined as follows:

typedef struct SAggCtx SAggCtx;
struct SAggCtx {
 int chrCnt;
 char *result;
};

Our structure serves as our state between aggregate iterations (calls to the step function),
maintaining the growing concatenation of text, and the character count.

The Aggregate Context
The first order of business is to retrieve the structure for the given aggregate instance. This is done using
sqlite3_aggregate_context(). As mentioned earlier, the first call to this function allocates the data for
the given context and subsequent calls retrieve it. The structure memory is automatically freed when the
aggregate completes (after str_agg_finalize() is called). Note that sqlite3_aggregate_context() might
return NULL if the system is low on memory. Such error checking is omitted in this example, for brevity,

CHAPTER 7 ■ THE EXTENSION C API

208

but a real implementation should always check the result of sqlite3_aggregate_context() and invoke
sqlite3_result_error_nomem() if the result is NULL. In the str_agg_step() function, the text value to be
aggregated is retrieved from the first argument using sqlite3_value_text(). This value is then added to
the result member of the SAggCtx struct, which stores the intermediate concatenation. Note again that
sqlite3_value_text() might return a NULL pointer if the argument to the SQL function is NULL or if the
system is low on memory. A real implementation should check for this case in order to avoid a segfault.

The Finalize Function
Each record in the materialized result set triggers a call to str_agg_step(). After the last record is
processed, SQLite calls str_agg_finalize(), which is implemented as shown in Listing 7-4.

Listing 7-4. The sum_agg() Finalize Function

void str_agg_finalize(sqlite3_context* ctx)
{
 SAggCtx *p = (SAggCtx *) sqlite3_aggregate_context(ctx, sizeof(*p));
 if(p && p->result) sqlite3_result_text(ctx, p->result, p->chrCnt, sqlite_free);
}

The str_agg_finalize() function basically works just like a user-defined function callback. It
retrieves the SAggCtx struct and, if it is not NULL, sets the aggregate’s return value to the value stored in
the struct’s result member using sqlite3_result_text(). The sqlite3_aggregate_context() routine
might return NULL if the system is low on memory, or the p->zResult field might be NULL if the step
function was never called. In the former case, SQLite is going to return the SQLITE_NOMEM error so it does
not really matter whether sqlite3_result_text() is ever called. In the latter case, since no
sqlite3_result_xxx() function is ever invoked for the aggregate, the result of the aggregate will be the
SQL NULL.

Results
The program produces the following output (abbreviated here to conserve paper):

Registering aggregate str_agg()

Running query:
 TRACE: select season, str_agg(name, ', ') from episodes group by season
…

season str_agg(name, ', ')
------ --
0 Good News Bad News
1 Male Unbonding, The Stake Out, The Robbery, The Stock Tip
2 The Ex-Girlfriend, The Pony Remark, The Busboy, The Baby Shower, …
3 The Note, The Truth, The Dog, The Library, The Pen, The Parking Garage …
…

CHAPTER 7 ■ THE EXTENSION C API

209

As you can see, the select statement pulls back the data from the episode table, and the str_agg()
aggregate concatenates the episode names per season. You can think of this as something similar to
cross-tabs or pivots in spreadsheets and other tools.

And that is the concept of aggregates in a nutshell. They are so similar to functions that there isn’t
much to talk about once you are familiar with functions.

Collations
As stated before, the purpose of collations is to sort strings. But before starting down that path, it is
important to recall that SQLite’s manifest typing scheme allows varying data types to coexist in the same
column. For example, consider the following SQL (located in collate1.sql):

.headers on
.m column
create table foo(x);
insert into foo values (1);
insert into foo values (2.71828);
insert into foo values ('three');
insert into foo values (X'0004');
insert into foo values (null);

select quote(x), typeof(x) from foo;

Feeding it to the SQLite CLP will produce the following:

C:\temp\examples\ch7> sqlite3 < collate.sql
quote(x) typeof(x)
---------- ----------
1 integer
2.71828 real
'three' text
X'0004' blob
NULL null

You have every one of SQLite’s native storage classes sitting in column x. Naturally, the question arises
as to what happens when you try to sort this column. That is, before we can talk about how to sort
strings, we need to review how different data types are sorted first.

When SQLite sorts a column in a result set (when it uses a comparison operator such as < or >= on
the values within that column), the first thing it does is arrange the column’s values according to storage
class. Then within each storage class, it sorts the values according to methods specific to that class.
Storage classes are sorted in the following order, from first to last:

1. NULL values

2. INTEGER and REAL values

3. TEXT values

4. BLOB values

CHAPTER 7 ■ THE EXTENSION C API

210

Now let’s modify the SELECT statement in the preceding example to include an ORDER BY clause such that
the SQL is as follows:

select quote(x), typeof(x) from foo order by x;

Rerunning the query (located in collate2.sql) confirms this ordering:

C:\temp\examples\ch7> sqlite3 < collate.sql
quote(x) typeof(x)
---------- ----------
NULL null
1 integer
2.71828 real
'three' text
X'0004' blob

NULLs are first, INTEGER and REAL are next (in numerical order), TEXT is next, and then BLOBs are last.
SQLite employs specific sorting methods for each storage class. NULLs are obvious—there is no sort

order. Numeric values are sorted numerically; integers and floats alike are compared based on their
respective quantitative values. BLOBs are sorted by binary value. Text, finally, is where collations come in.

Collation Defined
Collation is the method by which strings are compared. A popular1 glossary of terms defines a collation
as follows:

Text comparison using language-sensi tive rules as o pposed to bit wise comparison of
numeric character codes.

In general, collation has to do with the ordering, comparison, and arrangement of strings and
characters. Collation methods usually employ collation sequences. A collation sequence is just an
ordered list of characters, usually numbered to make the order easier to remember and use. The list in
turn is used to dictate how characters are ordered, compared and sorted. Given any two characters, the
collation (list) can resolve which would come first or whether they are the same.

How Collation Works
Normally, a collation method compares two strings by breaking them down and comparing their
respective characters using a collation. They do this by lining the strings up and comparing characters
from left to right (Figure 7-2). For example, the strings 'jerry' and 'jello' would be compared by first

1
 See www.ibm.com/developerworks/library/glossaries/unicode.html.

http://www.ibm.com/developerworks/library/glossaries/unicode.html

CHAPTER 7 ■ THE EXTENSION C API

211

comparing the first letter in each string (both j in this case). If one letter’s numerical value according to
the collation sequence is larger than the other, the comparison is over: the string with the larger letter is
deemed greater, and no further comparison is required. If, on the other hand, the letters have the same
value, then the process continues to the second letter in each string, and to the third, and so on, until
some difference is found (or no difference is found, in which case the strings are considered equal). If
one string runs out of letters before the other, then it is up to the collation method to determine what
this means.

Figure 7-2. Binary collation

In this example, the collation is the ASCII character set. Each character’s numeric ASCII value in the
figure is displayed underneath it. Using the collation method just described, string comparison
continues to the third character, whereupon 'jerry' wins out, as it has an r with the value 114, whereas
'jello' has the inferior 'l' with the value 108. Based on ASCII collation, 'jerry' > 'jello'.

Had 'jerry' been 'Jerry', then 'jello' would have won out, because big J’s 74 pales to little j’s
106, so the comparison would have been resolved on the first character, with the prize going to 'jello'.
In short, 'jello' > 'Jerry'.

However, to continue the example, we could use a different collation wherein uppercase values are
assigned the same numbers as their lowercase counterparts (a case-insensitive collation sequence).

CHAPTER 7 ■ THE EXTENSION C API

212

Then the comparison between 'Jerry' and 'jello' would go back to 'Jerry' because in this new
collation J and j are the same, pulling the rug out from under 'jello'’s lowercase j superiority.

But enough about collations. You get the picture. A sequence is a sequence. Ultimately, it’s not the
collation sequence that matters but the collation method. Collation methods don’t have to use
sequences. They can do whatever they want, however strange or mad that may seem.

Odds are that you are really confused by now and are just ready for a summary. So here it is. Think
of collation methods as the way that strings are compared. Think of collation sequences as the way
characters are compared. Ultimately, all that matters in SQLite is how strings are compared, and the two
terms refer to just that. Therefore, the two terms collation method and collation sequence should just be
thought of as string comparison. If you read collation, think string comparison. If you read collation,
think string comparison. All in all, just think string comparison. That is the way the API is geared. When
you create a custom collation, SQLite hands it two strings, a and b, and the collation returns whether
string a is less than, equal to, or greater than string b. That’s it, plain and simple.

Standard Collation Types
SQLite comes with a single built-in collation named binary, which is implemented by applying the
memcmp() routine from the standard C library to the two strings to be compared. The binary collation
happens to work well for English text. For other languages or locales, alternative collation may be
preferred. SQLite also offers an alternate collation called nocase, which treats upper- and lowercase
versions of the same letter as equivalents.

Collations are applied by associating them with columns in a table or an index definition or by
specifying them in a query. For example, to create a case-insensitive column bar in foo, you would
define foo as follows:

create table foo (bar text collate nocase, baz integer);

From that point on, whenever SQLite deals with a bar, it will use the nocase collation. If you prefer not to
attach a collation to a database object but would rather specify it as needed on a query-by-query basis,
you can specify them directly in queries, as in the following:

select * from foo order by bar collate nocase;

SQLite can also apply a collation as the result of a cast() expression where you convert nontext data
(that wouldn’t normally have a textual collation) to the text data type. We could cast our baz numeric
value to text and apply the nocase collation like this:

select cast(baz) collate nocase as baz_as_text from foo order by baz_as_text;

Although the example is a little contrived, the capability will help you especially when dealing with
data of mixed storage classes being converted to text.

A Simple Example
To jump into collations, let’s begin with a simple example to get the big picture. Let’s implement a
collation called length_first. Length_first will take two strings and decide which one is greater
depending on the length of the string. Image Jerry at the deli, demanding to only eat ingredients with
short names—or Kramer insisting he has a great deal on foods with really long names. Whimsical, but
very Seinfeld.

CHAPTER 7 ■ THE EXTENSION C API

213

Collations are registered with SQLite through the sqlite3_create_collation_v2() function, which is
declared as follows:

int sqlite3_create_collation_v2(
 sqlite3* db, /* database handle */
 const char *zName, /* collation name in SQL */
 int pref16, /* encoding */
 void* pUserData, /* application data */
 int(*xCompare)(void*,int,const void*,int,const void*)
 void(*xDestroy)(void*)
);

It looks pretty similar to sqlite3_create_function(). There is the standard database handle, the
collation name as it will be addressed in SQL (similar to the function/aggregate name), and the
encoding, which pertains to the format of the comparison strings when passed to the comparison
function.

■ Note Just as in aggregates and functions, separate collation comparison functions can be registered under the
same collation name for each of the UTF-8, UTF-16LE, and UTF-16BE encodings. SQLite will automatically select
the best comparison function for the given collation based on the strings to be compared.

The application data pointer is another API mainstay. The pointer provided there is passed on to the
callback function. Basically, sqlite3_create_collation_v2() is a stripped-down version of
sqlite3_create_function(), which takes exactly two arguments (both of which are text) and returns an
integer value. It also has the aggregate callback function pointers stripped out.

Of the remaining two parameters, the last is xDestroy pointer. This function will be called at
destruction time of the collation, which typically will happen when the database connection is
destroyed. The destruction function will also be called if your collation is overridden by later calls to
sqlite3_create_collation_v2().

The Compare Function
The xCompare argument is the key new thing here. It points to the actual comparison function that will
resolve the text values. The comparison function must have the following form:

int compare(void* data, /* application data */
 int len1, /* length of string 1 */
 const void* str1, /* string 1 */
 int len2, /* length of string 2 */
 const void* str2) /* string 2 */

The function should return negative, zero, or positive if the first string is less than, equal to, or greater
than the second string, respectively.

As stated, the length_first collation is a bit wishy-washy. Listing 7-5 shows its implementation.

i

CHAPTER 7 ■ THE EXTENSION C API

214

Listing 7-5. The Length_first Collation Function

int length_first_collation(void* data, int l1, const void* s1,
 int l2, const void* s2)
{
 int result, opinion;

 /* Compare lengths */
 if (l1 == l2) result = 0;

 if (l1 < l2) result = 1;

 if (l1 > l2) result = 2;

 /* Form an opinion: is s1 really < or = to s2 ? */
 switch(result) {
 case 0: /* Equal length, collate alphabetically */
 opinion = strcmp(s1,s2);
 break;
 case 1: /* String s1 is shorter */
 opinion = -result;
 break;
 case 2: /* String s2 is shorter */
 opinion = result
 break;
 default: /* Assume equal length just in case */
 opinion = strcmp(s1,s2);
 }

 return opinion;
}

The Test Program
All that remains is to illustrate it in a program. Listing 7-6 shows the example program (length_first.c)
implementation.

Listing 7-6. The Length_first Collation Test Program

int main(int argc, char **argv)
{
 char *sql; sqlite3 *db; int rc;

 sqlite3_open("foods.db", &db);

 /* Register Collation. */
 fprintf(stdout, "1. Register length_first Collation\n\n");
 sqlite3_create_collation_v2(db, "LENGTH_FIRST", SQLITE_UTF8, db,
 length_first_collation, length_first_collation_del);

CHAPTER 7 ■ THE EXTENSION C API

215

 /* Turn SQL logging on. */
 log_sql(db, 1);

 /* Test default collation. */
 fprintf(stdout, "2. Select records using default collation.\n");
 sql = "select name from foods order by name";
 print_sql_result(db, sql);

 /* Test Length First collation. */
 fprintf(stdout, "\nSelect records using length_first collation. \n");
 sql = "select name from foods order by name collate LENGTH_FIRST";
 print_sql_result(db, sql);

 /* Done. */
 sqlite3_close(db);

 return 0;
}

Results
Running the program yields the following results (abbreviated here to save space):

1. Register length_first Collation

2. Select records using default collation.
 TRACE: select name from foods order by name
name

A1 Sauce
All Day Sucker
Almond Joy
Apple
Apple Cider
Apple Pie
Arabian Mocha Java (beans)
Arby's Roast Beef
Artichokes
Atomic Sub
...

CHAPTER 7 ■ THE EXTENSION C API

216

Select records using length_first collation.
 TRACE: select name from foods order by name collate LENGTH_FIRST
issue

BLT
Gum
Kix
Pez
Pie
Tea
Bran
Duck
Dill
Life
...

Our program starts by registering the length_first collation sequence. We then proceed to select

records using SQLite’s default binary collation, which returns records in alphabetical order. Then comes
our use of the length_first collation, where we select records again. As the results indicate, we are right
on the mark, sorting first by length and then alphabetically.

Collation on Demand
SQLite provides a way to defer collation registration until it is actually needed. So if you are not sure your
application is going to need something like the length_first collation, you can use the
sqlite3_collation_needed() function to defer registration to the last possible moment (perhaps as the
result of some secret last-minute food renaming). You simply provide sqlite3_collation_needed() with
a callback function, which SQLite can rely on to register unknown collation sequences as needed, given
their name. This acts like a callback for a callback, so to speak. It’s like saying to SQLite, “Here, if you are
ever asked to use a collation that you don’t recognize, call this function, and it will register the unknown
sequence; then you can continue your work.”

The sqlite3_collation_needed() function is declared as follows:

int sqlite3_collation_needed(
 sqlite3* db, /* connection handle */
 void* data, /* application data */
 void(*crf)(void*,sqlite3*,int eTextRep,const char*)
);

The crf argument (the collation registration function as we call it) points to the function that will register
the unknown collation. For clarity, it is defined as follows:

 void crf(void* data, /* application data */
 sqlite3* db, /* database handle */
 int eTextRep, /* encoding */
 const char*) /* collation name */

The db and data arguments of crf() are the values passed into the first and second arguments of
sqlite3_collation_needed(), respectively.

CHAPTER 7 ■ THE EXTENSION C API

217

Summary
By now you’ve discovered that user-defined functions, aggregates, and collations can be surprisingly
useful. The ability to add such functions using the extensions part of the C API is a great complement to
the open nature of the core SQLite library. So, you’re free to dig in and modify SQLite to your heart’s
content. We would even go so far to say that SQLite provides a friendly, easy-to-user interface that makes
it possible to implement a wide range of powerful extensions and customizations, especially when
combined with other features already present in SQLite.

In the next chapter, you will see how many extension languages take advantage of this. They use the
C API to make it possible to implement all manner of capabilities and extensions for a given language.

C H A P T E R 8

■ ■ ■

219

Language Extensions

SQLite is written in C and has its own C API, which makes C the “native language” to some degree. The
open source community, however, has provided many extensions for SQLite that make it accessible to
many programming languages and libraries such as Perl, Python, Ruby, Java, .NET/C#, Qt, and ODBC. In
many cases, there are multiple extensions to choose from for a given language, developed by different
people to meet different needs.

Many extensions conform to various API standards. For instance, one of the SQLite Perl extensions
follows the Perl DBI—Perl’s standard interface for database access. Similarly, one of the Python
extensions conforms to Python’s DB API specification, as does at least one of the Java extensions to
JDBC. Regardless of their particular APIs, internally all extensions work on top of the same SQLite C API,
which you’ve already explored in Chapters 5, 6, and 7. To some degree, all extensions reflect the C
foundation of the SQLite design. Some extensions provide both a standard interface that conforms to
their particular API standard as well as an alternative interface that better reflects the design of the
SQLite API. Therefore, in such cases, you can choose which interface works best for you based on your
requirements.

In general, all extensions have the same comparative anatomy regardless of their particular API.
They follow a similar pattern. Once you understand this pattern, every interface will start to look similar
in many respects. There is some kind of connection object representing a single connection to the
database, and some kind of cursor object representing a SQL query from which you can both execute
commands and iterate over results. Conceptually, it is quite simple. Internally, you are looking at a
sqlite3 structure and a sqlite3_stmt structure, both well-known structures from our earlier explanation
and examples. The same rules apply for language extensions as for the C API.

This chapter covers language extensions for six popular languages: Perl, Python, Ruby, Java, Tcl, and
PHP. The intent is to provide you with a convenient introduction with which to quickly get started using
SQLite in a variety of different languages. We’ll highlight right now that we won’t be teaching you those
languages themselves—so some knowledge of Perl, or Python, or Ruby, and so on, is expected.

Coverage for each language follows a common outline composed of the common topics of
questions from people starting out with language extensions for SQLite:

• Connecting to databases

• Executing queries

• Using bound parameters

• Implementing user-defined functions or aggregates

CHAPTER 8 ■ LANGUAGE EXTENSIONS

220

Together these topics constitute the vast majority of what you will ever use in any particular SQLite
extension. You might find some “developer tension” over developing user-defined functions in SQLite
versus implementing the logic in your chosen language. Although we can’t make that decision for you,
we can give you the knowledge and expertise to help make that choice yourself.

Not every extension supports all of these topics. For instance, some don’t offer bound parameters.
Conversely, some extensions offer unique features that are outside the topics covered here. The aim here
is to provide a consistent, straightforward process with which to easily get started using SQLite in a wide
variety of languages. Once you get started with any extension, it is usually easy to pick up any special
features available in that extension.

Where appropriate, this chapter addresses how different extensions use various parts of the C API in
order to help you understand what is going on under the hood. If you have not read the preceding
chapters on the C API, we strongly recommend that you do so. No matter what language you program in,
it will almost always be helpful to understand how SQLite works in order to make the most of it and thus
write good code. It will help you select the most suitable query methods, understand the scope of
transactions, and know how to anticipate, deal with, or avoid locks, among other things.

Selecting an Extension
For many of today’s popular languages, you are spoilt for choice when it comes to language bindings for
SQLite. Choosing the extension that suits you is often more than a straight technical decision. To help,
we cover the interface that best fits the following criteria:

• Support for the latest SQLite 3 versions

• Good documentation

• Stability

• Portability

Despite these criteria, there were multiple candidates in some cases that met all the qualifications.
In such cases, the tiebreaker was more a matter of personal preference than anything else. But the
purpose here is not to favor a particular extension. It is to teach concepts so that you can easily pick any
extension in any language and quickly put it and SQLite to good use.

The reasons we chose a particular extension may not be the reasons you would. Some additional
points to consider include the following:

• License and license compatibility: The extension’s license can directly affect how
you can use it. Is it open source, and if so, under which license? If you are writing
code for a commercial product, you definitely need to take this into consideration.

• Data type mapping: How does the extension map SQLite’s storage classes to the
language’s native types. Are all values returned as text? Is some kind of crazy
casting scheme used? If not, is there an easy way to determine the mappings? Do
you have any control over how the mapping is done?

• Query methods: Three different query methods are supported in the C API. Which
one does the extension use? Ideally it supports all three.

• API coverage: How well does the extension cover other areas that don’t easily map
to many standard database interfaces? For example, does it allow you to call the
SQL trace function or operational security functions? Do you actually need these?

CHAPTER 8 ■ LANGUAGE EXTENSIONS

221

• Linkage and distribution: How easy is it to use the extension with a particular
version of SQLite? Does it include a version of SQLite in the distribution? Does it
use a shared library, or is it statically linked to a particular version? What if you
need to upgrade SQLite; how easily can you do this with the extension? Will
anything break?

There are other considerations as well, such as community support, mailing list activity, maintainer
support and responsiveness, regression testing, code quality...the list goes on. All of these things may
play an important role in your decision to use a particular extension. Only you can answer these
questions for yourself.

The SQLite wiki has a page that provides an exhaustive list of language interfaces, located at
www.sqlite.org/cvstrac/wiki?p=SqliteWrappers. All of the interfaces covered here were taken from this
list. The source code for all of the examples in this chapter is located in the ch8 directory of the examples
zip file, available at the Apress web site.

Perl
There are two SQLite extensions for Perl. The first is a modeled on the Perl DBI standard for database
connectivity; therefore, if you understand DBI, you will have no trouble using the extension. For those
unfamiliar with the Perl DBI, you can review full documentation on the CPAN web site at
http://search.cpan.org/search?module=DBI. The second extension is a SWIG-based wrapper for use
with Perl. We’ll examine the DBI interface in the following sections.

Installation
The current version of the SQLite DBI driver at the time of this writing is DBD-SQLite-1.29. You can install
it by using CPAN or by manually building the package from source. The prerequisites for the SQLite DBD
module are, of course, Perl, a C compiler, and the DBI module. The latest versions of the SQLite DBI
driver also require YAML (“Yet another markup language” or “YAML Ain’t Markup Language,”
depending on whom you believe), used for various configuration files. To install DBD::SQLite using
CPAN, invoke the CPAN shell from the command line as follows:

fuzzy@linux $ cpan

cpan> install DBD::SQLite

... lots of CPAN install messages ...

To install from source in Linux/Unix, change to a temporary directory and do the following:

fuzzy@linux $ wget http://search.cpan.org/CPAN/authors/id/A/AD/ADAMK/DBD-SQLite-1.29.tar.gz

... lots of wget messages ...

fuzzy@linux $ tar xzvf DBD-SQLite-1.29.tar.gz

... lots of tar messages ...

fuzzy@linux $ cd DBD-SQLite-1.29

http://www.sqlite.org/cvstrac/wiki?p=SqliteWrappers
http://search.cpan.org/search?module=DBI
http://search.cpan.org/CPAN/authors/id/A/AD/ADAMK/DBD-SQLite-1.29.tar.gz

CHAPTER 8 ■ LANGUAGE EXTENSIONS

222

fuzzy@linux DBD-SQLite-1.29 $ perl Makefile.PL

... lots of perl messages ...

Checking installed SQLite version...
Looks good
fuzzy@linux DBD-SQLite-1.29 $ make install

... more perl messages ...

The SQLite Perl extension includes its own copy of the SQLite3 binaries, so there is no need to
compile and install SQLite beforehand. SQLite is embedded in the extension.

Connecting
To check the SQLite driver is installed, use the DBI function available_drivers() within Perl:

use DBI;
print "Drivers: " . join(", ", DBI->available_drivers()), "\n";

You connect to a database using the standard DBI::connect function, as follows:

use DBI;
my $dbh = DBI->connect("dbi:SQLite:dbname=foods.db", "", "",
 { RaiseError => 1 });
$dbh->disconnect;

The second and third arguments correspond to the driver name and database name. The third and
fourth correspond to username and password, which are not applicable to SQLite.

The function returns a database handle object representing the database connection. Internally,
this corresponds to a single sqlite3 structure. You can create in-memory databases by passing :memory:
for the name of the database. In this case, all tables and database objects will then reside in memory for
the duration of the session and will be destroyed when the connection is closed. You close the database
using the database handle’s disconnect method.

Query Processing
Queries are performed using the standard DBI interface as well. You can use the prepare(), execute(),
fetch(), or selectrow() functions of the database connection handle. All of these are fully documented
in the DBI man page. Listing 8-1 shows an example of using queries.

Listing 8-1. Executing Queries in Perl

use DBI;
Connect to database
my $dbh = DBI->connect("dbi:SQLite:dbname=foods.db", "", "",
 { RaiseError => 1 });

CHAPTER 8 ■ LANGUAGE EXTENSIONS

223

Prepare the statment
my $sth = $dbh->prepare("select name from foods limit 3");

Execute
$sth->execute;

Print a human-readable header
print "\nArray:\n\n";

Iterate over results and print
while($row = $sth->fetchrow_arrayref) {
 print @$row[0] . "\n";
}

Do the same thing, this time using hashref
print "\nHash:\n\n";
$sth->execute;
while($row = $sth->fetchrow_hashref) {
 print @$row{'name'} . "\n";
}

Finalize the statement
$sth->finish;

#Disconnect
$dbh->disconnect;

Internally, the prepare() method corresponds to the sqlite3_prepare_v2() method. Similarly,
execute() calls the first sqlite3_step() method. It automatically figures out whether there is data to be
returned. If there is no data (for example, non-select statements), it automatically finalizes the query.
The fetchrow_array(), fetchrow_hashref(), and fetch() methods call sqlite3_step() as well, returning
a single row in the result set until the results are exhausted.

Additionally, you can run non-select statements in one step using the database object’s do()
method. Listing 8-2 illustrates this using an in-memory database.

Listing 8-2. The do() Method

use DBI;
my $dbh = DBI->connect("dbi:SQLite:dbname=:memory:", "", "", { RaiseError => 1 });
$dbh->do("create table cast (name)");
$dbh->do("insert into cast values ('Elaine')");
$dbh->do("insert into cast values ('Jerry')");
$dbh->do("insert into cast values ('Kramer')");
$dbh->do("insert into cast values ('George')");
$dbh->do("insert into cast values ('Newman')");

my $sth = $dbh->prepare("select * from cast");
$sth->execute;

CHAPTER 8 ■ LANGUAGE EXTENSIONS

224

while($row = $sth->fetch) {
 print join(", ", @$row), "\n";
}
$sth->finish;
$dbh->disconnect;

The statement handle object’s finish() method will call sqlite3_finalize() on the query object, if
it has not already done so. This program produces the following output:

Elaine
Jerry
Kramer
George
Newman

Parameter Binding
Parameter binding follows the method defined in the DBI specification. Although SQLite supports both
positional and named parameters, the Perl interface uses only positional parameters, demonstrated in
Listing 8-3.

Listing 8-3. Parameter Binding in Perl

use DBI;

my $dbh = DBI->connect("dbi:SQLite:dbname=foods.db", "", "",
 { RaiseError => 1 });

my $sth = $dbh->prepare("select * from foods where name like :1");
$sth->execute('C%');

while($row = $sth->fetchrow_hashref) {
 print @$row{'name'} . "\n";
}

$sth->finish;
$dbh->disconnect;

The execute() method takes the parameter values defined in prepare(). Running this against the
evolving foods database we’ve used for many of our examples returns 73 rows (depending on how much
fun you had playing with chocolate bobka in previous chapters).

User-Defined Functions
User-defined functions and aggregates are implemented using private methods of the driver. They
follow closely to their counterparts in the SQLite C API. Functions are registered using the following
private method:

CHAPTER 8 ■ LANGUAGE EXTENSIONS

225

$dbh->func($name, $argc, $func_ref, "create_function")

Here $name specifies the SQL function name, $argc specifies the number of arguments, and
$func_ref specifies a reference to the Perl function that provides the implementation. Listing 8-4
illustrates an implementation of hello_newman() in Perl.

Listing 8-4. hello_newman() in Perl

use DBI;

sub hello_newman {
 return "Hello Jerry";
}

Connect
my $dbh = DBI->connect("dbi:SQLite:dbname=foods.db", "", "",
 { RaiseError => 1 });

Register function
$dbh->func('hello_newman', 0, \&hello_newman, 'create_function');

Call it
print $dbh->selectrow_arrayref("select hello_newman()")->[0] . "\n";

$dbh->disconnect;

If you provide -1 as the number of arguments, then the function will accept a variable number of
arguments.

Aggregates
User-defined aggregates are implemented as packages. Each package implements a step function and a
finalize function. The step function is called for each row that is selected. The first value supplied to the
function is the context, which is a persistent value maintained between calls to the function. The
remaining values are the arguments to the aggregate function supplied in the SQL statement. The
finalize function is provided the same context as the step function. The following example implements a
simple SUM aggregate called perlsum. The aggregate is implemented in a package called perlsum.pm,
shown in Listing 8-5.

Listing 8-5. The perlsum() Aggregate

package perlsum;

sub new { bless [], shift; }

CHAPTER 8 ■ LANGUAGE EXTENSIONS

226

sub step {
 my ($self, $value) =
@_;
 @$self[0] += $value;
}

sub finalize {
 my $self = $_[0];
 return @$self[0];
}

sub init {
 $dbh = shift;
 $dbh->func("perlsum", 1, "perlsum", "create_aggregate");
}

1;

The init function is used to register the aggregate in the database connection.

Python
There are numerous approaches to working with SQLite in Python. These can be grouped into two
camps. The first is the group of SQLite wrappers, such as PySQLite and APSW, that act as straightforward
wrapper interfaces to the underlying SQLite API calls (though with varying degrees of depth). The second
group is the all-encompassing framework approach, such as SQL Alchemy. These are typically designed
as complete object-relational mapping systems, seeking not only to provide access to the underlying
database API but to also follow object-oriented philosophies in the design and use of database-related
code.

At last count, there were at least nine different wrappers or object-relational frameworks for SQLite
in Python. That’s almost enough for a book in its own right. We’ll cover one of the more popular
wrappers, PySQLite, principally because it has been one of the most enduring and also maps to the
Python DB API.

Michael Owens (the author of the first edition of this book) wrote the original version of PySQLite
and started the project in 2002, which then was written using the SQLite 2.x API. Gerhard Häring has
since taken over the project and completely rewritten it for PySQLite version 2, which supports SQLite
version 3. The project has also evolved and moved several times and now refers to itself as pysqlite (all
lowercase). You can find project information for PySQLite on Google Code at http://code.google.
com/p/pysqlite/. Both the source code and native Windows binaries are available for download.

Installation
From Python 2.5 onward, pysqlite is included as a standard module for Python and is simply referred to
as the sqlite3 module when used from the standard library. There are still some uses to separately
acquiring and compiling/using the pysqlite stand-alone module, because it tracks bug fixes and new
features more closely than the Python distribution itself.

To source your own pysqlite package, Windows users are encouraged to use the provided binaries
rather than building them by hand. On Linux, Unix, Mac OS X, and other systems, you build and install
pysqlite using Python’s distutils package, or you source the rpm or deb file from your local package

x

http://rubyforge.org/projects/sqlite-ruby
http://code.google

CHAPTER 8 ■ LANGUAGE EXTENSIONS

227

repository. The prerequisites for compiling your own PySQLite are a C compiler, Python 2.3 or newer,
and SQLite 3.1 or newer. After unpacking the source code, compile the code with the following
command:

python setup.py build

distutils should normally be able to figure out where everything is on your system. If not, you will get
an error, in which case you need to edit the setup.cfg file in the main directory to point out where things
are. If everything goes well, you should see “Creating library...” in the output, indicating a successful
build. Next install the library:

python setup.py install

You should not see any errors. If you do, report them to the community through the quite active group at
http://groups.google.com/group/python-sqlite.

For Windows systems, simply download the binary distribution and run the installer. The only
prerequisite in this case is that SQLite 3.2 or newer be installed on your system.

Connecting
As mentioned, the built-in module in Python 2.5 and newer is named sqlite3. If using the separately
sourced pysqlite package, it is in pysqlite2. The DB API module is located in dbapi2. This is sometimes
confusing when you are thinking of PySQLite version numbers and SQLite version numbers
simultaneously. You connect to a database using the module’s connect() function, passing in the
relative name or complete file path of the database file you want to open.

For the built-in pysqlite in Python 2.5+, a connection would be as follows:

import sqlite3

db = sqlite3.connect("foods.db")

With the separately sourced package for pysqlite, your connect changes to the following:

from pysqlite2 import dbapi2 as sqlite3

db = sqlite3.connect("foods.db")

The usual rules apply: you can use in-memory databases by passing in the name :memory: as the
database name; new databases are created for new files; and so forth. You can see the only real variation
in the included module and separately sourced module for pysqlite is in import semantics. From here
on, we’ll assume you’re happy switching to the technique that best suits your preferred way of using
pysqlite.

Query Processing
Query execution is done according to the Python DB API Specification 2. You create a cursor object with
which to run the query and obtain results. Internally, a cursor object holds a sqlite3_stmt handle.
Listing 8-6 illustrates executing a basic query.

http://groups.google.com/group/python-sqlite

CHAPTER 8 ■ LANGUAGE EXTENSIONS

228

Listing 8-6. A Basic Query in PySQLite

from pysqlite2 import dbapi2 as sqlite3

Connect
con = sqlite3.connect("foods.db")

Prepare a statement and execute. This calls sqlite3_prepare() and sqlite3_step()
cur = con.cursor()
cur.execute('select * from foods limit 10')

Iterate over results, print the name field (row[2])
row = cur.fetchone()
while row:
 print row[2]
 # Get next row
 row = cur.fetchone()

cur.close()
con.close()

Remember, Python code is white-space sensitive, so be careful not to introduce additional spaces or
tabs when copying this code. Running this code produces the following output:

Bagels
Bagels, raisin
Bavarian Cream Pie
Bear Claws
Black and White cookies
Bread (with nuts)
Butterfingers
Carrot Cake
Chips Ahoy Cookies
Chocolate Bobka

Query compilation and the first step of execution are performed together in the cursor’s execute()
method. It calls sqlite3_prepare() followed by sqlite3_step(). For queries that modify data rather than
return results, this completes the query (short of finalizing the statement handle). For select statements,
it fetches the first row of the result. The close() method finalizes the statement handle.

PySQLite 2 supports iterator-style result sets, similar to other Python database wrappers. For
example, Listing 8-6 could be rewritten as shown in Listing 8-7.

Listing 8-7. Using Pythonic Iterators for a Query

from pysqlite2 import dbapi2 as sqlite3

con = sqlite3.connect("foods.db")
cur = con.cursor()
cur.execute('select * from foods limit 10')

CHAPTER 8 ■ LANGUAGE EXTENSIONS

229

for row in cur:
 print row[2]

Parameter Binding
PySQLite supports parameter binding by both position and name. This can also be done using the
cursor’s execute() method, which we introduced in Listing 8-6. Compilation, binding, and the first step
of execution are performed in the one call to execute(). You specify positional parameters by passing a
tuple as the second argument to execute(). You specify named parameters by passing a dictionary
rather than a tuple. Listing 8-8 illustrates both forms of parameter binding.

Listing 8-8. Parameter Binding in PySQLite

from pysqlite2 import dbapi2 as sqlite3

con = sqlite3.connect("foods.db")
cur = con.cursor()
cur.execute('insert into episodes (name) values (?)', ('Soup Nazi'))
cur.close()

cur = con.cursor()
cur.execute('insert into episodes (name) values (:name)', {'name':'Soup Nazi'})
cur.close()

This model does not support the reuse of compiled queries (sqlite3_reset()). To do this, use
Cursor.executemany(). While the DB API specifies that executemany should take a list of parameters,
PySQLite extends it to accommodate iterators and generators as well. For example, the canonical form is
shown in Listing 8-9.

Listing 8-9. The executemany() Method

from pysqlite2 import dbapi2 as sqlite3

con = sqlite3.connect("foods.db")
cur = con.cursor()

episodes = ['Soup Nazi', 'The Fusilli Jerry']
cur.executemany('insert into episodes (name) values (?)', episodes)
cur.close()
con.commit()

But you could just as easily use a generator, as shown in Listing 8-10.

CHAPTER 8 ■ LANGUAGE EXTENSIONS

230

Listing 8-10. The executemany() Method with a Generator

from pysqlite2 import dbapi2 as sqlite3

con = sqlite3.connect("foods.db")
cur = con.cursor()

def episode_generator():
 episodes = ['Soup Nazi', 'The Fusilli Jerry']
 for episode in episodes:
 yield (episode,)

cur.executemany('INSERT INTO episodes (name) VALUES (?)', episode_generator())
cur.close()
con.commit()

In both Listing 8-9 and Listing 8-10, we use the power of parameter binding with a single
compilation of the query in question. The query is reused for each item in the sequence or iterator,
improving the overall performance for such batches of identical queries.

TRANSACTION HANDLING IN PYSQLITE

It is important to notice the con.commit() lines in the previous examples. Don’t forget them if you use
PySQLite. If you don’t include them, then all transactions in the examples will be rolled back. This behavior
differs from both the SQLite C API and other extensions, and it might surprise you. By default, SQLite runs
in autocommit mode. PySQLite, on the other hand, starts and finishes transactions behind the scenes,
using its own logic for starting and committing transactions based on what kind of SQL you execute.
Before passing your SQL statement to SQLite, it is analyzed by PySQLite. If it finds an insert, update,
delete, or replace, PySQLite will implicitly start a transaction (issue a begin). Then, if you issue any other
kind of command following it, PySQLite will automatically issue a commit before executing that command.
This transaction logic places an additional constraint on your code in that you cannot use ON CONFLICT
ROLLBACK; otherwise, it interferes with PySQLite’s monitoring of your transactions.

It is possible to turn off this behavior and restore the default SQLite behavior. You can explicitly turn
autocommit mode back on by setting isolation_level of the database connection to None, as follows:

from pysqlite2 import dbapi2 as sqlite3

Turn on autocommit mode
con = sqlite3.connect("foods.db", isolation_level=None)

User-Defined Functions
You register user-defined functions using create_function(), which takes the following form:

CHAPTER 8 ■ LANGUAGE EXTENSIONS

231

con.create_function(name, args, pyfunc)

Here, name is the SQL name of the function, args is the number of arguments accepted by the function,
and pyfync is the Python function that implements the SQL function. Listing 8-11 shows a Python
implementation of hello_newman() using PySQLite.

Listing 8-11. hello_newman() in PySQLite

from pysqlite2 import dbapi2 as sqlite3

The Python function
def hello_newman():
 return 'Hello Jerry'

con = sqlite3.connect(":memory:")
con.create_function("hello_newman", 0, hello_newman)
cur = con.cursor()

cur.execute("select hello_newman()")
print cur.fetchone()[0]

If you use -1 as the number of arguments, then the function will accept a variable number of
arguments.

Aggregates
PySQLite implements user-defined aggregates as Python classes. These classes must implement step()
and finalize() methods. You register aggregates using Connection::create_aggregate(), which takes
three arguments: the function’s SQL name, the number of arguments, and the class name that
implements the aggregate. Listing 8-12 implements a simple SUM aggregate called pysum.

Listing 8-12. The pysum() Aggregate in PySQLite

from pysqlite2 import dbapi2 as sqlite3

class pysum:
 def init(self):
 self.sum = 0

 def step(self, value):
 self.sum += value

 def finalize(self):
 return self.sum

CHAPTER 8 ■ LANGUAGE EXTENSIONS

232

con = sqlite3.connect("foods.db")
con.create_aggregate("pysum", 1, pysum)
cur = con.cursor()
cur.execute("select pysum(id) from foods")
print cur.fetchone()[0]

APSW as an Alternative Python Interface
APSW is written and maintained by Roger Binns. Detailed information on APSW can be found at
http://code.google.com/p/apsw/. Although APSW and pysqlite share some common capabilities and a
very similar syntactical style, APSW goes further in providing a range of additional features and API
mapping points. Rather than repeating very similar Python code samples, we’ll outline the key benefits
of APSW and allow you to explore them as you want.

Support for virtual tables, VFS, blob I/O, backups, and file control: APSW
provides comprehensive support for the latest features provided by SQLite, as
well as database management tasks that aren’t provided through pysqlite’s
narrower focus on DBAPI conformity.

APSW Python Shell: APSW incorporates an extensible shell that can be used in
place of the SQLite command interface. This includes great features such as
color-coded syntax, CSV formatting and handling, strictly correct error
handling, and additional formatting options for data and messages.

Consistent transaction handling: APSW always performs transactions as you
would expect, rather than mimicking pysqlite’s attempt to intuitively handle
them without your involvement.

There are also a host of other nice little (and even major) features that make APSW a joy to work
with. You can review all of these capabilities at http://apidoc.apsw.googlecode.com/hg/pysqlite.html.

Ruby
The Ruby extension was written by Jamis Buck of 37 Signals and is now maintained by a group of
developers. You can obtain detailed information on the extension as well as the source code at
http://rubyforge.org/projects/sqlite-ruby. The complete documentation for the SQLite 3 extension
can be found at http://sqlite-ruby.rubyforge.org/sqlite3/, though the layout is a little daunting.

Installation
The extension can be built in two ways: with or without SWIG. The Ruby configuration script will
automatically figure out whether SWIG is available on your system. You should build the extension with
SWIG (the C extension), because that implementation is more stable. If your operating system uses a
well-developed package management and repository system (like Debian, Ubuntu, and so on), you’ll
also find packages available for your system there.

At the time of this writing, the current version of sqlite-ruby is 1.3.1. To build from source, fetch the
tarball from http://rubyforge.org/projects/sqlite-ruby. Unpack the tarball, and run three setup
commands:

http://code.google.com/p/apsw
http://apidoc.apsw.googlecode.com/hg/pysqlite.html
http://rubyforge.org/projects/sqlite-ruby
http://sqlite-ruby.rubyforge.org/sqlite3
http://rubyforge.org/projects/sqlite-ruby

CHAPTER 8 ■ LANGUAGE EXTENSIONS

233

fuzzy@linux $ tar xjvf sqlite3-ruby-1.3.1.tar.bz2
fuzzy@linux $ cd sqlite3-ruby-1.3.1
fuzzy@linux $ ruby setup.rb config
fuzzy@linux $ ruby setup.rb setup
fuzzy@linux $ ruby setup.rb install

If you have Ruby gems installed, you can get Ruby to do everything for you in one step:

fuzzy@linux $ gem install --remote sqlite3-ruby

If you are installing from a repository, ensure you check your installed version of Ruby and match the
right version from the repository. Because old versions of SQLite also enjoy support, ensure you install
the libsqlite3-ruby or equivalent package for your platform. For example, under Ubuntu:

fuzzy@linux $ ruby --version
ruby 1.8.6 (2007-09-24 patchlevel 111) [x86_64-linux]
fuzzy@linux $ sudo apt-get install libsqlite3-ruby libsqlite-ruby libsqlite-ruby1.8
... many apt messages fly past ...

Connecting
To load the SQLite extension, you must import the sqlite module, using either load or require, as
follows:

require 'sqlite'

You connect to a database by instantiating a SQLite::Database object, passing in the name of the
database file. By default, columns in result sets are accessible by their ordinal. However, they can be
accessed by column name by setting Database::results_as_hash to true:

require 'sqlite'
db = SQLite::Database.new("foods.db")
db.results_as_hash = true

Query Processing
The Ruby extension follows the SQLite API quite closely. It offers both prepared queries and wrapped
queries.

Prepared queries are performed via Database::prepare(), which passes back a Statement object,
which holds a sqlite3_stmt structure. You execute the query using Statement’s execute method, which
produces a ResultSet object. You can pass the Statement a block, in which case it will yield the ResultSet
object to the block. If you don’t use a block, then the Statement will provide the ResultSet object as a
return value. ResultSet is used to iterate over the returned rows. Internally, it uses sqlite3_step(). You
can get at the rows in ResultSet either through a block using the each() iterator or by using a
conventional loop with the next() method, which returns the next record in the form of an array or nil if
it has reached the end of the set. Listing 8-13 shows prepared queries in action in Ruby.

CHAPTER 8 ■ LANGUAGE EXTENSIONS

234

Listing 8-13. Prepared Queries in Ruby

#!/usr/bin/env ruby

require 'sqlite3'

db = SQLite3::Database.new('foods.db')

stmt = db.prepare('select name from episodes')

stmt.execute do | result |
 result.each do | row |
 puts row[0]
 end
end

result = stmt.execute()
result.each do | row |
 puts row[0]
end

stmt.close()

It is important to call Statement.close() when you are done to finalize the query. Because a
Statement object holds a sqlite3_stmt structure internally, each subsequent call to execute thus reuses
the same query, avoiding the need to recompile the query.

Parameter Binding
The Ruby extension supports both positional and named parameter binding. You bind parameters using
Statement::bind_param() and/or Statement::bind_params(). bind_param() has the following form:

bind_param(param, value)

If param is a Fixnum, then it represents the position (index) of the parameter. Otherwise, it is used as
the name of the parameter. bind_params() takes a variable number of arguments. If the first argument is
a hash, then it uses it to map parameter names to values. Otherwise, it uses each argument as a
positional parameter. Listing 8-14 illustrates both forms of parameter binding.

Listing 8-14. Parameter Binding in Ruby

require 'sqlite3'

db = SQLite3::Database.new("foods.db")
db.results_as_hash = true

Named paramters

CHAPTER 8 ■ LANGUAGE EXTENSIONS

235

stmt = db.prepare('select * from foods where name like :name')
stmt.bind_param(':name', '%Peach%')

stmt.execute() do |result|
 result.each do |row|
 puts row['name']
 end
end

Positional paramters

stmt = db.prepare('select * from foods where name like ? or type_id = ?')
stmt.bind_params('%Bobka%', 1)

stmt.execute() do |result|
 result.each do |row|
 puts row['name']
 end
end

Free read lock
stmt.close()

If you don’t need to use parameters, a shorter way to process queries is using Database::query(),
which cuts out the Statement object and just returns a ResultSet, as shown in Listing 8-14.

Listing 8-14. Using the Database::query() Method in Ruby

require 'sqlite3'

db = SQLite3::Database.new("foods.db")
db.results_as_hash = true

result = db.query('select * from foods limit 10')
result.each do |row|
 puts row['name']
end

result.reset()

while row = result.next
 puts row['name']
end
result.close()

Like Statement objects, Result objects are also thin wrappers over statement handles and therefore
represent compiled queries. They can be rerun with a call to reset, which calls sqlite3_reset()
internally and reexecutes the query. Unlike Statement objects however, they cannot be used for bound
parameters.

Other, even shorter, query methods include Database::get_first_row(), which returns the first row
of a query, and Database::get_first_value(), which returns the first column of the first row of a query.

CHAPTER 8 ■ LANGUAGE EXTENSIONS

236

User-Defined Functions
User-defined functions are implemented using Database::create_function(), which has the following
form:

create_function(name, args, text_rep=Constants::TextRep::ANY) {|func, *args| ...}

Here, name is the name of the SQL function, args is the number of arguments (-1 is variable), and
text_rep corresponds to the UTF encoding. Values are UTF8, UTF16LE, UTF16BE, UTF16, and ANY. Finally, the
function implementation is defined in the block. Listing 8-15 illustrates a Ruby implementation of
hello_newman().

Listing 8-15. hello_newman() in Ruby

require 'sqlite3'

db = SQLite3::Database.new(':memory:')

db.create_function('hello_newman', -1) do |func, *args|
 if args.length == 0
 func.result = 'Hello Jerry'
 else
 func.result = 'Hello %s' % [args.join(', ')]
 end
end

puts db.get_first_value("SELECT hello_newman()")
puts db.get_first_value("SELECT hello_newman('Elaine')")
puts db.get_first_value("SELECT hello_newman('Elaine', 'Jerry')")
puts db.get_first_value("SELECT hello_newman('Elaine', 'Jerry', 'George')")

This program produces the following output:

Hello Jerry
Hello Elaine
Hello Elaine, Jerry
Hello Elaine, Jerry, George

Java
Like Python mentioned earlier, a wealth of Java extensions are available for SQLite. These fall into two
broad camps: the JDBC drivers (sometimes with added goodies) and complete reimplementations of
SQLite in Java. We’ll cover the javasqlite wrapper written by Christian Werner, who wrote the SQLite
ODBC driver as well. It includes both a JDBC driver and a native JNI extension, which closely shadows
the SQLite C API. You can download the extension from www.ch-werner.de/javasqlite/overview-
summary.html#jdbc_driver.

http://www.ch-werner.de/javasqlite/overview-summary.html#jdbc_driver
http://www.ch-werner.de/javasqlite/overview-summary.html#jdbc_driver
http://www.ch-werner.de/javasqlite/overview-summary.html#jdbc_driver

CHAPTER 8 ■ LANGUAGE EXTENSIONS

237

The main class in the JNI extension is SQLiteDatabase. Most of its methods are implemented using
callbacks that reference the following interfaces:

• SQLite.Callback

• SQLite.Function

• SQLite.Authorizer

• SQLite.Trace

• SQLite.ProgressHandler

The SQLite.Callback interface is used to process result sets through row handlers, as well as column and
type information. SQLite.Authorizer is a thin wrapper over the SQLite C API function
sqlite3_set_authorizer(), with which you can intercept database events before they happen.
SQLite.Trace is used to view SQL statements as they are compiled, and it wraps sqlite3_trace().
SQLite.ProgressHandler wraps sqlite3_progress_handler(), which is used to issue progress events after
a specified number of VDBE instructions have been processed.

Installation
The current version requires JDK 1.4 or newer. The extension uses GNU Autoconf, so building and
installing requires only three steps:

fuzzy@linux $ tar xvzf javasqlite-20100727.tar.gz
fuzzy@linux $./configure
fuzzy@linux $ make
fuzzy@linux $ make install

The configure script will look for SQLite and the JDK in several default locations. However, to
explicitly specify where to look for SQLite and the JDK, several command-line options are available.

--with-sqlite=DIR to specify the sqlite v2 location

--with-sqlite3=DIR to specify the sqlite v3 location

--with-jdk=DIR to specify the JDK location.

To specify the place where the resulting library should be installed (libsqlite_jni.so file), use the -
-prefix=DIR option. The default location is /usr/lib/jvm/java-6-sun/jre/lib/i386 (though this may
vary depending on your distribution of Linux or use of another Unix flavor or Mac OS X, such as
/usr/local/lib, for example.) To specify where the sqlite.jar is to be installed, use the --with-
jardir=DIR option. The default is /usr/lib/jvm/java-6-sun-1.6.0.20/jre/lib/ext/sqlite.jar (again,
this may vary depending on the age and type of your distribution). This file contains the high-level part
and the JDBC driver. At runtime, it is necessary to tell the JVM both places with the -classpath and -
Djava.library.path=.. command-line options.

For Windows, the makefiles javasqlite.mak and javasqlite3.mak are provided in the distribution.
They contain some build instructions and use the J2SE 1.4.2 from Sun and Microsoft Visual C++ 6.0. A
DLL with the native JNI part (including SQLite 3.7.0) and the JAR file with the Java part can be
downloaded from the web site.

CHAPTER 8 ■ LANGUAGE EXTENSIONS

238

Connecting
You connect to a database using SQLiteDatabase::open(), which takes the name of the database and the
file mode, as shown in Listing 8-16. The file mode is an artifact from SQLite 2 API and is no longer used.
You can provide any value to satisfy the function. The code in Listing 8-16 is taken from the example file
SQLiteJNIExample.java. The full code from this example illustrates all the main facets of database
operations: connecting, querying, using functions, and so forth.

Listing 8-16. The JavaSQLite Test Program

import SQLite.*;

public class SQLiteJNIExample
{
 public static void main(String args[])
 {
 SQLite.Database db = new SQLite.Database();

 try
 {
 db.open("foods.db", 700);

 // Trace SQL statements
 db.trace(new SQLTrace());

 // Query example
 query(db);

 // Function example
 user_defined_function(db);

 // Aggregate example
 user_defined_aggregate(db);

 db.close();
 }
 catch (java.lang.Exception e)
 {
 System.err.println("error: " + e);
 }
 }

 ...
}

Query Processing
Your queries are issued using SQLiteDatabase::compile(). This function can process a string containing
multiple SQL statements. It returns a VM (virtual machine) object that holds all the statements.

CHAPTER 8 ■ LANGUAGE EXTENSIONS

239

The VM object parses each individual SQL statement on each call to compile(), returning true if a
complete SQL statement was compiled and false otherwise. You can therefore iterate through all SQL
statements in a loop, breaking when the VM has processed the last statement.

When the VM has compiled a statement, you can execute it using VM::step(). This function takes a
single object, which implements a SQLite.Callback interface. The example uses a class called Row for this
purpose, which is shown in Listing 8-17.

Listing 8-17. The Row Class

class Row implements SQLite.Callback
{
 private String row[];

 public void columns(String col[]) {}
 public void types(String types[]) {}

 public boolean newrow(String data[])
 {
 // Copy to internal array
 row = data;
 return false;
 }

 public String print()
 {
 return "Row: [" + StringUtil.join(row, ", ") + "]";
 }
}

The SQLite.Callback interface has three methods: columns(), types(), and newrow(). They process
the column names, column types, and row data, respectively. Each call to VM::step() updates all of the
column, type, and row information.

The use of VM is illustrated in the query() function of the example, which is listed in Listing 8-18.

Listing 8-18. The query() Function

public static void query(SQLite.Database db)
 throws SQLite.Exception
{
 System.out.println("\nQuery Processing:\n");

 Row row = new Row();
 db.set_authorizer(new AuthorizeFilter());

 Vm vm = db.compile("select * from foods limit 5;" +
 "delete from foods where id = 5;" +
 "insert into foods (type_id, name) values (5, 'Java');" +
 "select * from foods limit 5");
 do
 {

CHAPTER 8 ■ LANGUAGE EXTENSIONS

240

 while (vm.step(row))
 {
 System.err.println(row.print());
 }
 }
 while (vm.compile());
}

The SQLite.Database::exec() performs self-contained queries and has the following form:

void exec(String sql, Callback cb, String[] params)

The params array corresponds to %q or %Q parameters in the SQL statement. An example is shown in
Listing 8-19.

Listing 8-19. The exec_query() Function

public static void exec_query(SQLite.Database db)
 throws SQLite.Exception
{
 System.out.println("\nExec Query:\n");

 String sql = "insert into foods (type_id, name) values (5, '%q')";
 ResultSet result = new ResultSet();

 String params[] = {"Java"};
 db.exec(sql, result, params);

 System.out.println("Result: last_insert_id(): " + db.last_insert_rowid());
 System.out.println("Result: changes(): " + db.changes());
}

Note that this is not the same thing as parameter binding. Rather, this is sprintf style substitution
using sqlite3_vmprintf() in the SQLite C API.

User-Defined Functions and Aggregates
The SQLite.Function interface is used to implement both user-defined functions and user-defined
aggregates. The hello_newman() function in Java is illustrated in Listing 8-20.

Listing 8-20. hello_newman() in Java

class HelloNewman implements SQLite.Function
{
 public void function(FunctionContext fc, String args[])
 {
 if (args.length > 0)
 {
 fc.set_result("Hello " + StringUtil.join(args, ", "));
 }

CHAPTER 8 ■ LANGUAGE EXTENSIONS

241

 else
 {
 fc.set_result("Hello Jerry");
 }
 }

 public void step(FunctionContext fc, String args[]){}
 public void last_step(FunctionContext fc)
 {
 fc.set_result(0);
 }

}

Notice that the step() and last_step() functions, while specific to aggregates, must also be
implemented even though they do nothing in user-defined functions. This is because the
SQLite.Function interface defines methods for both functions and aggregates. This class is registered
using SQLite.Database.create_function(). The function’s return type must also be registered using
SQLite.Database.function_type(). Listing 8-21 illustrates using the Java implementation of
hello_newman().

Listing 8-21. The hello_newman() Test Code

// Register function
db.create_function("hello_newman", -1, new HelloNewman());

// Set return type
db.function_type("hello_newman", Constants.SQLITE_TEXT);

// Test
PrintResult r = new PrintResult();
db.exec("select hello_newman()", r);
db.exec("select hello_newman('Elaine', 'Jerry')", r);
db.exec("select hello_newman('Elaine', 'Jerry', 'George')", r);

JDBC
The Java extension also includes support for JDBC. To use the driver, specify SQLite.JDBCDriver as the
JDBC driver’s class name. Also, make sure you have sqlite.jar in your class path and the native library
in your Java library path. The JDBC URLs to connect to a SQLite database have the format
jdbc:sqlite:/path, where path has to be specified as the path name to the SQLite database, for example.

jdbc:sqlite://dirA/dirB/dbfile
jdbc:sqlite:/DRIVE:/dirA/dirB/dbfile
jdbc:sqlite:///COMPUTERNAME/shareA/dirB/dbfile

Currently, the supported data types on SQLite tables are java.lang.String, short, int, float, and
double. Some support exists for java.sql.Date, java.sql.Time, and java.sql.Timestamp. A connection
property daterepr is used to define behavior for these data types. A value of daterepr=Julian sets SQLite
to interpret all insert/updates of these data types as a floating-point conversion to the equivalent Julian

sqlite://dirA/dirB/dbfile

CHAPTER 8 ■ LANGUAGE EXTENSIONS

242

Day. Any other value switches behavior to use the string formats YYYY-mm-dd for date, HH:MM:SS for time,
and YYYY-mm-dd HH:MM:SS.f for timestamp.

Other data type mapping depends mostly on the availability of the SQLite pragmas show_datatypes
and table_info. Enough basic database metadata methods are implemented such that it is possible to
access SQLite databases with JDK 1.4 or newer and the iSQL-Viewer tool.

Listing 8-22 is a simple example (located in SQLiteJDBCExample.java) of using the JDBC driver to
query the foods table.

Listing 8-22. The SQLite JDBC Test Program

import java.sql.*;
import SQLite.JDBCDriver;

public class SQLiteJDBCExample {

public static void main (String [] args)
{
 try
 {
 Class.forName("SQLite.JDBCDriver");
 Connection c = DriverManager.getConnection("jdbc:sqlite://tmp/foods.db",
 "" // username (NA),
 "" // password (NA));

 Statement s = c.createStatement();
 ResultSet rs = s.executeQuery ("select * from foods limit 10");
 int cols = (rs.getMetaData()).getColumnCount();

 while (rs.next())
 {
 String fields[] = new String[cols];

 for(int i=0; i<cols; i++)
 {
 fields[i] = rs.getString(i+1);
 }

 System.out.println("[" + join(fields, ", ") + "]");
 }
 }
 catch(Exception x)
 {
 x.printStackTrace();
 }
}

sqlite://tmp/foods.db

CHAPTER 8 ■ LANGUAGE EXTENSIONS

243

static String join(String[] array, String delim)
{
 StringBuffer sb = join(array, delim, new StringBuffer());
 return sb.toString();
}

static StringBuffer join(String[] array, String delim, StringBuffer sb)
{
 for (int i=0; i<array.length; i++)
 {
 if (i!=0) sb.append(delim);
 sb.append("'" + array[i] + "'");
 }

 return sb;
}

}

This example produces the following output:

['1', '1', 'Bagels']
['2', '1', 'Bagels, raisin']
['3', '1', 'Bavarian Cream Pie']
['4', '1', 'Bear Claws']
['6', '1', 'Bread (with nuts)']
['7', '1', 'Butterfingers']
['8', '1', 'Carrot Cake']
['9', '1', 'Chips Ahoy Cookies']
['10', '1', 'Chocolate Bobka']
['11', '1', 'Chocolate Eclairs']

Tcl
SQLite’s author wrote and maintains the Tcl extension. All of SQLite’s testing code is implemented in Tcl
and thus uses the SQLite Tcl extension. It is safe to say that this extension is both stable and well tested
itself. The Tcl extension is included as part of the SQLite source distribution. You can find complete
documentation for this extension on the SQLite web site: www.sqlite.org/tclsqlite.html.

Installation
The SQLite GNU Autoconf script will automatically search for Tcl and build the Tcl extension if it finds it.
The recommended way to build the TCL interface is to use one of the tarballs or precompiled bindings
for the Tcl extension for either Linux and Windows available on the SQLite web site. A simple “configure
&& make” invocation should see the TCL extension compiled and installed in the default location, so
TCL and TCL/Tk scripts can load the extension normally. You’ll also find the requisite libraries in the

http://www.sqlite.org/tclsqlite.html

CHAPTER 8 ■ LANGUAGE EXTENSIONS

244

package repositories of various distributions. For example, under Debian or Ubuntu, you can add the Tcl
bindings as follows:

fuzzy@linux $ sudo apt-get install libsqlite3-tcl

As this chapter is being written, there is also talk of including SQLite by default in TCL version 8.6,
which will make the process even easier!

Connecting
The SQLite extension is located in the sqlite3 package, which must be loaded using the package require
directive. To connect to a database, use the sqlite3 command to create a database handle. This
command takes two arguments: the first is the name of the database handle to be created, and the
second is the path to the database file. The following example illustrates connecting to a database:

#!/usr/bin/env tclsh

package require sqlite3

puts "\nConnecting."
sqlite3 db ./foods.db

The usual database connection rules apply. Passing the value :memory: instead of a file name will
create an in-memory database. Passing in the name of a new file will create a new database, and so on.
The database handle returned corresponds to a connection to the specified database; however, it is not
yet open—it does not open the connection until you try to use it. The database handle is the sole object
through which you work with the database.

To disconnect, use the close method of the database handle. This will automatically roll back any
pending transactions.

Query Processing
The extension executes queries using the eval method, which can process one or more queries at a time.
eval can be used in several ways. The first way is to iterate through all records in a script following the
SQL code. The script will be executed once for each row returned in the result set. The fields for each row
are set as local variables within the script. Here’s an example:

puts "\nSelecting 5 records."
db eval {select * from foods limit 5} {
 puts "$id $name"
}

There is another form in which you can assign the field values to an array. To do this, specify the array
name after the SQL and before the script. Here’s an example:

puts "\nSelecting 5 records."
db eval {select * from foods limit 5} values {
 puts "$values(id) $values(name)"
}

CHAPTER 8 ■ LANGUAGE EXTENSIONS

245

Both of the previous code snippets produce the following output:

Selecting 5 records.

1 Bagels
2 Bagels, raisin
3 Bavarian Cream Pie
4 Bear Claws
5 Black and White cookies

If you don’t provide a script, eval will return the result set. The result set is returned as one long list of
values, leaving you to determine the record boundaries. You can see this behavior in the following
statement:

set x [db eval {select * from foods limit 3}]

This will return a list in variable $x that is six elements long:

{1 1 Bagels 2 1 {Bagles, raisin} 3 1 {Bavarian Cream Pie}}

This corresponds to three records, each of which has three fields (id, type_id, and name).

For non-select statements, eval returns information regarding modified records, as illustrated in
Listing 8-23.

Listing 8-23. Examining Changes in Tcl

db eval begin

puts "\nUpdating all rows."
db eval { update foods set type_id=0 }
puts "Changes : [db changes]"

puts "\nDeleting all rows."
Delete all rows
db eval { delete FROM foods }

puts "\nInserting a row."
Insert a row
db eval { insert into foods (type_id, name) values (9, 'Junior Mints') }

puts "Changes : [db changes]"
puts "last_insert_rowid() : [db last_insert_rowid]"

puts "\nRolling back transaction."
db eval rollback

CHAPTER 8 ■ LANGUAGE EXTENSIONS

246

The code in Listing 8-23 produces the following output:

Updating all rows.
Changes : 415

Deleting all rows.

Inserting a row.
Changes : 1
last_insert_rowid() : 1

Rolling back transaction.
Total records : 415

Transaction scope can be handled automatically within Tcl code using the transaction method. If
all code inside the transaction method’s script runs without error, the transaction method will commit;
otherwise, it will invoke a rollback. For example, if you wanted to perform the code from Listing 8-23 in a
single transaction, you would have to check the status of each command after its execution. If it failed,
then you would roll back the transaction and abort any further commands. The more commands you
have to run in the transaction, the messier the code will get. However, all of this can be done
automatically with the transaction method, as illustrated in Listing 8-24.

Listing 8-24. Transaction Scope in Tcl

db transaction {
puts "\nUpdating all rows."
db eval { update foods set type_id=0 }
puts "Changes : [db changes]"

puts "\nDeleting all rows."

Delete all rows
db eval { delete from foods }

puts "\nInserting a row."

Insert a row
db eval { insert into foods (type_id, name) values (9, 'Junior Mints') }

puts "Changes : [db changes]"
puts "last_insert_rowid() : [db last_insert_rowid]"
}

Now, if any of the commands fail, transaction will roll back all commands without having to check
any return codes. Transaction also works with your existing transactions, working within a transaction
that’s already started. It will work within the already-started transaction and not attempt a commit or
rollback. If an error occurs, it just aborts the script, returning the appropriate error code.

CHAPTER 8 ■ LANGUAGE EXTENSIONS

247

User-Defined Functions
User-defined functions are created using the function method, which takes the name of the function
and a Tcl method that implements the function. Listing 8-25 illustrates an implementation of
hello_newman() in Tcl.

Listing 8-25. hello_newman() in Tcl

proc hello_newman {args} {
 set l [llength $args]
 if {$l == 0} {
 return "Hello Jerry"
 } else {
 return "Hello [join $args {, }]"
 }
}

db function hello_newman hello_newman
puts [db onecolumn {select hello_newman()}]
puts [db onecolumn {select hello_newman('Elaine')}]
puts [db onecolumn {select hello_newman('Elaine', 'Jerry')}]
puts [db onecolumn {select hello_newman('Elaine', 'Jerry', 'George')}]

The code for listing 8-25 produces the following output:

Hello Jerry
Hello Elaine
Hello Elaine, Jerry
Hello Elaine, Jerry, George

PHP
Since the advent of PHP version 5, SQLite has been part of the PHP standard library. If you have PHP 5 or
newer, you have SQLite installed on your system as well. Like many of the other languages we’ve
discussed, PHP presents you with a wealth of interface options.

PHP 5.1 introduced a new database abstraction layer called PHP Data Objects (PDO), which has
grown to become one of the most popular database abstraction layers for PHP. This API uses drivers to
support a standard database interface. The PDO interface is an OO interface that is very similar to the
OO interface in the SQLite extension. Since PDO is an abstraction layer, it is meant to accommodate
many different databases and is therefore somewhat generic. Despite this, it is still possible for PDO
drivers to provide access to database-specific features as well. As a result, the PDO drivers provide a
complete OO interface that works well with all the features of SQLite.

CHAPTER 8 ■ LANGUAGE EXTENSIONS

248

Installation
Installation of PHP is quite straightforward but beyond the scope of this book. You can find detailed
instructions on building and installing PHP in the documentation on the PHP web site: www.php.net.

Connections
There are two important issues to consider before you open a database: location and permissions. By
default, the file path in PHP is relative to the directory in which the script is run (unless you provide a full
path, relative to the root file system). So if you specify just a database name, you are opening or creating
a database within the public area of your web site, and the security of that database file depends on how
the web server is configured.

Since SQLite databases are normal operating system files just like HTML documents or images, it
may be possible for someone to fetch them just like a regular document. This could be a potential
security problem, depending on the sensitivity of your data. As a general security precaution, it is good
idea to keep database files outside of public folders so that only PHP scripts can access them. As an
alternative, more sophisticated security can be achieved by limiting access to the SQLite database file
using .htaccess controls or equivalent security techniques.

Ultimately, whatever permissions are used must allow the web server process running PHP both
read and write access to the database files. Both of these are administrative details that must be
addressed on a case-by-case basis.

In PDO, connections are encapsulated in the PDO class. The constructor takes a single argument
called a data source name (DSN). The DSN is a colon-delimited string composed of two parameters. The
first parameter is the driver name, which is normally sqlite and corresponds to SQLite version 3. The
second parameter is the path to the database file. If the connection attempt fails for any reason, the
constructor will throw a PDOException. The following example connects to our SQLite foods.db
database:

<?php
try {
 $dbh = new PDO("sqlite:foods.db");
} catch (PDOException $e) {
 echo 'Connection failed: ' . $e->getMessage();
}?>

Queries
PDO is made up of two basic classes, PDO and PDOStatement. PDO represents a connection, which
internally contains a sqlite3 structure, and PDOStatement represents a statement handle, which
internally contains a sqlite3_stmt structure. The query methods in the PDO class closely follow the
methods in the SQLite C API. There are three ways to execute queries:

• exec(): Executes queries that don’t return any data. Returns the number of
affected rows, or FALSE if there is an error. This mirrors sqlite3_exec().

• query(): Executes a query and returns a PDOStatement object representing the
result set, or FALSE if there is an error.

http://www.php.net

CHAPTER 8 ■ LANGUAGE EXTENSIONS

249

• prepare(): Compiles a query and returns a PDOStatement object or FALSE if there is
an error. This offers better performance than query() for statements that need to
be executed multiple times, because it can be reset, avoiding the need to
recompile the query.

Additionally, transaction management in PDO can be performed through a method invocation using
beginTransaction(), commit(), and rollback(). Listing 8-26 shows a basic example of using the PDO
class to open a database and perform basic queries within a transaction.

Listing 8-26. Basic Queries with PDO

<?php

try {
 $dbh = new PDO("sqlite:foods.db");
} catch (PDOException $e) {
 echo 'Connection failed: ' . $e->getMessage();
}

$dbh->beginTransaction();
$sql = 'select * from foods limit 10';
foreach ($dbh->query($sql) as $row) {
 print $row['type_id'] . " ";
 print $row['name'] . "
";
}

$dressing = $dbh->quote("Newman's Own Vinegarette");
$dbh->exec("insert into foods values (NULL, 4, $dressing)");
echo $dbh->lastInsertId();
$dbh->rollback();
?>

PDO uses the setAttribute() and getAttribute() methods to set various database connection
parameters. The only parameter that applies to SQLite is PDO_ATTR_TIMEOUT, which sets the busy timeout.

The prepare() method uses a SQLite statement to navigate through a result set. It also supports both
named and positional parameters. To bind a SQL parameter, there must be some associated variable in
PHP to bind it to. PHP variables are bound to parameters using PDOStatement::bindParam(), which has
the following declaration:

nool bindParam (mixed parameter, mixed &variable,
 int data_type, int length,
 mixed driver_options);

The parameter argument specifies the SQL parameter. For numbered parameters, this is an integer
value. For named parameters, it is a string. The variable argument is a reference to a PHP variable to
bind. The data_type argument specifies the data type of the variable. Finally, the length argument
specifies the length of the value if the variable is a string. The value specifies the maximum length of the
string to return. Listing 8-27 is a complete example of using positional parameters.

CHAPTER 8 ■ LANGUAGE EXTENSIONS

250

Listing 8-27. Positional Parameters with PDO

<?php
$dbh = new PDO("sqlite:foods.db");
$sql = 'select * from foods where type_id=? And name=?';
$stmt = $dbh->prepare($sql);
$type_id = 9;
$name = 'JujyFruit';
$stmt->bindParam(1, $type_id, PDO_PARAM_INT);
$stmt->bindParam(1, $name, PDO_PARAM_STR, 50);
$stmt->execute();
?>

Named parameters work in a similar fashion. When you bind these parameters, you identify them
by their names (rather than integers). Listing 8-28 is a modification of the previous example using
named parameters.

Listing 8-28. Named Parameters with PDO

<?php
$dbh = new PDO("sqlite:foods.db");
$sql = 'select * from foods where type_id=:type And name=:name;';
$stmt = $dbh->prepare($sql);
$type_id = 9;
$name = 'JujyFruit';
$stmt->bindParam('type', $type_id, PDO_PARAM_INT);
$stmt->bindParam('name', $name, PDO_PARAM_STR, 50);
$stmt->execute();
?>

PDO also allows you to bind columns of result sets to PHP variables. This is done using
PDOStatement::bindColumn(), which has the following declaration:

bool bindColumn (mixed column, mixed ¶m, int type)

The column argument refers to either the name of the column or its index in the SELECT clause. The
param argument is a reference to a PHP variable, and the type argument specifies the type of the PHP
variable. The following example binds two variables $name and $type_id to a result set:

<?php
$dbh = new PDO("sqlite:foods.db");
$sql = 'select * from foods limit 10';
$stmt = $dbh->prepare($sql);
$stmt->execute();
$name;
$type_id;
$stmt->bindColumn('type_id', $type_id, PDO_PARAM_INT);
$stmt->bindColumn('name', $name, PDO_PARAM_STR);

CHAPTER 8 ■ LANGUAGE EXTENSIONS

251

while ($row = $stmt->fetch()) {
 print "$type_id $name
";
}

User-Defined Functions and Aggregates
User-defined functions are implemented using sqliteCreateFunction(). Aggregates are implemented
using sqliteCreateAggregate(). sqliteCreateFunction() has the following form:

void PDO::createFunction (string function_name,
 callback callback,
 int num_args);

The arguments are defined as follows:

• function_name: The name of the function as it is to appear in SQL

• callback: The PHP (callback) function to be invoked when the SQL function is
called

• num_args: The number of arguments the function takes

The following example is a PHP implementation of hello_newman():

<?php
function hello_newman() {
 return 'Hello Jerry';
}

$db = new PDO("sqlite:foods.db");
$db->createFunction('hello_newman', hello_newman, 0);
$row = $db->query('SELECT hello_newman()')->fetch();
print $row[0]
?>

You create aggregates in a similar fashion using the sqliteCreateAggregate function, declared as follows:

void PDO::createAggregate (string function_name,
 callback step_func,
 callback finalize_func,
 int num_args)

The following code is a simple implementation of the previous SUM aggregate, called phpsum:

<?php
function phpsum_step(&$context, $value) {
 $context = $context + $value;
}

CHAPTER 8 ■ LANGUAGE EXTENSIONS

252

function phpsum_finalize(&$context) {
 return $context;
}

$db = new PDO("sqlite:foods.db");
$db->createAggregate('phpsum', phpsum_step, phpsum_finalize);
$row = $db->query('select phpsum(id) from food_types')->fetch();
print $row[0]
?>

Summary
You’ve now experienced a brief survey of several different language extensions and how they work with
SQLite. Although using SQLite with the C API is quite straightforward, using SQLite in language
extensions is considerably easier. Many of the concepts are very similar, and many of the extensions
map in a one-to-one fashion to the underlying SQLite C API. As you can see, there are many things in
common even in cases where an extension conforms to a language-specific database API. All queries
ultimately involve a connection object of some kind, which maps to an internal sqlite3 structure, and a
statement or cursor object, which internally maps to a sqlite3_stmt structure.

These extensions make using SQLite convenient and easy, increasing accessibility to many more
applications ranging from system administration to web site development. There has been an explosion
in the number of extensions in recent years, and you can find out about the (literally) hundreds of
available extensions on the SQLite wiki at www.sqlite.org/cvstrac/wiki?p=SqliteWrappers.

http://www.sqlite.org/cvstrac/wiki?p=SqliteWrappers

C H A P T E R 9

■ ■ ■

253

iOS Development with SQLite

You might be a seasoned SQLite user or developer, or perhaps you’re reading this book as your first foray
into the SQLite world. Regardless of your background, you’ve almost certainly been using SQLite every
day without even realizing it. That’s because SQLite is one of the most popular database facilities used in
a huge range of mobile devices, from iPhones and iPods to the latest tablets, iPads, media players, and
more.

In this chapter, we’ll take a slightly different angle on developing with SQLite. We’ll focus our
coverage on Apple’s implementation and support for SQLite across its entire fleet of mobile devices.
Where previously we might have referred to this as “iPhone development,” Apple has unified the naming
for its operating system on mobile devices under the name iOS.

Yet another chapter on showing how one API maps to another would likely leave you feeling a little
underwhelmed, because by now you’re probably able to pick up many aspects of SQLite wrappers
quickly and easily. We will instead provide both coverage of the iOS SQLite technology stack and also
focus our examples on building a real, working iOS SQLite-based application. You will be the envy of
trivia night and quiz show aficionados when you arrive sporting your very own personally coded Seinfeld
food trivia iOS app! We’ll call it iSeinfeld…what else?

We’ll also cover some of the developer considerations required for successfully maintaining iOS
applications on a device over time.

Prerequisites for SQLite iOS Development
To do any development work with SQLite for iOS, you’ll need to equip yourself with the necessary tools.
These tools aren’t strictly speaking solely for the benefit of SQLite development: once completed, you’ll
have a full iOS development environment for building both SQLite-focused and other Objective-C
applications for iPhones, iPods, and iPads.

The three broad steps you need to complete are as follows:

1. Sign up for the Apple Developer program.

2. Download and install Xcode and the Apple IDE.

3. Download and install the iOS SDK.

We’ll cover each of these very briefly so that the SQLite work can begin!

CHAPTER 9 ■ IOS DEVELOPMENT WITH SQLITE

254

Signing Up for Apple Developer
To develop and publish applications for the iPad, iPhone, or any other future “i” devices, you need to
sign up to Apple’s developer program. Ordinarily, we’d just mention this in passing and leave you to
your own devices to get signed up. However, it’s worth pointing out one nuance of the sign-up process
that might, at first glance, appear to dissuade many budding iOS developers.

Depending on which page you read on the Apple Developer web site, it can appear that you need to
sign up for a $99 iOS Developer Program membership. Notably, this is displayed prominently on the iOS
Developer home page, http://developer.apple.com/programs/ios/. Although it is true that you need to
buy such a membership to eventually distribute applications via the iTunes store (and jump the various
hurdles of application approval), you only need to register as an Apple developer in order to gain access
to the tools, SDKs, and so on, for iOS development.

Simple registration as a developer is free! It can be a little confusing when following the links on the
Apple site, but at the time of writing this book, if you head straight to http://developer.apple.
com/programs/register/, you’ll have no problems signing up.

Naturally, if you come to love building SQLite-based iOS apps, you can upgrade your registration at
any time to qualify for distributing your applications via iTunes.

Downloading and Installing Xcode and the iOS SDK
Once you’ve signed up as an Apple developer, you need to download Apple’s integrated development
environment, known as Xcode, and the iOS SDK. In another of Apple’s quirks, the iOS SDK includes
Xcode. That means you don’t need to download Xcode and a separate SDK. The iOS SDK includes
bundled versions of SQLite, which we’ll discuss shortly, so you also can avoid downloading and
maintaining separate versions of SQLite libraries if you choose. However, this bundled approach can
also can trick first-timers to Apple’s iOS development world, because one’s instinct is to download
Xcode as the IDE you plan to use and then add in the iOS SDK. You’ll find yourself needlessly
downloading a few extra gigabytes of software if you take this approach.

Apple makes downloading the iOS SDK (with the included Xcode) straightforward. Once you log in
with your developer credentials, follow the download link on the developer home page, and choose the
option Xcode 3.2.4 and iOS SDK 4.1. This should download a file named
xcode_3.2.4_and_ios_sdk_4.1.dmg, which is approximately 3.3GB in size.

■ Note The current 3.2.x releases of Xcode and 4.x releases of the iOS SDK will only work on Apple machines
running Snow Leopard or newer releases of OS X. For those of you still running Leopard (10.5.x) or older, Apple
does make available earlier compatible versions of Xcode and iPhone SDKs (as they were called). Searching for
these can be a hit-and-miss affair. If you have difficulty finding them on the Apple site, we suggest a Google
search of the Apple forums, where avid developers keep track of where Apple moves the older *.dmg files for
earlier SDK releases.

http://developer.apple.com/programs/ios
http://developer.apple

CHAPTER 9 ■ IOS DEVELOPMENT WITH SQLITE

255

With the iOS SDK downloaded, you can now proceed to installation. Open the .dmg file, and you will
be presented with three items, as shown in Figure 9-1. These are an informative “About” file, the SDK
installer itself, and a packages directory.

Figure 9-1. Your iOS SDK package contents

Run the iOS SDK installer now (or iPhone SDK installer, depending on the version you used). After a
few moments of disk activity, you should see the installer’s welcome page, shown in Figure 9-2.

CHAPTER 9 ■ IOS DEVELOPMENT WITH SQLITE

256

Figure 9-2. iOS SDK package installation welcome

 With one exception, there’s no need to walk you through the various installation screens. Go ahead
and choose the defaults, or add additional options as you see fit throughout the installation. However,
it’s worth noting some of the options when you reach the Installation Type screen, shown in Figure 9-3.

CHAPTER 9 ■ IOS DEVELOPMENT WITH SQLITE

257

Figure 9-3. iOS SDK installation types

Here, the iOS SDK installer is prompting for historic versions of the SDK to include in the
installation. As well as always including the most current version of the SDK, you have the choice of
targeting older versions. Why would you want to do this? For the purposes of our SQLite development
throughout the rest of the chapter, the defaults are fine. But if you might be doing future development
where you need to target older iPhones and iPads, you might want to include the older SDKs. Although
this is probably a rare occurrence, people developing for corporate or enterprise environments where
the latest iPads are still a future promise might well find they need to target the original iPhone to meet
their users’ hardware specifications.

Continue from here to the end of the installation, and you should see a satisfying and quite large
success message, as shown in Figure 9-4.

CHAPTER 9 ■ IOS DEVELOPMENT WITH SQLITE

258

Figure 9-4. A green check mark shows a successful iOS SDK installation.

With your installation complete, you are ready to code your first iOS SQLite-based application.

Alternatives to Xcode
For those brave, experienced, or both, there are alternatives to Xcode for iOS development in general
and SQLite-based iOS development in particular. Feel free to use any or all of these if you’re already
comfortable with iPhone development and prefer them to Xcode.

PhoneGap: An open source development framework for building cross-
platform mobile applications. www.phonegap.com

Appcelerator Titanium: Another open source cross-platform framework for
mobile applications. www.appcelerator.com

http://www.phonegap.com
http://www.appcelerator.com

CHAPTER 9 ■ IOS DEVELOPMENT WITH SQLITE

259

Each of these has excellent support for SQLite development for iOS and other platforms. Note that
Apple have just relaxed their notoriously strict and some would say capricious application rules that
penalized coding in different languages or environments and cross-compiling or translating to target
Objective-C and iOS. So, you have some more leeway to explore these tools and launch the next great
SQLite-based iOS application.

Building the iSeinfeld iOS SQLite Application
With a working development environment now in place, you are ready to build your SQLite-based iOS
application. Like all good developers, we’ll need some idea of our application’s requirements in order to
properly design our application and know when it is finished. Here are our very succinct iSeinfeld
requirements:

Build an iOS application for iPhones and iPads that shows the foods mentioned
in Seinfeld by order of popularity.

For any popular food, show how often the food is mentioned over all shows of
Seinfeld.

Indicate the show in which a food first appeared.

That seems pretty simple. The code we develop will cover the core aspects of working with SQLite on iOS
systems. We’ll cover opening databases, or creating them if they don’t already exist; manipulating data
within the database; and the all-important UI elements of bringing your SQLite data to the attention of
the user!

Here are the steps we will cover in this chapter. We’ll try to keep the Objective-C and Cocoa touch–
specific aspects to a minimum and highlight the all-important SQLite dimension of the work wherever
possible.

1. Create a new project in Xcode.

2. Add the SQLite framework to the project.

3. Prepare our foods database for inclusion in the iOS application.

4. Define the classes that map our food data from SQLite to our code and that
present that data on the screen for users to see.

5. Access and query the SQLite database.

6. Put on the final polish before publishing the application.

Let’s get started.

Step 1: Creating a New Xcode Project
Launch Xcode to get started. If this is the first time you’ve started Xcode (or if you haven’t changed the
defaults), you’ll see a Welcome to Xcode splash screen on top of the Xcode environment. Dismiss this for
now—in fact, if you don’t want to see this again, also uncheck the “show at launch” option.

CHAPTER 9 ■ IOS DEVELOPMENT WITH SQLITE

260

With Xcode running, choose File  New Project. For our iSeinfeld application, we want to use a
navigation-based application as the project template. This is because we’ll be using master and detail
screens for various representations of our SQLite foods data. Figure 9-5 shows the new project options in
Xcode.

Figure 9-5. Creating a new navigation-based application for our SQLite project

Choose a meaningful name for your project. We’ve called ours iSeinfeld, but feel free to adopt any
memorable or meaningful name. By default, this will be the name displayed for your application on the
home screen of iOS devices (though this can be changed later). Your freshly created project should look
similar to our project shown in Figure 9-6.

CHAPTER 9 ■ IOS DEVELOPMENT WITH SQLITE

261

Figure 9-6. The new iSeinfeld project in Xcode

Step 2: Adding the SQLite Framework to Your Project
With your blank iSeinfeld project in place, we now need to add the SQLite library to the list of
frameworks so our future code can benefit from, and use, the SQLite API.

From the left pane of your Xcode project, open the Frameworks folder. Ctrl+click and choose Add 
Existing Frameworks. In the dialog box, navigate to the directory /Developer/Platforms/
iPhoneOS.platform/Developer/SDKs/iPhoneOSx.y.z.sdk/usr/lib/, where x.y.z is the version number of
the iPhone firmware version your Xcode and iOS target. Depending on the options you choose at Xcode
and iOS SDK installation time, you may see multiple versioned directories. Our recommendation is to
choose the latest (highest) version.

CHAPTER 9 ■ IOS DEVELOPMENT WITH SQLITE

262

■ Note If you’re using the latest iOS version 4 releases, those directories may change to read iOS in place of
iPhone. Don’t worry, the underlying library is the same.

From that directory, choose the libsqlite3.dylib entry. You will likely also see a
libsqlite3.0.dylib or similar file. The libsqlite3.dylib entry is a soft link to the latest version of the
dylib file, in this case libsqlite3.0.dylib. We recommend always choosing the soft link to avoid
unnecessarily specific version choices.

Choose this file, and you’ll be presented with an options dialog box asking for reference type and
text encoding. We don’t need any of the alternative behavior offered here, so it’s safe to just click Add to
continue with the defaults. You should now be returned to your Xcode project. Under the Frameworks
folder on the left pane, you should now see the libsqlite3.dylib entry, as shown in Figure 9-7.

Figure 9-7. The SQLite libsqlite3.dylib library added to the iSeinfeld project in Xcode

CHAPTER 9 ■ IOS DEVELOPMENT WITH SQLITE

263

Step 3: Preparing the Foods Database
We have two options for getting a working database in place for our project. We can step through the
process of creating a new database, creating tables, and inserting data; or we can deploy an existing
database for use with our iSeinfeld application.

Creating everything fresh by hand would see us walk through the SQLite API for sqlite3_open_v2(),
sqlite3_prepare(), and so on, and countless iterations of sqlite3_exec() and so forth. Because of the
very close similarities between C and Objective-C, this would basically be a repeat of Chapter 6. We think
that would be a waste of the chapter. More importantly, when you build and release the next great iOS
application yourself, you almost certainly will package it with an existing database (though you might
well provide features to add new data and work with existing data). We’ll adopt this second approach,
but we’ll also cover the options of creating a fresh database, as well as the typical SQL statements you’d
expect for data manipulation within SQLite. We are going to add our foods.db SQLite database to our
project so we can get working with our data faster!

If you’re following the default directory layout for Xcode, you’ll find your iSeinfeld SQLite project in
the /Users/user_name/Documents/iSeinfeld directory (where user_name is your username). Copy your
foods.db file to this directory in order to keep all of your project data, code, and resources together. On
the left pane of your Xcode project, open the Resources folder. Ctrl+click, and choose Add  Existing
files. In the Add File dialog box, navigate to the /Users/user_name/Documents/iSeinfeld directory, and
choose the foods.db file, as shown in Figure 9-8.

Figure 9-8. Adding an existing SQLite database to your Xcode project

Once again, Xcode will prompt with several options for this file’s inclusion in the project. We only
need the default behavior here, so click Add to have the foods.db file added to your project. Your Xcode
resources folder should now list the foods.db SQLite database, as shown in Figure 9-9.

CHAPTER 9 ■ IOS DEVELOPMENT WITH SQLITE

264

Figure 9-9. The iSeinfeld project with foods SQLite database included as a resource

Your iSeinfeld iOS application now has the SQLite libraries in place and a populated database
included in the project. It’s time to start coding!

Step 4: Creating Classes for the Food Data
In addition to the default classes created with our new project, we will need two classes to represent the
data from our SQLite database as objects within the application. Well need a Food class to represent one
kind of food and the data we want to use from foods within our application. We’ll also need a view
controller class to manage the interaction of our interface (the view) with the model that represents our
foods.

CHAPTER 9 ■ IOS DEVELOPMENT WITH SQLITE

265

IOS ANDMODEL-VIEW-CONTROLLER DEVELOPMENT

The Model-View-Controller approach to dividing up functionality in a program has become both popular
and mature over recent years. The good news is the iOS approach to development, and Xcode tools, are
designed to harmoniously work in an MVC world.

Our little example isn’t really big enough to show off the natural MVC tool set and ways of working within
Xcode, but you can rest assured that the support and approach are there when needed.

The Food Class
Within your iSeinfeld project in Xcode, Cmd+click the Classes folder, and choose Add  New File. Call
your new class Food. We want to derive Food from the base Objective-C class and use the NSObject
subclass. We’ll provide three data members: Name, Popularity, and First Episode. We’ll also use a
custom init function (think constructor for those familiar with other object-oriented languages) to
create a Food instance more easily. Listing 9-1 shows the Food.h header.

Listing 9-1. Food.h

// Food.h
// iSeinfield
//
// Created by Grant Allen on 9/9/10.
// Copyright 2010 __MyCompanyName__. All rights reserved.
//

#import <Foundation/Foundation.h>

@interface Food : NSObject {
 NSString *first_episode;
 NSString *popularity;
 NSString *name;
}

@property (nonatomic, retain) NSString *first_episode;
@property (nonatomic, retain) NSString *popularity;
@property (nonatomic, retain) NSString *name;

-(id)initWithName:(NSString *)n first_episode:(NSString *)f popularity:(NSString *)t;

@end

At this point, there’s no sign of our SQLite API calls, but you can probably already see where the Food
class will fit in. Rows returned from our particular SQLite queries will be used as seed data in the
initWithName function to create instances of the Food object.

CHAPTER 9 ■ IOS DEVELOPMENT WITH SQLITE

266

With our header in place, we actually need an implementation. Open the Food.m file, as shown in
Listing 9-2, and flesh out the initWithName function to assign the parameters n, f, and t to the instance
variables.

Listing 9-2. Food.m

// Food.m
// iSeinfield
//
// Created by Grant Allen on 9/9/10.
// Copyright 2010 __MyCompanyName__. All rights reserved.
//

#import "Food.h"

@implementation Food
@synthesize first_episode, popularity, name;

-(id)initWithName:(NSString *)n first_episode:(NSString *)f popularity:(NSString *)t {
 self.name = n;
 self.first_episode = f;
 self.popularity = t;

 return self;
}

@end

Pretty simple stuff, even if you’ve never coded in Objective-C before. For those of you new to
Objective-C, you’ll notice a @synthesize directive, followed by each of the member variables for our
class. That’s an Objective-C trick to automatically create getters and setters on your behalf, saving you
from the effort of writing six dull methods to do the same thing.

The FoodViewController Class
Our mini-specification for the iSeinfeld application asked us to display detailed information for a given
food held in our SQLite database. From our Food class, you can guess that the details will be popularity
and first_episode. We need a new class to manage the view of these details (in the MVC sense) and act
as the controller with the model. Enter the FoodViewController class. Create a new class as before, but
this time choose the UIViewController subclass. Name it FoodViewController. We also will need a View
XIB file to act as our canvas for the detail view. Under Resources, choose Add  New File, and from the
User Interfaces group choose View XIB. Call this XIB FoodViewController.xib to give you a mental
reminder that this UI element is used with the FoodViewController UIViewController class.

Our FoodViewController class needs to define two outlets for the detail data to interface with the
View XIB. Listing 9-3 shows the definition of FoodViewController.h and these required outlets.

CHAPTER 9 ■ IOS DEVELOPMENT WITH SQLITE

267

Listing 9-3. FoodViewController.h

// FoodsViewController.h
// iSeinfield
//
// Created by Grant Allen on 9/9/10.
// Copyright 2010 __MyCompanyName__. All rights reserved.
//

#import <UIKit/UIKit.h>

@interface FoodViewController : UIViewController {
 IBOutlet UITextView *first_episode;
 IBOutlet UITextView *popularity;
}

@property (nonatomic, retain) IBOutlet UITextView *first_episode;
@property (nonatomic, retain) IBOutlet UITextView *popularity;

@end

We’ve chosen UITextView as the outlet modifier, because we know we’ll be displaying textual data and
numbers. The implementation of this class in FoodViewController.m contains a few pages of default
methods and many commented-out extras. We won’t waste paper showing those. Simply ensure that
you import the header file, and in the FoodViewController implementation you synthesize the two
member variables, like this:

#import "FoodViewController.h"

@implementation FoodViewController

@synthesize foodID, typeID;

// more template methods etc.
// …

Your choice for layout for FoodViewController.xib is entirely up to your artistic desire. As a guide,
we’ve created a simple screen with two Text Field elements and two Label elements and wired them up
in Interface Builder to the outlets defined earlier. Figure 9-10 shows our finished XIB layout.

CHAPTER 9 ■ IOS DEVELOPMENT WITH SQLITE

268

Figure 9-10. The iSeinfeld food detail screen in Xcode Interface Builder

Your iSeinfeld iOS application now has the ability to show data from SQLite, but we’ve yet to
actually access the data and use our SQLite API. We can’t keep up the suspense any longer. Let’s get to
the database!

CHAPTER 9 ■ IOS DEVELOPMENT WITH SQLITE

269

Step 5: Accessing and Querying the SQLite DB
When our iSeinfeld application starts, we want it to find and open our foods.db database. At that point,
we can then exercise all our SQLite C APIs to query, control, and otherwise use the database. To find and
open the database at launch time, we want to extend the iSeinfeldAppDelegate class that was
automatically created with our project. Listing 9-4 shows the changes we’ve made to the
iSeinfeldAppDelegate.h file.

Listing 9-4. iSeinfeldAppDelegate.h File

// iSeinfeldAppDelegate.h
// iSeinfeld
//
// Created by Grant Allen on 9/9/10.
// Copyright __MyCompanyName__ 2010. All rights reserved.
//

@interface iSeinfeldAppDelegate : NSObject <UIApplicationDelegate> {

 UIWindow *window;
 UINavigationController *navigationController;

 // Details of your database
 NSString *databaseName;
 NSString *databasePath;

 // Our iSeinfeld food array, for storing our foods
 NSMutableArray *foods;

}

@property (nonatomic, retain) IBOutlet UIWindow *window;
@property (nonatomic, retain) IBOutlet UINavigationController *navigationController;
@property (nonatomic, retain) NSMutableArray *foods;

@end

We’ve outlined the member variables that will house the path and name of our SQLite database.
We’ve also defined an NSMutableArray for holding our collection of foods. The interface definition is
straightforward. The devil is in the detail.

We’ll extend our applications behavior in the iSeinfeldAppDelegate.m file. Open the file, and
you’ll see a healthy number of automatically generated methods that have names such as
applicationWillTerminate and so on. We want to inject behavior into our application once it has
launched, so we’ll modify the applicationDidFinishLaunching function.

CHAPTER 9 ■ IOS DEVELOPMENT WITH SQLITE

270

// … lots of code above here
- (void)applicationDidFinishLaunching:(UIApplication *)application {

 // Set up our foods database as the databaseName
 databaseName = @"foods.db";

 // Get the path to the documents directory and append the database name
 NSArray *documentPaths = NSSearchPathForDirectoriesInDomains(
 NSDocumentDirectory, NSUserDomainMask, YES);
 NSString *documentsDir = [documentPaths objectAtIndex:0];
 databasePath = [documentsDir stringByAppendingPathComponent:databaseName];

 // Check for existing database and create if necessary
 [self checkAndCreateDatabase];

 // Query the database for all foods and populate the array
 [self readFoodsFromDatabase];

// …more code follows

We use several built-in features to find the foods.db SQLite file in the project.
NSSearchPathForDirectoriesInDomains, NSDocumentDirectory, and NSUserDomainMask are all constants
provided by the iOS SDK to find the paths within the running environment. In this case, these lines are
effectively a shortcut to the current application’s location, wherever that may be. We end up with the
location of the foods.db file in the databasePath variable.

Our logic then splits into code that handles locating the database (or creating it afresh from the
project) and code to query our database. The code for locating the database is not really SQLite specific,
covering simple file-handling operations. See the iSeinfeldAppDelegate.m file included with the source
code for how this works.

Opening the database and using our SQLite APIs to query the data is where the action is at. Our
readFoodsFromDatabase function does this work, so let’s review it in detail.

-(void) readFoodsFromDatabase {
 // Setup the database object
 sqlite3 *database;

 // Initialize the foods Array
 foods = [[NSMutableArray alloc] init];

 // Open the database
 if(sqlite3_open_v2([databasePath UTF8String], &database) == SQLITE_OK) {
 // Setup the SQL Statement and compile it for faster access
 const char *sqlStatement =
 "select
 count(foods_episodes.episode_id) popularity,
 min(foods_episodes.episode_id) first_seen,
 foods.name
 from foods inner join foods_episodes on foods.id = foods_episodes.food_id
 group by foods.name
 order by popularity desc, name
 limit 50 ";

CHAPTER 9 ■ IOS DEVELOPMENT WITH SQLITE

271

 sqlite3_stmt *compiledStatement;
 if(sqlite3_prepare_v2(database, sqlStatement, -1, &compiledStatement, NULL)
 == SQLITE_OK) {
 // Loop through the results and add them to the foods array
 while(sqlite3_step(compiledStatement) == SQLITE_ROW) {
 // Read the data from the result row
 NSString *aFreq = [NSString stringWithUTF8String:
 (char *)sqlite3_column_text(compiledStatement, 0)];
 NSString *aPop = [NSString stringWithUTF8String:
 (char *)sqlite3_column_text(compiledStatement, 1)];
 NSString *aName = [NSString stringWithUTF8String:
 (char *)sqlite3_column_text(compiledStatement, 2)];

 // Create a new food object with the data from the database
 Food *food = [[Food alloc] initWithName:aName
 first_episode:aFreq popularity:aPop];

 // Add the food object to the foods Array
 [foods addObject:food];

 [food release];
 }
 }
 // finalize the statement
 sqlite3_finalize(compiledStatement);

 }
 sqlite3_close(database);

}

Working through that code, you can see some familiar API calls. We start with defining a sqlite3
object named database:

 sqlite3 *database;

After defining an array for our foods, we the try to open our database using the sqlite3_open_v2()
API call.

if(sqlite3_open_v2([databasePath UTF8String], &database) == SQLITE_OK)

The if construct should be familiar to you regardless of your preferred programming language. And
we’re looking for the return value SQLITE_OK from the sqlite3_open_v2() call. This example could be
straight from Chapter 5, 6, or 7. But note the odd handling of the databaseName variable, which we’d
previously defined in iSeinfeldAppDelegate to contain our database’s full path and file. Because
Objective-C uses NSString as the base string class but SQLite’s C API uses standard C-style strings/chars,
we need to cast the NSString databaseName to a C string so that the SQLite API understands the database
name that it should open. The built-in UTF8String option performs this conversion for us.

With our database open, we then create a sqlite3_stmt object called compiledStatement. This is
assigned our query text.

CHAPTER 9 ■ IOS DEVELOPMENT WITH SQLITE

272

 sqlite3_stmt *compiledStatement;

Again, that’s eerily like straight C syntax: the differences with Objective-C are not that large once you
start working with it. We use sqlite3_prepare_v2 to prepare the statement and sqlite3_step to step
through the results.

As we step through the results, we retrieve the column data with statements of the following form
(note this is one line of code, split here for clarity):

NSString *aName = [NSString stringWithUTF8String:
 (char *)sqlite3_column_text(compiledStatement, 2)];

You’ll notice an old friend here. The sqlite3_column_text() API call is used here to retrieve the text
of the “name” column in our results. We can use any of the sqlite3_column_xxx() functions as
appropriate. We then perform a conversion from the base C char* data to an Objective-C NSString using
the complement of the technique we described for databaseName. stringWithUTF8String will convert our
char* to an NSString, and we then assign the result to the aName variable. A similar process occurs for our
other results rows.

From here, each Food object is added to our Foods array, and the process continues until our results
are exhausted. We clean up by finalizing the compiled statement with sqlite3_finalize() and closing
the database with sqlite3_close(). Note that we’re only closing the database because we’ve completed
the work we need to perform for our example. In a more complicated or featureful application, you may
well leave the database open for further querying and choose to close it only under the
applicationWillTerminate event.

Step 6: Final Polish and Wiring for iSeinfeld
There are several final wiring and configuration steps to have our main application launch the FoodView
as required when viewing the details of our foods. Rather than include yet more code that isn’t SQLite-
specific, we’ll refer you to the files in the included source code. We’ve liberally sprinkled comments
through these files so you can see the changes we’ve made. You can also diff them against your vanilla
files in Xcode to see these changes.

iSeinfeld in Action!
The suspense is over! We’ve written the code, worked with our SQLite database, and built a gorgeous
user interface to show off at the next Seinfeld trivia night. You can now run your new application in the
iOS simulator by choosing Build  Build and Run. This will launch the device simulator, such as the
iPhone Simulator shown in Figure 9-11.

CHAPTER 9 ■ IOS DEVELOPMENT WITH SQLITE

273

Figure 9-11. The iSeinfeld SQLite-based application icon in the iOS device simulator

Go ahead...click your new application to run it, and see for yourself what happens. Our main screen
is shown next, in Figure 9-12.

CHAPTER 9 ■ IOS DEVELOPMENT WITH SQLITE

274

Figure 9-12. iSeinfeld main screen, showing foods from our foods.db SQLite database

■ Tip If you want to watch the previous SQLite API calls step through their various tasks, set some breakpoints in
the readFoodsFromDatabase function within iSeinfeldAppDelegate.m.

CHAPTER 9 ■ IOS DEVELOPMENT WITH SQLITE

275

Choose any one of the foods listed, and the FoodView will kick in, controlled by our
FoodViewController, to display the details of the food in question. In Figure 9-13, we see the details for
Hot Dog—did you know it was the most popular food shown throughout the history of Seinfeld?

Figure 9-13. iSeinfeld FoodView screen, showing the details for Hot Dog from the database

CHAPTER 9 ■ IOS DEVELOPMENT WITH SQLITE

276

Now, we’ll be the first to admit that our graphic design skills don’t set the world on fire. But the key
to this application is you can see the data from your SQLite database brought to life through devices like
the iPad and iPhone. Our journey with iSeinfeld is at an end. Go ahead and see how many
enhancements you can make to your version of the application.

LEARNING ABOUT CORE DATA

This is a book about SQLite and using it for all kinds of problems. But there are times when you really want
to abstract away the SQLite C API and deal with some more high-level abstraction that worries about all of
the SQLite details for you. We’ve intentionally steered clear of Core Data—the data management
abstraction layer available from iOS version 3 onward. We didn’t do this because we wanted to tease you
or make your life more difficult. Rather, we wanted to show you the heart of working with SQLite under
iOS, rather than hiding it away.

For those of you interested in more abstract management of your SQLite database access and
management under iOS, you can check out the Core Data documentation at http://developer.apple.
com/library/ios/.

Working with Large SQLite Databases Under iOS
The eagle-eyed will have noticed that the query that derives our food frequency for the iSeinfeld app
includes the following clause:
limit 50

Why limit this result set? We did this to simplify our application and avoid dealing with operating
large SQLite databases and datasets in our very first example under iOS. If we’d attempted to do large
database operations during the applicationDidFinishLaunching event, we ran the risk of incurring the
wrath of the Watchdog Timer. The job of the Watchdog Timer is to ensure that all applications running
on the iPad, iPhone, or iPod behave themselves. This includes preventing poorly performing
applications from appearing to hang the device or consume too much processing time for a given action.

Apple describes the role of the Watchdog Timer in the Apple iOS Developer documentation as a
system monitor that checks to see how long an application takes to complete its initial startup (among
other things). If the application takes too long, the Watchdog Timer will terminate the offending
application with exception code 0x8badf00d (get it, “bad food”). Related information will be written to
the crash report for the incident.

When you launch your code in Xcode, the Watchdog Timer is disabled so as to compensate for the
various overheads that our OS X system will incur, such as invoking debuggers, and so on. This means
you may not notice the effect of the Watchdog Timer under Xcode simulation. It’s always best to test on
real devices to see whether you’re running into long-running action issues.

http://developer.apple

CHAPTER 9 ■ IOS DEVELOPMENT WITH SQLITE

277

This really boils down to a few common-sense management approaches for working with SQLite
applications under iOS:

Don’t perform time-consuming queries, or load large databases, during an
startup event such as applicationDidFinishLaunching.

When running queries that return large results sets or that will take
considerable time, consider breaking them up into digestible pieces of work

Explore the more advanced iOS API features for managing long-running tasks.

At the end of the day, if the Watchdog Timer decides to intervene, you’ll see the following (or
similar) error:

The application iSeinfeld quit unexpectedly

Mac OS X and other applications are not affected

Under a real iPad or iPhone, instead of this error message, you will see the application attempt to
load the main view and abort partway through. You will usually be returned to the home screen. Armed
with this knowledge, you should be able to keep the Watchdog Timer a happy hound.

Summary
You’ve now experienced the trials and tribulations of creating your first (or latest) SQLite-based iOS
application. We know your friends and family will be amazed at your newfound trivia knowledge. In all
honesty, they’ll probably be interested in just how easy it is to build your own iPad or iPhone application
with SQLite.

If you do decide to make it big with your iSeinfeld application, be sure to let us know. We’d love to
buy a copy of the application from iTunes to add to our collection of iSeinfeld variants.

C H A P T E R 1 0

■ ■ ■

279

Android Development with SQLite

Android has stormed the mobile device market in the few short years it has been available, and if you’ve
given in to temptation and bought a mobile phone, tablet, or other device running Android, then you’ve
been a proud user of SQLite all this time! SQLite is one of the built-in data persistence technologies
included in the Android platform and supported by the Dalvik virtual machine. Unlike iOS described in
Chapter 9, the Java foundations of Dalvik mean that a purpose-built API wrapper is used around the
underlying SQLite C API when application developers want to employ SQLite in their applications.

In this chapter, we’ll mix things up with a walk-through of the Android SQLite library, its classes,
and its methods. Instead of just a dry rehash of the documentation, we’ll take the opportunity to build a
working Android SQLite-based application (just as we did for iOS in Chapter 9). We’ll use the concept of
the Seinfeld food trivia application and walk through creating the code and UI for the application.

We’ll also cover some of the developer considerations required for successfully maintaining Android
applications on a device over time.

Prerequisites for SQLite Android Development
To do any development work with SQLite for Android, you’ll need to equip yourself with the required
tools. Once equipped with these tools, you’ll be in a position to do all manner of Android development,
not just work involving SQLite. Obviously, SQLite is our area of interest, so that’s what we will focus on.

The four steps you need to complete are as follows:

1. Check and install minimum prerequisites, including the Java development kit
(JDK).

2. Download and install the Android SDK starter package.

3. Download and install the Android Developer Tools (ADT) if supported by your
integrated development environment (IDE).

4. Add any desired target Android platforms and other components to your
environment.

We’ll cover each of these quickly and move on to the SQLite work pronto!

CHAPTER 10 ■ ANDROID DEVELOPMENT WITH SQLITE

280

Check Prerequisites and the JDK
To develop any Android application, you’ll need to check that your development computer meets a few
simple system requirements. First, you must be running Linux, OS X, or Windows XP or newer. The
Android team lists particular versions and related dependencies at http://developer.android.
com/sdk/requirements.html. In addition to that, about 500MB of free disk space is required for the
Android components, in addition to space required for your IDE.

The most important prerequisite is the JDK. Android development requires either JDK 5 or JDK 6.
Note that the Java runtime environment (JRE) is not sufficient. You can source the latest JDK from the
Oracle web site if you require it, or you can choose an IDE that incorporates the JDK.

All your development of SQLite Android applications will be done in an IDE. There are many to
choose from , but the most popular, and best for beginners, is Eclipse. Using Eclipse will enable you to
also use Google’s Android Developer Tools, which we cover shortly. The Android team recommends
using Eclipse version 3.4 or newer and choosing a “classic” or “Java-focused” release.

Downloading and Installing the Android SDK Starter Package
The Android SDK Starter Package is the core set of tools required for any Android development.
Importantly, it’s not a complete SDK. Rather, it acts as a baseline that also guides you to download
additional required components.

Google makes downloading the Android SDK Starter Package very easy. Browse to the site
http://developer.android.com/sdk/index.html, and you’ll see the latest SDK versions available directly
for download. At the time of writing, release 7 is the latest release. Depending on your choice of Linux,
OS X, or Windows, you’ll need one of the following packages:

• Linux: android-sdk r07-linux x86.tgz

• Mac OS X: android-sdk r07-mac x86.zip

• Windows: android-sdk_r07-windows.zip

With the SDK downloaded, you can now proceed to installation. Extract the contents of your .zip or
.tgz file to a convenient location on your computer. For example, we’re using Eclipse under Windows, so
we’ll place the extracted SDK in the directory c:\eclipse\dropins\android-sdk-windows.

Once you’ve placed the extracted SDK in your desired location, you’ll need to add that directory to
your system’s PATH environment variable. Refer to Chapter 2 if you need a refresher on how to add a
directory to your PATH.

Downloading and Installing the Android Developer Tools
If you choose Eclipse as the IDE for your SQLite-based Android development, then you should download
and install the Android Developer Tools in addition to the Android SDK Starter Package. ADT extends
Eclipse to allow rapid setup of new Android projects through a dedicated Android aspect and provides
additional tools for creating UIs, debugging, and exporting signed and unsigned packaged Android
applications (called APKs).

To install ADT, run Eclipse, and choose Help  Install New Software (that’s under Eclipse 3.5—this
may have a slightly different name in earlier Eclipse versions). Click Add to add a new repository, and
enter the Android Developer Tools repository URL in the resulting Add Repository dialog box. Click OK,
and return to the Install New Software screen. You should now see Developer Tools and the
subcomponents Android DDMS and Android Developer Tools displayed, as shown in Figure 10-1.

http://developer.android
http://developer.android.com/sdk/index.html

CHAPTER 10 ■ ANDROID DEVELOPMENT WITH SQLITE

281

Figure 10-1. Installing the Android Developer Tools

Select all of the check boxes, and click the Next button. You’ll be asked to agree to the licensing
agreements and can then click Finish to complete the installation of ADT.

Adding Android Platforms and Components
The final task to get your Android SDK set up and ready for developing SQLite applications is to use the
Android SDK and AVD Manager to download additional components to you environment. Google has
built the full Android SDK to be modular, so things such as documentation, specific components for
target versions and handsets, and other areas are split into separately managed and installed packages.
You can choose the following components:

CHAPTER 10 ■ ANDROID DEVELOPMENT WITH SQLITE

282

• The SDK Tools: This is the core part of the SDK and is already included in your
environment when you install the SDK Starter Package.

• Android Platforms: An platform is available for each of the versions of the Android
platform that have been released to production. You’ll need to install at least one
platform so you have a build target for your SQLite-based Android applications.

• SDK Add-Ons: The SDK Add-Ons are useful additional features bundled for use
with the Android SDK. The most popular of these is the Google APIs Add-On,
providing access to numerous Google technologies such as Maps, Street View, and
so forth.

• USB Driver for Windows: The USB driver is provided for Windows developers so
they can copy their applications to an actual device for running and debugging.
Only Windows developers will need this—OS X and Linux need no special driver
to allow this.

• Samples: This package includes numerous code snippets and examples of Android
development.

• Documentation: This package contains full API documentation for all versions of
the Android SDK.

Start the process of adding these components by choosing the menu option Window  Android SDK
and AVD Manager in Eclipse. The management window should appear, as shown in Figure 10-2.

Figure 10-2. The Android SDK and AVD Manager in Eclipse

CHAPTER 10 ■ ANDROID DEVELOPMENT WITH SQLITE

283

You may see one or more existing virtual devices listed in the manager. Let’s create a new one
specifically for our SQLite development, because this will allow us to ensure we have the components we
want and need and none of the extraneous extras we don’t need.

In the Android SDK and AVD Manager window, click the New button. You should see the Create
New Android Virtual Device (AVD) dialog box appear, as shown in Figure 10-3.

Figure 10-3. Adding a new Android virtual device for the SQLite project

You can call you virtual handset anything you like. We’ll call ours SQLite_AVD. The Target field
determines which Android SDK level you want to target for your application.

CHAPTER 10 ■ ANDROID DEVELOPMENT WITH SQLITE

284

ANDROID VS. SQLITE VERSIONS

 Where SQLite is concerned, there are slight variations in the underlying version of the SQLite libraries
included. For Android releases up to and including version 2.1, the underlying SQLite version is 3.5.9. From
Android release 2.2 onward (so-called Froyo), the SQLite library has been updated to version 3.6.22.

If you don’t have any particular requirement in mind, you can support the oldest possible SDK
release in order to target the widest possible audience. Otherwise, we recommend choosing at least the
latest major release, which at this point is 2.2.

The SD Card and Skin settings aren’t really a consideration with our SQLite focus, so at this point
leave them at the defaults. The remaining aspect of your virtual device concerns the additional hardware
this AVD will mimic. This includes many things that really won’t impact our SQLite development, such
as GPS and accelerometer devices. But several of the hardware options are worth considering.

The “Cache partition size” parameter will govern the fraction of on-board storage on the device
available to applications and the phone’s user (as opposed to Android and the system binaries). It’s
common to find phones and tablets with 4GB, 8GB, and even 16GB or more of onboard memory, and a
good fraction of this is available to the Cache partition. If you plan to build applications with large
SQLite databases, you should set this parameter to help you stay under the likely device ceilings your
application would encounter in the wild.

The “Maximum VM application heap size” option sets the limit for the amount of heap allocation an
Android application can take before it is killed by the system. This will impact your SQLite development
when dealing with larger items allocated on the heap. The most likely culprits will be large result sets
that are allocated as cursor objects (which we’ll discuss later in this chapter). This defaults to 16MB. If
you know you’ll work with memory-limited devices, you can tweak this to enable your development to
catch any low-memory scenarios before you reach real-world devices.

Device RAM Size designates the amount of physical memory present on the device. This is rarely
going to be your limiting factor, but again for SQLite development on constraint devices, it’s useful to
dial down this value to make your development device more closely model your future target devices.
The default is 96MB.

When you’ve finished choosing the hardware options you want for your virtual device, save it, and it
should appear in the list of existing Android virtual devices in your environment.

ALTERNATIVES TO ECLIPSE FOR ANDROID DEVELOPMENT

For those experienced in Android development or looking for cross-platform mobile development tools,
there are alternatives to Eclipse for Android development in general and SQLite-based Android
development in particular. Feel free to use any or all of these if you’re already comfortable with Android
development and prefer them to Eclipse.

PhoneGap An open source development framework for building cross-platform mobile applications.
www.phonegap.com

Appcelerator Titanium Another open source cross-platform framework for mobile applications.
www.appcelerator.com

Each of these has excellent support for SQLite development under Android, as well as for other platforms.

http://www.phonegap.com
http://www.appcelerator.com

CHAPTER 10 ■ ANDROID DEVELOPMENT WITH SQLITE

285

The Android SQLite Classes and Interfaces
You now have a working environment in which to develop SQLite-based Android applications. The next
step is to explore the classes and interfaces that Android uses to wrap the underlying SQLite C API.
Unlike other APIs and language bindings that provide a one-to-one mapping between APIs, the Android
SQLite API takes a very different approach.

Using the Basic Helper Class, SQLiteOpenHelper
The first and most important class provided by Android for working with SQLite databases is the
SQLiteOpenHelper class, in the android.database.sqlite namespace. This is a helper class that is
designed to be extended by you, to implement whatever tasks and actions you deem important when a
database is first created, opened, or used. SQLiteOpenHelper has a single constructor defined as follows:

SQLiteOpenHelper(Context context, String name,
 SQLiteDatabase.CursorFactory factory, int version)

The context is the application context allowing access to all the shared resources and assets for the
given application. The name parameter contains the database file name within Android storage. The
factory value introduces a new class, the SQLiteDatabase.CursorFactory. This is a factory class that
generates cursor objects that act as the result set for all the queries you issue against SQLite under
Android. The version parameter is your application-specific version number for the database (or more
particularly, its schema). Don’t confuse this with the actual SQLite version. SQliteOpenHelper will trigger
its onUpgrade() method if your database isn’t at the nominated version. All of SQLiteOpenHelper’s
methods are as follows:

synchronized void close()
synchronized SQLiteDatabase getReadableDatabase()
synchronized SQLiteDatabase getWritableDatabase()
abstract void onCreate(SQLiteDatabase db)
void onOpen(SQLiteDatabase db)
abstract void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion)

The close() method holds no surprises. This method closes the SQLite database within the
SQLiteOpenHelper object.

The next two methods, getReadableDatabase() and getWriteableDatabase(), perform similar
actions, with one difference that you can probably guess from their names. The getReadableDatabase()
method will open the database specified for the SQLiteOpenHelper object but will open it such that it is
read-only. In effect, any data manipulation statement that attempts to change data will not be allowed.
getWriteableDatabase() is used to open a SQLite database for normal read/write operations. If for some
reason your database cannot be opened for write operations, getWriteableDatabase() will open the
database as a read-only database (just as if getReadableDatabase() had been called) and will throw an
exception of type SQLiteException. You can test a database’s read or read/write state by calling the
isReadOnly() method on the database object itself. This is a Boolean value that returns true for a read-
only database. You can later call getWriteableDatabase() on a database that is read-only to reopen it as
a read/write database. Calling either method on a database that doesn’t yet exist will implicitly invoke
the helper object’s onCreate() method. Otherwise, the first call to either method from your application
will invoke onOpen() and optionally onUpgrade(). Your database will then be cached for the application
to use, until the close() method is called.

CHAPTER 10 ■ ANDROID DEVELOPMENT WITH SQLITE

286

■ Caution Opening a large database can take some time, especially if you have complex logic built into your
onOpen() or onCreate() implementations. We strongly recommend that for real-world applications you don’t call
this from the application’s main thread at startup time.

The final three methods—onCreate(), onOpen(), and onUpgrade()—are designed for you to subclass
to implement your desired behavior. onCreate() is triggered when the database is initially created and
typically used to create tables and load data with insert statements to bring a fresh database into
existence.

onOpen() is triggered when the database completes opening. You would typically check things such
as the read/write status of the database at this point with isReadOnly() to ensure your database is in a
known state before working with it.

The onUpgrade() method is called when the database needs to be upgraded from an application
perspective (remember, we’re not talking about SQLite versions here; we’re talking about your own
application version). You typically start numbering your database version at 1 and increment this to 2,
then 3, and so on, as you release new versions of your application. You code your desired alter table,
create table, drop table, and other statements within this method to handle graceful upgrades of the
database schema for your application as it evolves.

Working with the SQLiteDatabase Class
Now that you are familiar with the helper class that kick-starts the use of SQLite databases within
Android, it’s time to look at the core SQLiteDatabase class. A SQLiteDatabase object is conceptually easy
to understand, being very similar to the underlying database object in the SQLite C API. However, the
implementation of a wide range of helper methods and other tools means there’s a little more under the
wrapper than you might expect.

More than 50 methods are available for the SQLiteDatabase class, each with its own nuances and use
cases. Many of these are basic helper methods to easily complete simple tasks such as one-table select,
insert, update, and delete statements. Rather than an exhaustive list, we’ll cover the most important
subsets of methods and allow you to explore some of the overloaded methods at your leisure. At any
time you can refer to the full online Android documentation for the SQLiteDatabase class at
http://developer.android.com/reference/android/database/sqlite/SQLiteDatabase.html

Opening and Closing the SQLiteDatabase
SQLiteDatabase offers three methods to open a database and one to close a database. These methods are
as follows:

void close()
static SQLiteDatabase openDatabase(String path,
 SQLiteDatabase.CursorFactory factory, int flags)
static SQLiteDatabase openOrCreateDatabase(File file,
 SQLiteDatabase.CursorFactory factory)
static SQLiteDatabase openOrCreateDatabase(String path,
 SQLiteDatabase.CursorFactory factory)

http://developer.android.com/reference/android/database/sqlite/SQLiteDatabase.html

CHAPTER 10 ■ ANDROID DEVELOPMENT WITH SQLITE

287

The close() method is as simple as it looks. The database is closed, and no further queries can be
performed against the SQLiteDatabase object (that is, the database).

The openDatabase() method is the most versatile. It takes a path value to the file in your Android
application’s assets, together with an associated factory parameter that will act as a CursorFactory for
your database. The final parameter is a “stackable” flags parameter that dictates options to opening the
database. Four flag values pertain to opening the database.

• OPEN_READWRITE: Opens the database for reading and writing.

• OPEN_READONLY: Opens the database for reading (select) only.

• CREATE_IF_NECESSARY: Creates the database file first if it does not already exist.

• NO_LOCALIZED_COLLATORS: Opens the database without support for the LOCALIZED
SQLite collations. These are custom collations that match the regional settings of
the Android device.

The first openOrCreateDatabase() method accepts a File object as the target database to open. It
does not have a flags parameter, defaulting to the behavior of the CREATE_IF_NECESSARY value.

The second openOrCreate Database() overloaded method is a shorthand version of openDatabase().
It acts in almost exactly the same fashion, accepting a string as the path to find the database file. It also
has no flags parameter and likewise defaults to the CREATE_IF_NECESSARY behavior.

Executing General Queries with SQLiteDatabase
Just as there are numerous ways to compose SQL statements, Android provides a wealth of ways to run
SQL against your SQLite database. In fact, there are no fewer than 16 methods that run general or
specific styles of queries against your SQLite database. The can be separated into convenience functions
that do single-table inserts, updates, and so forth, as well as general methods for executing DML and
DDL. The general methods can be grouped together as shown in this list:

void execSQL(String sql)
void execSQL(String sql, Object[] bindArgs)
Cursor query(boolean distinct, String table, String[] columns, String selection,
 String[] selectionArgs, String groupBy, String having, String orderBy,
 String limit)
Cursor query(String table, String[] columns, String selection, String[] selectionArgs,
 String groupBy, String having, String orderBy)
Cursor query(String table, String[] columns, String selection, String[] selectionArgs,
 String groupBy, String having, String orderBy, String limit)
Cursor queryWithFactory(SQLiteDatabase.CursorFactory cursorFactory, boolean distinct,
 String table, String[] columns, String selection,
 String[] selectionArgs, String groupBy, String having,
 String orderBy, String limit)
Cursor rawQuery(String sql, String[] selectionArgs)
Cursor rawQueryWithFactory(SQLiteDatabase.CursorFactory cursorFactory, String sql,
 String[] selectionArgs, String editTable)

Don’t be put off by the number of methods there. You can see that there are basically three core
types—execSQL(), query(), and rawQuery(), with the latter two having variants that use the
CursorFactory from your SQLiteOpenHelper() invocation if you choose to use it.

CHAPTER 10 ■ ANDROID DEVELOPMENT WITH SQLITE

288

The two forms of execSQL() take a SQL statement as the sql parameter, and the second variant also
accepts an array of bind parameters to bind to the query (bindArgs). The execSQL() methods are used for
statements that don’t return results, such as create table, insert, update, alter table, and so forth. The
void method return type should help you remember this.

The query() and queryWithFactory() methods are essentially functions for performing lightweight
single-table select statements against your database. Take a look at the various parameters. You’ll see
that they include table, columns, orderBy, and so on. In essence, each of these methods allows you to
pass the clauses of a SQL statement to the relevant method, without having to include the SQL keywords
themselves.

The final pair of methods, rawQuery() and rawQueryWithFactory(), allow you to use any string as a
SQL select statement, returning the results as a Cursor object. You’ll notice that each accepts an array of
Strings named selectionArgs. Through this parameter, the SQLiteDatabase object will replace all
question mark (?) bind parameters in your SQL statement with the String values in the array, on a
positional basis (that is, the first question mark is replaced with the first element of the array, and so on).

THE STRANGENESS OF COMPILESTATEMENT

We’ve avoided discussing one method of SQLiteDatabase. That method is the compileStatement()
method. You might think from its name that it would be a very useful, generic statement compilation and
query preparation tool. In some respects it is, but in others, it is a little strange. First, here’s the method
signature:

public SQLiteStatement compileStatement (String sql)

Nothing too strange there. Take a String holding the SQL, and return an object of type SQLiteStatement.
In fact, as the name suggests, this method compiles a statement and allows it to be reused (as per the
reset semantics for the underlying SQLite C API). But then the strangeness kicks in.

compileStatement(), and for that matter the SQLiteStatement object to which it is related, can be used
only on statements that return a maximum of one result row, with a maximum of one result column. In
effect, the results of a compileStatement() call and the data member of a SQLiteStatement must be a
simple scalar value. We can think of situations where this would be useful, such as counting qualifying
rows in a table or result set. But we can think of a very much larger set of circumstances where you want
your SQL to work with result sets!

So, now you know about compileStatement() and SQLiteStatement, but if you’re like us, you’ll find
yourself rarely using it.

Using Convenience Methods with SQLiteDatabase
We mentioned 16 methods that can execute queries, but the preceding section covered only 8 methods.
The other 8 methods are convenience methods that allow you to issue insert, update, delete, and replace
statements against a single database table. These methods are as follows:

CHAPTER 10 ■ ANDROID DEVELOPMENT WITH SQLITE

289

int delete(String table, String whereClause, String[] whereArgs)
long insert(String table, String nullColumnHack, ContentValues initialValues)
long insertOrThrow(String table, String nullColumnHack, ContentValues initialValues)
long insertWithOnConflict(String table, String nullColumnHack,
 ContentValues initialValues, int conflictAlgorithm)
long replace(String table, String nullColumnHack, ContentValues initialValues)
long replaceOrThrow(String table, String nullColumnHack, ContentValues initialValues)
int update(String table, ContentValues values, String whereClause, String[] whereArgs)
int updateWithOnConflict(String table, ContentValues values, String whereClause,
 String[] whereArgs, int conflictAlgorithm)

At first glance, the various convenience methods are very easily understood. Decide on the action
you want to take, nominate the table with the appropriate parameter, build a whereClause, and provide
whereArgs. Take a closer look at the insert() and related methods and, for that matter, the replace()
methods as well. You’ll see a rather strange String parameter, nullColumnHack. This works in
conjunction with the initialValues ContentValue map. Where the initialValues map is empty,
nullColumnHack will provide NULL values for columns to prevent the attempt to insert no data, which
would naturally fail.

Although these methods at first seem attractive, they are principally designed to appeal to the
object-oriented developer who prefers simple CRUD-style primitive data manipulation. The methods
tend to support using the database as just a persistence layer and, as already mentioned, leads to failing
to do justice to both the power and the elegance of a relational database like SQLite. Now that we’ve
mentioned these methods, we’ll move on in the hopes you’ll use the power of the other methods for
building and executing queries.

Managing Transactions with SQLiteDatabase
All of SQLite’s transaction management fundamentals are respected by the Android wrapper. Several
useful methods are available to start, end, and manage your transactions.

void beginTransaction()
void beginTransactionWithListener(SQLiteTransactionListener transactionListener)
void endTransaction()
boolean inTransaction()
void setTransactionSuccessful()

Several of these methods come close to needing no explanation. beginTransaction() starts a SQLite
transaction, and endTransaction() ends the current transaction context for the SQLiteDatabase object.
Crucially, whether the transaction commits or rolls back is dependent on the transaction being marked
as “clean.” This is achieved by calling the setTransactionSuccessful() method. This added step is at first
an annoyance, but in reality it exists to ensure you double-check all changes to the database before
committing. The setTransactionSuccessful() method with throw an IllegalStateException exception
if you are not in a transaction or have already set the transaction to successful. The inTransaction()
method tests whether you are currently in an active transaction, returning true if that’s the case.

This leaves the beginTransactionWithListener() method. This takes a SQLiteTransactionListener
object as a parameter. An event will fire notifying this object every time a transaction management even
happens in the transaction, whether that’s a commit, rollback, or nested begin event.

CHAPTER 10 ■ ANDROID DEVELOPMENT WITH SQLITE

290

Using Other SQLiteDatabase Methods
Numerous other helpful methods are available to the SQLiteDatabase object. Here are a select few to
round out our discussion.

• public long getMaximumSize(): Returns the maximum size allowed for the
database.

• public int getVersion(): Returns your application-specific database version.

• public boolean isDbLockedByCurrentThread(): Tests whether your current thread
holds the database lock.

• public boolean isDbLockedByOtherThreads(): Tests whether another thread holds
the database lock.

• public static int releaseMemory(): Releases all working memory no longer
needed by the database, cursors, and so on. The number of bytes freed is returned.

There are a number of other simple Boolean methods to test various aspects of your database’s state, as
well as a number of methods to control synchronizing cached copies of your database back to storage
and other tasks.

Applying SQLiteOpenHelper and SQLiteDatabase in Practice
We’ve now covered enough of the Android SQLite API to walk through an example implementation of
our own derived SQLiteOpenHelper class complete with overridden methods to manage our
SQLiteDatabase—your underlying SQLite database.

Listing 10-1 shows a sample (large, working) fragment of Android code that implements our own
subclass of SQLiteOpenHelper, dealing with the common creation and opening tasks of using our Seinfeld
database. This code is included as myDatabaseHelper.java in the sample code.

Listing 10-1. myDatabaseHelper.java

import java.io.*;
import android.database.sqlite.*;
import android.database.SQLException;
import android.content.Context;

public class myDatabaseHelper extends SQLiteOpenHelper{
 //DBPATH uses the default system path for a given application
 // /data/data/<app namespace> , which in our example will be com.example.seinfeld
 private static String DBPATH = "/data/data/com.example.seinfeld/databases/";
 private static String DBNAME = "foods.db";
 private SQLiteDatabase myDatabase;
 private final Context myContext;

CHAPTER 10 ■ ANDROID DEVELOPMENT WITH SQLITE

291

 //constructor
 public myDatabaseHelper(Context context) {
 super(context, DBNAME, null, 1);
 this.myContext = context;
 }

 //create an empty db, and replace with our chosen db
 public void createDatabase() throws IOException{
 if (!checkDatabase()) {
 this.getWritableDatabase();
 try {
 copyDatabase();
 }
 catch (IOException e) {
 throw new Error("Error copying database from system assets");
 }
 }
 }

 //Check if our database already exists
 private boolean checkDatabase(){
 SQLiteDatabase checkableDatabase = null;
 try {
 checkableDatabase =
 SQLiteDatabase.openDatabase(DBPATH+DBNAME, null,
 SQLiteDatabase.OPEN_READONLY);
 }
 catch (SQLiteException e) {
 //our database doesn't exist, so we'll return false below.
 }
 if (checkableDatabase != null) {
 checkableDatabase.close();
 }
 return checkableDatabase != null ? true : false;
 }

 //Copy our database from the Application's assets
 //over the empty DB for use
 private void copyDatabase() throws IOException{

 InputStream myInput = myContext.getAssets().open(DBNAME);
 OutputStream myOutput = new FileOutputStream(DBPATH+DBNAME);

 byte[] buffer = new byte[1024];
 int length;
 while ((length = myInput.read(buffer))>0){
 myOutput.write(buffer, 0, length);
 }

CHAPTER 10 ■ ANDROID DEVELOPMENT WITH SQLITE

292

 myOutput.flush();
 myOutput.close();
 myInput.close();
 }

 public void openDatabase() throws SQLException{
 myDatabase = SQLiteDatabase.openDatabase(DBPATH+DBNAME, null,
 SQLiteDatabase.OPEN_READWRITE);
 }

 @Override
 public synchronized void close() {
 if(myDatabase != null)
 myDatabase.close();
 super.close();
 }

 @Override
 public void onCreate(SQLiteDatabase db) {
 //Handle creation tasks, etc.
 }

 @Override
 public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {
 //Handle upgrade tasks, etc.
 }
} //end of myDatabaseHelper.java

We can now use our myDatabaseHelper class to open or create our Seinfeld foods database.

…
myDatabaseHelper mySeinfeldDBHelper = new myDatabaseHelper();
mySeinfeldDBHelper = new myDatabaseHelper(this);

try {
 mySeinfeldDBHelper.createDatabase();
}
catch (IOException e) {
 throw new Error("Failed to create Seinfeld database");
}

try {
 mySeinfeldDBHelper.openDatabase();
}
catch(SQLException e) {
 throw e;
}
…

We’ll use our myDatabaseHelper class toward the end of the chapter to help build our working

Android SQLite-based application.

CHAPTER 10 ■ ANDROID DEVELOPMENT WITH SQLITE

293

Querying SQLite with SQLiteQueryBuilder

In the fine tradition of SQLite APIs, the Android SQLite class libraries support both database-style
objects and statement-style objects issuing queries against the database. We’ve already seen the
SQLiteDatabase object in action. Now we’ll look at the complementary class, SQLiteQueryBuilder.

Just as with SQLiteDatabase, SQLiteQueryBuilder offers a range of methods to help compose a valid
SQL statement, without the need to provide the various SQL reserved words for your clauses. Its key
difference is the way the methods provide features to directly execute the generated statement against a
provided SQLiteDatabase object, as well as being able to emit a string to pass to a SQLiteDatabase object
for execution under that object’s auspices. First, let’s take a look at the methods supporting direct
execution of your generated statement:

Cursor query(SQLiteDatabase db, String[] projectionIn, String selection,
 String[] selectionArgs, String groupBy, String having, String sortOrder)
Cursor query(SQLiteDatabase db, String[] projectionIn, String selection,
 String[] selectionArgs, String groupBy, String having, String sortOrder,
 String limit)

Those methods look eerily familiar. They are almost exactly identical to the query() methods of the
SQLiteDatabase object, with a few exceptions. Rather than invoking them on the database object itself,
you pass the database object as the first parameter (db). Many people find this just a case of personal
preference, but there are use cases where the SQLiteQueryBuilder approach is helpful. You’ll note the
only difference between the two overloaded methods is that the second allows for a limit clause.

But wait! What’s that? The careful reader will have spotted one more difference. Where has our
table parameter gone? This is one of the key differences when using SQLiteQueryBuilder. A separate
method is used to specify the table or tables against which the query will operate. This is the setTables()
method.

public void setTables (String inTables)

■ Note This is probably the most common “Gotcha” developers encounter when switching between
SQLiteQueryBuilder and SQLiteDatabase.

The setTables() method simply takes a comma-separated string of table names as a parameter.
There are a few additional methods of SQLiteQueryBuilder that operate this way. These include
setDistinct(), for indicating the SQL should use the distinct keyword, and setProjectionMap
(Map<String, String> columnMap), which controls the aliasing of columns and column disambiguation.

The bulk of the remaining methods for SQLiteQueryBuilder are the “build” methods. These methods
are designed to build a query string and return it for use elsewhere, such as through a SQLiteDatabase
object or recursively in the SQLiteQueryBuilder itself.

CHAPTER 10 ■ ANDROID DEVELOPMENT WITH SQLITE

294

String buildQuery(String[] projectionIn, String selection, String[] selectionArgs,
 String groupBy, String having, String sortOrder, String limit)
static String buildQueryString(boolean distinct, String tables, String[] columns,
 String where, String groupBy, String having,
 String orderBy, String limit)
String buildUnionQuery(String[] subQueries, String sortOrder, String limit)
String buildUnionSubQuery(String typeDiscriminatorColumn, String[] unionColumns,
 Set<String> columnsPresentInTable, int computedColumnsOffset,
 String typeDiscriminatorValue, String selection,
 String[] selectionArgs, String groupBy, String having)

Once again, there’s a great deal of similarity there with the methods seen from SQLiteDatabase. Note
however, that there are methods that focus heavily on union queries. Personally, we find it easier to
construct these ourselves and use the rawQuery() methods on SQLiteDatabase, but if you’re
programmatically building up your union statements, the approach of buildUnionQuery() and the
related methods provided added resilience against SQL injection attacks.

That’s enough theory on the Android SQLite class libraries. Now let’s move on to create a working
Android SQLite-based application.

Building the Seinfeld Android SQLite Application
With a working development environment now in place from the start of this chapter and a working
knowledge of the Android SQLite class libraries, you are ready to build your SQLite-based Android
application. Our requirements are very similar to the iOS application we built in Chapter 9:

• Build an Android application that shows the foods mentioned in Seinfeld by order
of popularity

• For any popular food, show how often the food is mentioned over all series of
Seinfeld

• Indicate the show in which a food first appeared

Once again, we have a very simple set of requirements. We’ll use the myDatabaseHelper.java class
already developed earlier in the chapter, together with a little Android UI magic. That means some short
coverage of non-SQLite areas will be needed, but we’ll keep that to a minimum.

Here are the steps we will follow:

1. Create a new Android project in Eclipse.

2. Add the SQLite framework to project.

3. Add our Seinfeld foods.db to our application assets.

4. Define the classes that map our food data from SQLite to our code.

5. Define the UI elements that present our summary and detail SQLite data on-
screen.

6. Define our UI behavior.

7. Launch!

Let’s begin.

CHAPTER 10 ■ ANDROID DEVELOPMENT WITH SQLITE

295

Creating a New Android Project
Launch Eclipse to get started. Choose File  New  Android Project, and you should see the New
Android Project dialog box appear, as in Figure 10-4.

Figure 10-4. Creating a new Android SQLite project

CHAPTER 10 ■ ANDROID DEVELOPMENT WITH SQLITE

296

Fill in the project name, application name, and package name, as shown in Figure 10-3, or use
meaningful names that you’re likely to remember. The application name will be the title that appears
with your application on Android. Your package name should follow normal Java package naming—
remember this needs to be globally unique.

Adding the Seinfeld SQLite Database to Your Project
To add the foods.db SQLite database file to your project, open the Seinfeld project folder, and then open
the assets folder. This will be empty by default. You can either drag and drop the foods.db file from your
operating system on to the assets folder or choose to link the database file in place. We don’t
recommend the link option, because this makes packaging your application with the database more
difficult.

Later in the chapter we’ll explore how the adb utility enables you to still use the command line
against your foods.db database, even after it has been loaded onto your (virtual or real) handset.

Querying the Foods Table
We now need to add additional functionality to our Seinfeld application to query our database to return
the foods we know and love. We also need to “wire up” the results to a ListView in the Android UI world
so that we can see our results through the Android application and play around with them.

Our first task is to add a method to our myDatabaseHelper class to fetch all the foods from the food
table. This fragment is from the myDatabaseHelper.java file available with the sample code:

…
public Cursor fetchAllFoods() {

 return myDatabase.rawQuery("select name from foods order by name", null);
}
…

As you can see, we’re not attempting a huge amount of sophistication here. You can always revisit
our example later to increase the complexity of your Seinfeld application.

Next, we need to feed the Cursor for all our fetched foods into the ListView that will display them.
Within our Seinfeld.java code, we declare a few handy strings representing our known field names and
then a method to iterate over a result set, binding returned fields and values to our ListView:

…
 public static final String FOODS_NAME_FIELD = "name";
...

private void fillData() {
 Cursor foodCursor = mDbHelper.fetchAllNotes();
 startManagingCursor(foodCursor);

 // Create an array for our food names
 String[] from = new String[]{myDatabaseHelper.FOODS_NAME_FIELD};

CHAPTER 10 ■ ANDROID DEVELOPMENT WITH SQLITE

297

 // Create an array of fields for binding to
 int[] to = new int[]{R.id.text1};

 SimpleCursorAdapter foods =
 new SimpleCursorAdapter(this, R.layout.food_row, foodCursor, from, to);
 setListAdapter(foods);
}

Don’t worry if the Android-specific UI tweaking doesn’t make sense; we’ll discuss the mysterious R
object next and how the text1 field is defined.

Defining the User Interface
When your fresh Seinfeld project was created, a blank canvas was put in place for the user interface. If
you drill down into your project, under the res folder you’ll see a main.xml file. This would be where you
would start designing a fresh layout, either using a graphical interface builder or carefully crafting
Android UI XML by hand.

Thankfully, we’re not going to put you through that torture. Instead, we’ll walk you through the
example code we’ve provided. Listing 10-2 shows you the contents of our food_list.xml file. This
controls the overall look and feel for our application as a whole.

Listing 10-2. food_list.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content">

 <ListView android:id="@id/android:list"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"/>
 <TextView android:id="@id/android:empty"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/no_foods"/>
</LinearLayout>

Very briefly, our design has a LinearLayout specification that is the most common for textual
applications. Within that, we define a set of expected behaviors for our UI depending on what our UI is
passed to display. Should a populated ListView be provided, we attempt to display this using list
semantics. Should a (nominally empty) TextView be provided, we’ll display the string no_foods.
Otherwise, we’ll display the textual content. Only one of these two views will be used at any one time.
The values list and empty are helpers provided by the Android platform, to ease the complexity of
defining the behavior of UI components.

This makes sense when viewed in conjunction with our other layout file, food_row.xml, shown in
Listing 10-3.

http://schemas.android.com/apk/res/android

CHAPTER 10 ■ ANDROID DEVELOPMENT WITH SQLITE

298

Listing 10-3. food_row.xml

<?xml version="1.0" encoding="utf-8"?>
<TextView android:id="@+id/text1"
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"/>

Here we’re instructing Android that we’d like a new ID called text1. The use of the + symbol is
shorthand to say “If I’ve forgotten to define text1 by now, go ahead and do here, so I can start using it
immediately.” We find it handy to use this approach to keep the definition of UI elements as close as
possible to where they’ll be used.

Go ahead and include these UI XML files in your project. Through the magic of the Android
Developer Tools, Eclipse will note your newly defined field and IDs and add the necessary values to the
mysterious R.java file. Actually, there really isn’t too much mystery here. The R.java file is managed by
ADT and automatically connects any UI resource to your Java code. Feel free to inspect R.java, but you’ll
rarely if ever need to manually change it.

Linking the Data and User Interface
Our last major task is to control when and how our interface receives its data. For this exercise, we’ll take
the subclass of onCreate() that we implemented earlier in the chapter, expand it to find and open our
SQLite foods database, and populate the ListView we’ve created with the results of the fillData()
method we’ve built. This code fragment is included in the file Seinfeld.java.

…
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.food_list);
 mySeinfeldDbHelper = new MyDatabaseAdapter(this);
 mySeinfeldDbHelper.createDatabase();
 mySeinfeldDbHelper.openDatabase();
 fillData();
 }
…

Here, we invoke setContentView to accept our food ListView, R.layout.food_list. Next, we create
an object using our myDatabaseAdapter class and create (copy to cache) and open the database. We then
call fillData(), which from our earlier definition does the hard work of taking our Cursor full of food
results and feeding the data into TextView elements for our ListView.

That’s really about it. Be sure to take a look at the full listings for Seinfeld.java and the related code
in the sample files included. We didn’t want to waste a few dozen pages on printing code that you can
more easily review yourself on-screen, but looking at the code in context will help further your
understanding.

http://schemas.android.com/apk/res/android

CHAPTER 10 ■ ANDROID DEVELOPMENT WITH SQLITE

299

Viewing the Finished Seinfeld Application
We’ve walked through the new and changed code that makes up our Seinfeld application, so now it is
time to see it in action. With Eclipse, choose Run  Run As  Android Application. This will launch your
application in your Android virtual device created earlier in the chapter.

■ Note It can take a few minutes for the virtual device to initialize, load, and be ready to use. Even then, it can
take a few seconds longer to see your application. You should also check that you’ve activated the screen lock
pattern to ensure your Seinfeld application is patiently waiting behind the screen lock for you.

Once your Seinfeld application has started, you should see familiar food names from our trusty
foods.db SQLite database, as shown in Figure 10-5.

Figure 10-5. Your running Seinfeld Android SQLite application

CHAPTER 10 ■ ANDROID DEVELOPMENT WITH SQLITE

300

That’s it, you’ve created your first Android SQLite application. From here, you can go crazy adding
features and devising new applications.

Care and Feeding for SQLite Android Applications
As with all mobile platforms, the somewhat constrained nature of hardware and resources under
Android (compared with normal desktop or notebook computers) means some additional care and
attention is warranted to ensure the best possible development and user experience.

Database Backup for Android
You’ve seen in our development of the myDatabaseHelper.java subclass that it is possible to work directly
with the SQLite database file. Using normal Android API calls, it is possible to manipulate the SQLite file
yourself, and therefore you could use this approach to provide for backups and recovery of your
database. But there is a better way.

Google provides a backup service with Android, which allows you to copy any kind of persistent
data to remote storage. This applies not just to SQLite database files, but that’s our focus for now. This is
a very useful way to provide for data resilience, backup, and recovery, way beyond what you could
achieve manually. For instance, if a user invokes a factory reset on an Android-powered device, a do-it-
yourself backup would likely be lost. But the data backup system can automatically restore your data
when your application is reinstalled.

This feature is quite in-depth and is based around a number of classes. BackupAgent,
BackupAgentHelper, and BackupManager are the main APIs involved. As with some of the classes we’ve
seen, each of these classes includes a number of methods and subclasses designed to be overridden by
you so that you can provide application-specific behavior for backup and restore activities. There’s
enough material required to cover these tasks to fill a book in its own right, so we’ll point you to the
online documentation for further reading at http://developer.android.com/guide/topics/
data/backup.html.

Working with Large SQLite Databases Under Android
In our introduction to creating an Android virtual device, we mentioned several configuration options
that control or mimic the memory, cache, and storage resources available to you when creating any
Android application. These included maximum VM application heap size, cache partition size, and
device RAM Size.

A subtle but frustrating issue can arise when you begin working with large sets of data derived from
your SQLite databases. You run some queries, fetch very large results into your Cursor object, and start
working with the data. At some point, your UI crashes and leaves you with bizarre UI errors in the trace
output. What’s going on?

Despite the sometime prodigious amounts of memory and storage now available on Android
devices and configurable in your AVD, there are other limits that can crimp your style. The most
common of these involves using the CursorWindow object as a secondary cache of Cursor result rows. A
CursorWindow can accommodate only 1MB of data. The variable smooth operation or crashing behavior
you can see can be caused by attempting to exceed the CursorWindow size limit with too many rows and
or rows with excessively long data. Naturally, sometimes your data may be short and sweet, thus
showing no problem, but at other times…kapow!

http://developer.android.com/guide/topics

CHAPTER 10 ■ ANDROID DEVELOPMENT WITH SQLITE

301

Our advice is to remember that you are dealing with devices usually sporting only a 3-inch or 4-inch
screen and that caching thousands of rows is probably not a useful design. What user of yours will ever
scroll or read through that amount of data in one action, especially on a screen that small?

Summary
You now have a firm understanding of the tools, classes, and practice of creating SQLite-based Android
applications. The Android SQLite API is somewhat different from the APIs we’ve covered elsewhere, and
it is evolving at a rapid rate, just as the rest of the Android platform is also evolving.

Because Android is proving to be a runaway mobile platform success, we’re sure any interest you
have in creating SQLite-based applications for Android will be well rewarded. Good luck!

C H A P T E R 1 1

■ ■ ■

303

SQLite Internals and New Features

Our last chapter is a collection of topics devoted to the internals of SQLite. The material here is collected
from topics raised by Richard Hipp, SQLite’s founder, over the past year or so. Importantly, we’ll
highlight one of the biggest changes to happen to SQLite in recent versions: the introduction of the
Write-Ahead Log model. We’ll also briefly explore how the pager and B-trees work and go into a little
more detail on the underpinnings of data types, affinity, and the SQLite approach to typing.

This isn’t an exhaustive description of the inner workings of SQLite, because that’s covered very well
on the SQLite web site, and the healthy rate of change for SQLite releases means that a book isn’t always
the best place to track things such as known commands in the VDBE, optimization models, and so on.
We hope you enjoy these topics, and we encourage you to read more to further your understanding of
the beauty and elegance of SQLite’s design.

The B-Tree and Pager Modules
The B-tree provides SQLite’s VDBE with O(logN) lookup, insert, and delete as well as O(1) bidirectional
traversal of records. It is self-balancing and automatically manages both defragmentation and space
reclamation. The B-tree itself has no notion of reading or writing to disk. It concerns itself only with the
relationship between pages. The B-tree notifies the pager when it needs a page and also notifies it when
it is about to modify a page. When modifying a page, the pager ensures that the original page is first
copied out to the journal file if the traditional rollback journal is in use. Similarly, the B-tree notifies the
pager when it is done writing, and the pager determines what needs to be done based on the transaction
state.

Database File Format
All pages in a database are numbered sequentially, beginning with 1. A database is composed of multiple
B-trees—one B-tree for each table and index (B+trees are used for tables; B-trees are used for indexes).
Each table or index in a database has a root page that defines the location of its first page. The root pages
for all indexes and tables are stored in the sqlite_master table.

CHAPTER 11 ■ SQLITE INTERNALS AND NEW FEATURES

304

The first page in the database—Page 1—is special. The first 100 bytes of Page 1 contain a special
header (the file header) that describes the database file. It includes such information as the library
version, schema version, page size, encoding, whether autovacuum is enabled—all of the permanent
database settings you configure when creating a database along with any other parameters that have
been set by various pragmas. The exact contents of the header are documented in btree.c and at
http://www.sqlite.org/fileformat2.html. Page 1 is also the root page of the sqlite_master table.

Page Reuse and Vacuum
SQLite recycles pages using a free list. That is, when all the records are deleted out of a page, the page is
placed on a list reserved for reuse. When new information is later added, nearby pages are first selected
before any new pages are created (expanding the database file). Running a VACUUM command purges the
free list and thereby shrinks the database. In actuality, it rebuilds the database in a new file so that all in-
use pages are copied over, while free-list pages are not. The end result is a new, compacted database.
When autovacuum is enabled in a database, SQLite doesn’t use a free list and automatically shrinks the
database upon each commit.

B-Tree Records
Pages in a B-tree consist of B-tree records, also called payloads. They are not database records in the
sense you might think—formatted with the columns in a table. They are more primitive than that. A B-
tree record, or payload, has only two fields: a key field and a data field. The key field is the rowid value or
primary key value that is present for every table in the database. The data field, from the B-tree
perspective, is an amorphous blob that can contain anything. Ultimately, the database records are
stored inside the data fields. The B-tree’s job is order and navigation, and it primarily needs only the key
field to do its work (however, there is one exception in B+trees, which is addressed next). Furthermore,
payloads are variable size, as are their internal key and data fields. On average, each page usually holds
multiple payloads; however, it is possible for a payload to span multiple pages if it is too large to fit on
one page (for example, records containing blobs).

B+Trees
B-tree records are stored in key order. All keys must be unique within a single B-tree (this is
automatically guaranteed because the keys correspond to the rowid primary key, and SQLite takes care
of that field for you). Tables use B+trees, which do not contain table data (database records) in the
internal pages. Figure 11-1 shows an example B+tree representation of a table.

http://www.sqlite.org/fileformat2.html

CHAPTER 11 ■ SQLITE INTERNALS AND NEW FEATURES

305

Figure 11-1. B+tree organization (tables)

The root page and internal pages in B+trees are all about navigation. The data fields in these pages
are all pointers to the pages below them—they contain keys only. All database records are stored on the
leaf pages. On the leaf level, records and pages are arranged in key order so it is possible for B-tree
cursors to traverse records (horizontally), both forward and backward, using only the leaf pages. This is
what makes traversal possible in O(1) time.

Records and Fields
The database records in the data fields of the leaf pages are managed by the VDBE. The database record
is stored in binary form using a specialized record format that describes all the fields in the record. The
record format consists of a continuous stream of bytes organized into a logical header and a data
segment. The header segment includes the header size (represented as a variable-sized 64-bit integer
value) and an array of types (also variable 64-bit integers), which describe each field stored in the data
segment, as shown in Figure 11-2. Variable 64-bit integers are implemented using a Huffman code.

Figure 11-2. Record structure

The number of type entries corresponds to the number of fields in the record. Furthermore, each
index in the type array corresponds to the same index in the field array. A type entry specifies the data
type and size of its corresponding field value. Table 11-1 lists the possible types and their meanings.

CHAPTER 11 ■ SQLITE INTERNALS AND NEW FEATURES

306

Table 11-1. Field Type Values

Type Value Meaning Length of Data

0 NULL 0

N in 1..4 Signed integer N

5 Signed integer 6

6 Signed integer 8

7 IEEE float 8

8 Integer constant 0 0

9 Integer constant 1 0

10-11 Reserved for future use N/A

N>12 and even blob (N-12)/2

N>13 and odd text (N-13)/2

For example, take the first record in the episodes table:

sqlite> SELECT * FROM episodes ORDER BY id LIMIT 1;
id season name
--- ------ --------------------
0 1 Good News Bad News

Figure 11-3 shows the internal record format for this record.

Good News Bad News4901 0004 0101

Figure 11-3. First record in the episodes table

The header is 4 bytes long. The header size reflects this and itself is encoded as a single byte. The
first type, corresponding to the id field, is a 1-byte signed integer. The second type, corresponding to the
season field, is as well. The name type entry is an odd number, meaning it is a text value. Its size is
therefore given by (49-13)/2=17 bytes. With this information, the VDBE can parse the data segment of
the record and extract the individual fields.

CHAPTER 11 ■ SQLITE INTERNALS AND NEW FEATURES

307

Hierarchical Data Organization
Basically, each module in the stack deals with a specific unit of data. From the bottom up, data becomes
more refined and more specific. From the top down, it becomes more aggregated and amorphous.
Specifically, the C API deals in field values, the VDBE deals in records, the B-tree deals in keys and data,
the pager deals in pages, and the OS interface deals in binary data and raw storage, as illustrated in
Figure 11-4.

Figure 11-4. Modules and their associated data

Each module takes part in managing its own specific portion of the data in the database and relies
on the layer below it to supply it with a cruder form from which to extract its respective pieces.

Overflow Pages
As mentioned earlier, payloads and their contents can have variable sizes. However, pages are fixed in
size. Therefore, there is always the possibility that a given payload could be too large to fit in a single
page. When this happens, the excess payload is spilled out onto a linked list of overflow pages. From this
point on, the payload takes on the form of a linked list of sorts, as shown in Figure 11-5.

CHAPTER 11 ■ SQLITE INTERNALS AND NEW FEATURES

308

The fourth payload in the figure is too large to fit on the page. As a result, the B-tree module creates
an overflow page to accommodate. It turns out that one page won’t suffice, so it links a second. This is
essentially the way binary large objects are handled. One thing to keep in mind when you are using really
large blobs is that they are ultimately being stored as a linked list of pages. If the blob is large enough,
this can become inefficient, in which case you might consider dedicating an external file for the blob and
keeping this file name in the record instead.

Figure 11-5. Overflow pages

The B-Tree API
The B-tree module has its own API, which is separate from the C API. We’ll explore it here for
completeness, but it’s not really meant as a general-purpose B-tree API. You’ll see it is heavily tailored to
the needs of SQLite, so it’s not really suitable for you to just pick up and drop into some other project.
That said, understanding it in depth will allow you to appreciate even more of SQLite’s internals. An
added benefit of SQLite’s B-tree module is that it includes native support for transactions. Everything
you know about the transactions, locks, and journal files are handled by the pager, which serves the B-
tree module. The API can be grouped into functions according to general purpose.

Access and Transaction Functions
Database and transaction routines include the following:

• sqlite3BtreeOpen: Opens a new database file. Returns a B-tree object.

• sqlite3BtreeClose: Closes a database.

• sqlite3BtreeBeginTrans: Starts a new transaction.

• sqlite3BtreeCommit: Commits the current transaction.

CHAPTER 11 ■ SQLITE INTERNALS AND NEW FEATURES

309

• sqlite3BtreeRollback: Rolls back the current transaction.

• sqlite3BtreeBeginStmt: Starts a statement transaction.

• sqlite3BtreeCommitStmt: Commits a statement transaction.

• sqlite3BtreeRollbackStmtsqlite3BtreeRollbackStmt: Rolls back a statement
transaction.

Table Functions
Table management routines include the following:

• sqlite3BtreeCreateTable: Creates a new, empty B-tree in a database file. Flags in
the argument determine whether to use a table format (B+tree) or index format
(B-tree).

• sqlite3BtreeDropTable: Destroys a B-tree in a database file.

• sqlite3BtreeClearTable: Removes all data from a B-tree but keeps the B-tree
intact.

Cursor Functions
Cursor functions include the following:

• sqlite3BtreeCursor: Creates a new cursor pointing to a particular B-tree. Cursors
can be either a read cursor or a write cursor. Read and write cursors may not exist
in the same B-tree at the same time.

• sqlite3BtreeCloseCursor: Closes the B-tree cursor.

• sqlite3BtreeFirst: Moves the cursor to the first element in a B-tree.

• sqlite3BtreeLast: Moves the cursor to the last element in a B-tree.

• sqlite3BtreeNext: Moves the cursor to the next element after the one it is
currently pointing to.

• sqlite3BtreePrevious: Moves the cursor to the previous element before the one it
is currently pointing to.

• sqlite3BtreeMoveto: Moves the cursor to an element that matches the key value
passed in as a parameter. If there is no match, leaves the cursor pointing to an
element that would be on either side of the matching element, had it existed.

CHAPTER 11 ■ SQLITE INTERNALS AND NEW FEATURES

310

Record Functions
Key and record functions include the following:

• sqlite3BtreeDelete: Deletes the record to which the cursor is pointing

• sqlite3BtreeInsert: Inserts a new element in the appropriate place of the B-tree

• sqlite3BtreeKeySize: Returns the number of bytes in the key of the record to
which the cursor is pointing

• sqlite3BtreeKey: Returns the key of the record to which the cursor is currently
pointing

• sqlite3BtreeDataSize: Returns the number of bytes in the data record to which
the cursor is currently pointing

• sqlite3BtreeData: Returns the data in the record to which the cursor is currently
pointing

Configuration Functions
Functions to set various parameters include the following:

• sqlite3BtreeSetCacheSize: Controls the page cache size as well as the
synchronous writes (as defined in the synchronous pragma).

• sqlite3BtreeSetSafetyLevel: Changes the way data is synced to disk in order to
increase or decrease how well the database resists damage because of OS crashes
and power failures. Level 1 is the same as asynchronous (no syncs() occur, and
there is a high probability of damage). This is the equivalent to pragma
synchronous=OFF. Level 2 is the default. There is a very low but nonzero probability
of damage. This is the equivalent to pragma synchronous=NORMAL. Level 3 reduces
the probability of damage to near zero but with a write performance reduction.
This is the equivalent to pragma synchronous=FULL.

• sqlite3BtreeSetPageSize: Sets the database page size.

• sqlite3BtreeGetPageSize: Returns the database page size.

• sqlite3BtreeSetAutoVacuum: Sets the autovacuum property of the database.

• sqlite3BtreeGetAutoVacuum: Returns whether the database uses autovacuum.

• sqlite3BtreeSetBusyHandler: Sets the busy handler.

There are more functions, all of which are very well documented in btree.h and btree.c, but those
listed here give you some idea of the parts of the API that are implemented in the B-tree layer, as well as
what this layer can do in its own right.

CHAPTER 11 ■ SQLITE INTERNALS AND NEW FEATURES

311

Manifest Typing, Storage Classes, and Affinity
You’ll remember from Chapter 4 our discussion on storage classes in SQLite and how its underlying data
typing (or domains) offers a rather more flexible approach to the notion of data types that you find in
other systems or databases. It’s worth exploring the mechanisms that underpin storage classes further,
including SQLite’s approach to manifest typing and type affinity.

Manifest Typing
SQLite uses manifest typing. If you do a little research, you will find that the term manifest typing is
subject to multiple interpretations. In programming languages, manifest typing refers to how the type of
a variable or value is defined and/or determined. There are two main interpretations:

• Manifest typing means that a variable’s type must be explicitly declared in the code.
By this definition, languages such as C/C++, Pascal, and Java would be said to use
manifest typing. Dynamically typed languages such as Perl, Python, and Ruby, on
the other hand, are the direct opposite because they do not require that a
variable’s type be declared.

• Manifest typing means that variables don’t have types at all. Rather, only values
have types. This seems to be in line with dynamically typed languages. Basically, a
variable can hold any value, and the type of that variable at any point in time is
determined by its value at that moment. Thus, if you set variable x=1, then x at
that moment is of type integer. If you then set x='JujyFruit', it is then of type
text. That is, if it looks like an integer and it acts like an integer, it is an integer.

For the sake of brevity, we will refer to the first interpretation as MT 1 and the second as MT 2. At first
glance, it may not be readily apparent as to which interpretation best fits SQLite. For example, consider
the following table:

create table foo(x integer,
 y text,
 z real);

Say we now insert a record into this table as follows:

insert into foo values ('1', '1', '1');

When SQLite creates the record, what type is stored internally for x, y, and z? The answer is integer,
text, and real. Then it seems that SQLite uses MT 1: variables have declared types. But wait a second;
column types in SQLite are optional, so we could have just as easily defined foo as follows:

create table foo(x, y, z);

Now let’s do the same insert:

insert into foo values ('1', '1', '1');

CHAPTER 11 ■ SQLITE INTERNALS AND NEW FEATURES

312

What type are x, y, and z now? The answer: text, text, and text. Well, maybe SQLite is just setting
columns to text by default. If you think that, then consider the following insert statement on the same
table:

INSERT INTO FOO VALUES (1, 1.0, x'10');

What are x, y, and z in this row? integer, real, and blob. This looks like MT 2, where the value itself
determines its type.

So, which one is it? The short answer is neither and both. The long answer is a little more involved.
With respect to MT 1, SQLite lets you declare columns to have types if you want. This looks and feels like
what other databases do. But you don’t have to, thereby violating the MT1 interpretation as well. This is
because in all situations SQLite can take any value and infer a type from it. It doesn’t need the type
declared in the column to help it out. With respect to MT 2, SQLite allows the type of the value to
“influence” (maybe not completely determine) the type that gets stored in the column. But you can still
declare the column with a type, and that type will exert some influence, thereby violating this
interpretation as well—that types come from values only. What we really have here is the MT 3—the
SQLite interpretation. It borrows from both MT 1 and MT 2.

But interestingly enough, manifest typing does not address the whole issue with respect to types. It
seems to be concerned with only declaring and resolving types. What about type checking? That is, if you
declare a column to be type integer, what exactly does that mean?

First let’s consider what most other relational databases do. They enforce strict type checking as a
standard part of standard domain integrity. First you declare a column’s type. Then only values of that
type can go in it. End of story. You can use additional domain constraints if you want, but under no
conditions can you ever insert values of other types. Consider the following example with Oracle:

SQL> create table domain(x int, y varchar(2));
Table created.

SQL> insert into domain values ('pi', 3.14);
insert into domain values ('pi', 3.14)
 *
ERROR at line 1:
ORA-01722: invalid number

The value 'pi' is not an integer value. And column x was declared to be of type int. We don’t even get to
hear about the error in column y because the whole insert is aborted because of the integrity violation
on x. When I try this in SQLite, we said one thing and did another, and SQLite didn’t stop me:

sqlite> create table domain (x int, y varchar(2));
sqlite> INSERT INTO DOMAIN VALUES ('pi', 3.14);
sqlite> select * from domain;

x y
---- -----
pi 3.14

SQLite’s domain integrity does not include strict type checking. So, what is going on? Does a column’s
declared type count for anything? Yes. Then how is it used? It is all done with something called type
affinity.

CHAPTER 11 ■ SQLITE INTERNALS AND NEW FEATURES

313

In short, SQLite’s manifest typing states that columns can have types and that types can be inferred
from values. Type affinity addresses how these two things relate to one another. Type affinity is a
delicate balancing act that sits between strict typing and dynamic typing.

Type Affinity
In SQLite, columns don’t have types or domains. Although a column can have a declared type, internally
it has only a type affinity. Declared type and type affinity are two different things. Type affinity
determines the storage class SQLite uses to store values within a column. The actual storage class a
column uses to store a given value is a function of both the value’s storage class and the column’s
affinity. Before getting into how this is done, however, let’s first talk about how a column gets its affinity.

Column Types and Affinities
To begin with, every column has an affinity. There are four different kinds: numeric, integer, text, and
none. A column’s affinity is determined directly from its declared type (or lack thereof). Therefore, when
you declare a column in a table, the type you choose to declare it will ultimately determine that column’s
affinity. SQLite assigns a column’s affinity according to the following rules:

• By default, a column’s default affinity is numeric. That is, if a column is not
integer, text, or none, then it is automatically assigned numeric affinity.

• If a column’s declared type contains the string 'int' (in uppercase or lowercase),
then the column is assigned integer affinity.

• If a column’s declared type contains any of the strings 'char', 'clob', or 'text' (in
uppercase or lowercase), then that column is assigned text affinity. Notice that
'varchar' contains the string 'char' and thus will confer text affinity.

• If a column’s declared type contains the string 'blob' (in uppercase or lowercase),
or if it has no declared type, then it is assigned none affinity.

■ Note Pay attention to defaults. For instance, floatingpoint has affinity integer. If you don’t declare a
column’s type, then its affinity will be none, in which case all values will be stored using their given storage class
(or inferred from their representation). If you are not sure what you want to put in a column or want to leave it open
to change, this is the best affinity to use. However, be careful of the scenario where you declare a type that does
not match any of the rules for none, text, or integer. Although you might intuitively think the default should be
none, it is actually numeric. For example, if you declare a column of type JUJYFRUIT, it will not have affinity none
just because SQLite doesn’t recognize it. Rather, it will have affinity numeric. (Interestingly, the scenario also
happens when you declare a column’s type to be numeric for the same reason.) Rather than using an
unrecognized type that ends up as numeric, you may prefer to leave the column’s declared type out altogether,
which will ensure it has affinity none.

CHAPTER 11 ■ SQLITE INTERNALS AND NEW FEATURES

314

Affinities and Storage
Each affinity influences how values are stored in its associated column. The rules governing storage are
as follows:

• A numeric column may contain all five storage classes. A numeric column has a bias
toward numeric storage classes (integer and real). When a text value is inserted
into a numeric column, it will attempt to convert it to an integer storage class. If
this fails, it will attempt to convert it to a real storage class. Failing that, it stores
the value using the text storage class.

• An integer column tries to be as much like a numeric column as it can. An integer
column will store a real value as real. However, if a real value has no fractional
component, then it will be stored using an integer storage class. integer column
will try to store a text value as real if possible. If that fails, they try to store it as
integer. Failing that, text values are stored as TEXT.

• A text column will convert all integer or real values to text.

• A none column does not attempt to convert any values. All values are stored using
their given storage class.

• No column will ever try to convert null or blob values—regardless of affinity. null
and blob values are always stored as is in every column.

These rules may initially appear somewhat complex, but their overall design goal is simple: to make
it possible for SQLite to mimic other relational databases if you need it to do so. That is, if you treat
columns like a traditional database, type affinity rules will store values in the way you expect. If you
declare a column of type integer and put integers into it, they will be stored as integer. If you declare a
column to be of type text, char, or varchar and put integers into it, they will be stored as text. However,
if you don’t follow these conventions, SQLite will still find a way to store the value.

Affinities in Action
Let’s look at a few examples to get the hang of how affinity works. Consider the following:

sqlite> create table domain(i int, n numeric, t text, b blob);
sqlite> insert into domain values (3.142,3.142,3.142,3.142);
sqlite> insert into domain values ('3.142','3.142','3.142','3.142');
sqlite> insert into domain values (3142,3142,3142,3142);
sqlite> insert into domain values (x'3142',x'3142',x'3142',x'3142');
sqlite> insert into domain values (null,null,null,null);
sqlite> select rowid,typeof(i),typeof(n),typeof(t),typeof(b) from domain;

rowid typeof(i) typeof(n) typeof(t) typeof(b)
---------- ---------- ---------- ---------- ----------
1 real real text real
2 real real text text
3 integer integer text integer
4 blob blob blob blob
5 null null null null

CHAPTER 11 ■ SQLITE INTERNALS AND NEW FEATURES

315

The first insert inserts a real value. You can see this both by the format in the insert statement and by
the resulting type shown in the typeof(b) column returned in the select statement. Remember that
blob columns have storage class none, which does not attempt to convert the storage class of the input
value, so column b uses the same storage class that was defined in the insert statement. Column i
keeps the numeric storage class, because it tries to be numeric when it can. Column n doesn’t have to
convert anything. Column t converts it to text. Column b stores it exactly as given in the context. In each
subsequent insert, you can see how the conversion rules are applied in each varying case.

The following SQL illustrates storage class sort order and interclass comparison (which are governed
by the same set of rules):

sqlite> select rowid, b, typeof(b) from domain order by b;

rowid b typeof(b)
----- ------ ---------
5 NULL null
1 3.142 real
3 3142 integer
2 3.142 text
4 1B blob

Here, you see that nulls sort first, followed by integers and reals, followed by texts and then blobs. The
following SQL shows how these values compare with the integer 1,000. The integer and real values in b
are less than 1,000 because they are numerically compared, while text and blob are greater than 1,000
because they are in a higher storage class.

sqlite> select rowid, b, typeof(b), b<1000 from domain order by b;

rowid b typeof(b) b<1000
----- ----- -------- ----------
5 NULL null NULL
1 3.142 real 1
3 3142 integer 1
2 3.142 text 0
4 1B blob 0

The primary difference between type affinity and strict typing is that type affinity will never issue a
constraint violation for incompatible data types. SQLite will always find a data type to put any value into
any column. The only question is what type it will use to do so. The only role of a column’s declared type
in SQLite is simply to determine its affinity. Ultimately, it is the column’s affinity that has any bearing on
how values are stored inside of it. However, SQLite does provide facilities for ensuring that a column
may only accept a given type or range of types. You do this using check constraints, explained in the
sidebar “Makeshift Strict Typing” later in this section.

Storage Classes and Type Conversions
Another thing to note about storage classes is that they can sometimes influence how values are
compared as well. Specifically, SQLite will sometimes convert values between numeric storage classes
(integer and real) and text before comparing them. For binary comparisons, it uses the following rules:

CHAPTER 11 ■ SQLITE INTERNALS AND NEW FEATURES

316

• When a column value is compared to the result of an expression, the affinity of the
column is applied to the result of the expression before the comparison takes
place.

• When two column values are compared, if one column has integer or numeric
affinity and the other doesn’t, then numeric affinity is applied to text values in the
non-numeric column.

• When two expressions are compared, SQLite does not make any conversions. The
results are compared as is. If the expressions are of like storage classes, then the
comparison function associated with that storage class is used to compare values.
Otherwise, they are compared on the basis of their storage class.

Note that the term expression here refers to any scalar expression or literal other than a column value. To
illustrate the first rule, consider the following:

sqlite> select rowid,b,typeof(i),i>'2.9' from domain order by b;

rowid b typeof(i i>'2.9'
----- ----- -------- ------------
5 NULL null NULL
1 3.142 real 1
3 3142 integer 1
2 3.142 real 1
4 1B blob 1

The expression '2.9', while being text, is converted to integer before the comparison. So, the column
interprets the value in light of what it is. What if '2.is a non-numeric string? Then SQLite falls back to
comparing storage class, in which integer and numeric types are always less than text:

sqlite> select rowid,b,typeof(i),i>'text' from domain order by b;

rowid b typeof(i i>'text'
----- ----- -------- ------------
5 NULL null NULL
1 3.14 real 0
3 314 integer 0
2 3.14 real 0
4 1B blob 1

The second rule simply states that when comparing a numeric and non-numeric column, where
possible SQLite will try to convert the non-numeric column to numeric format:

sqlite> create table rule2(a int, b text);
sqlite> insert into rule2 values(2,'1');
sqlite> insert into rule2 values(2,'text');
sqlite> select a, typeof(a),b,typeof(b), a>b from rule2;

a typeof(a) b typeof(b) a>b
---------- ---------- ---------- ---------- ----------
2 integer 1 text 1
2 integer text text 0

CHAPTER 11 ■ SQLITE INTERNALS AND NEW FEATURES

317

Column a is an integer, and b is text. When evaluating the expression a>b, SQLite tries to coerce b to
integer where it can. In the first row, b is '1', which can be coerced to integer. SQLite makes the
conversion and compares integers. In the second row, b is 'text' and can’t be converted. SQLite then
compares storage classes integer and text.

The third rule just reiterates that storage classes established by context are compared at face value.
If what looks like a text type is compared with what looks like an integer type, then text is greater.

Additionally, you can manually convert the storage type of a column or an expression using the
cast() function. Consider the following example:

sqlite> select typeof(3.14), typeof(cast(3.14 as text));

typeof(3.14) typeof(cast(3.14 as text))
------------ --------------------------
real text

MAKESHIFT STRICT TYPING

If you need something stronger than type affinity for domain integrity, then CHECK constraints can help. You
can implement pseudo–strict typing directly using a single built-in function and a CHECK constraint. As
mentioned earlier, SQLite has a function that returns the inferred storage class of a value—typeof(). You
can use typeof() in any relational expression to test for a value type. Here’s an example:

sqlite> select typeof(3.14) = 'text';
0
sqlite> select typeof(3.14) = 'integer';
0
sqlite> select typeof(3.14) = 'real';
1
sqlite> select typeof(3) = 'integer';
1
sqlite> select typeof('3') = 'text';
1

Therefore, you can use this function to implement a CHECK constraint that limits the acceptable types
allowed in a column:

sqlite> create table domain (x integer check(typeof(x)='integer'));
sqlite> insert into domain values('1');
SQL error: constraint failed

sqlite> insert into domain values(1.1);
SQL error: constraint failed

sqlite> insert into domain values(1);
sqlite> select x, typeof(x) from domain;

CHAPTER 11 ■ SQLITE INTERNALS AND NEW FEATURES

318

x typeof(x)
-- ----------
1 integer
sqlite> update domain set x=1.1;
SQL error: constraint failed

The only catch here is that you are limited to checking for SQLite’s native storage classes (or what can be
implemented using other built-in SQL functions). However, if you are a programmer and either use a
language extension that supports SQLite’s user-defined functions (for example, Perl, Python, or Ruby) or
use the SQLite C API directly, you can implement even more elaborate functions for type checking, which
can be called from within CHECK constraintsithin CHECK constraints.

Write Ahead Logging
With the release of SQLite 3.7.0, a new optional model for managing atomic transactions was
introduced: the Write Ahead Log. The Write Ahead Log (WAL) is not new to the wider database
technology world, but it’s inclusion in SQLite is amazing for two reasons. First, this further enhances the
sophistication and robustness of SQLite and the databases you use. Second, it’s astounding that such a
great feature has been included in SQLite and yet the code and resulting binaries are still so compact
and concise.

How WAL Works
In the traditional mode of operation, SQLite uses the rollback journal to capture the prechange data
from your SQL statements and then makes changes to the database file (we’ll avoid discussing the
various caching and file system layers here, because they apply regardless of model). When the WAL is
used, the arrangement is reversed. Instead of writing the original, prechanged data to the rollback
journal, using WAL leaves the original data untouched in the database file. The WAL file is used to record
the changes to the data that occur for a given transaction. A commit action changes to being a special
record written to the WAL to indicate the preceding changes are in fact complete and to be honored
from an ACID perspective.

This change in roles between database file and log file immediately alters the performance
dynamics of transactions. Instead of contending over the same pages in the database file, multiple
transactions can simultaneously record their data changes in the WAL and can continue reading the
unaltered data from the database file.

Checkpoints
The first question that most people think of when confronted with WAL technologies is usually “But
when does the data ultimately get written to the database?” We’re glad you asked. Obviously, a never-
ending stream of changes being written to a constantly growing WAL file wouldn’t scale or withstand the
vagaries of file system failures. The WAL uses a checkpoint function to write changes back to the
database. This process happens automatically, so the developer need not concern themselves with
managing the checkpointing and write-back to the database. By default, the WAL invokes a checkpoint
when the WAL file hits 1,000 pages of changes. This can be modified to suit different operating scenarios.

CHAPTER 11 ■ SQLITE INTERNALS AND NEW FEATURES

319

Concurrency
Because changes now write to the WAL file, rather than the database file, you might be wondering how
this affects SQLite concurrency. The good news is the answer “overwhelmingly for the better!”

New readers accessing data from the WAL-enabled database initiate a lookup in the WAL file to
determine the last commit record. This point becomes their end marker for read-only consistency, such
that they will not consider new writes beyond this point in the file. This is how the read becomes a
consistent read—it simply takes no notice of anything after the commit considered its end marker. Each
reader assess is independent, so it’s possible to have multiple threads each with a different notion of
their own individual end mark within the WAL file.

To access a page of data, the reader uses a wal-index structure to scan the WAL file to find out
whether the page exists with changes and uses the latest version if found. If the page isn’t present in the
WAL file, it means it hasn’t been altered since the last checkpoint, and the reader accesses the page from
the database file.

The wal-index structure is implemented in shared memory, meaning that all threads and processes
must have access to the same memory space. That is, your programs must all execute on the same
machine in order to access a WAL-enabled database or, more accurately, to use the wal-index. This is the
feature that rules out operation across network file systems like NFS.

As for writers, thanks to the sequential nature of the WAL file, they simply append changes to the
end. Note, however, that this means they must take it in turn appending their changes, so writers can
still block writers.

Activation and Configuration WAL
SQLite will still default to the rollback journal method until you decide to switch your database to use the
WAL. Unlike other PRAGMA settings, turning on the WAL is a persistent database-level change. This means
you can turn on WAL in one program or from the SQLite command shell, and all other programs will
then be using the database in WAL mode. This is very handy because it means you don’t have to alter
your applications to turn on WAL.

The setting PRAGMA journal_mode=WAL is the command necessary to activate WAL. A call to this
pragma will return as a string the final journal mode for the database.

SQLite version 3.7.3
Enter ".help" for instructions
Enter SQL statements terminated with a ";"
sqlite> PRAGMA journal_mode=WAL;
wal

If the change to WAL is successful, the string wal is returned, as shown. If for some reason this fails,
such as the underlying host not supporting the necessary shared memory requirements, the journal
mode will be unchanged. For instance, on a default database, this means the command will return the
string delete, meaning the rollback journal is still active.

CHAPTER 11 ■ SQLITE INTERNALS AND NEW FEATURES

320

As well as the journal_mode PRAGMA, several API options and related PRAGMAs are supported to control
WAL and checkpoint behavior.

• sqlite3_wal_checkpoint(): Forces a checkpoint (also available as wal_checkpoint
PRAGMA)

• sqlite3_wal_autocheckpoint(): Alters autocheckpoint page threshold
(wal_autocheckpoint PRAGMA)

• sqlite3_wal_hook(): Registers a callback to be invoked when a program commits
to the WAL.

With these options, it’s possible to fine-tune WAL and checkpoint behavior to suit even the most
unusual of applications.

WAL Advantages and Disadvantages
Naturally, a change such as WAL brings with it its own advantages and disadvantages. We think that the
advantages are significant, but it’s best to be aware of impact so you can form your own judgment.

Moving to WAL has the following advantages:

• Readers do not block writers, and writers do not block readers. This is the “gold
standard” in concurrency management.

• WAL is flat-out faster in most operating scenarios, when compared to rollback
journaling.

• Disk I/O becomes more predictable and induces fewer fsync() system calls.
Because all WAL writes are to a linearly written log file, much of the I/O becomes
sequential and can be planned accordingly.

To balance the equation, here are some of the notable disadvantages of WAL:

• All processing is bound to a single host. That is, you cannot use WAL over a
networked file system like NFS.

• Using WAL introduces two additional semipersistent files, <yourdb>-wal and
<yourdb>-shm, for the WAL and related shared memory requirements. This can be
unappealing for those using SQLite databases as an application file format. This
also affects read-only environments, because the –shm file must be writable,
and/or the directory in which the database exists.

• WAL performance will degrade for very large (approaching gigabyte) transactions.
Although WAL is a high-performance option, very large or very long-running
transactions introduce additional overhead.

A number of other edge cases are worth investigating if you are thinking of using SQLite with WAL-
enabled databases in unusual environments. You can review more details about these at
www.sqlite.org/wal.html.

http://www.sqlite.org/wal.html

CHAPTER 11 ■ SQLITE INTERNALS AND NEW FEATURES

321

Operational Issues with WAL-Enabled SQLite Databases
There are a few operational considerations when working with WAL-enabled SQLite databases. These
are primarily performance and recovery related.

Performance
We noted earlier that enabling WAL usually translates to better performance. Under our disadvantages,
we outlined that for very large changes in data, or very long-running transactions, a slight drop in
performance might result. Here’s the background on how this can happen and what to do.

With WAL enabled, you implicitly gain a performance advantage over rollback journaling because
only one write is required to commit a transaction, instead of two (one to the database and rollback
journal). However, until a checkpoint occurs that frees space in the WAL file, the file itself must keep
growing as more and more changes are recorded. Normally this isn’t an issue: someone will be the lucky
committer who pushes WAL through the 1,000-page threshold for a checkpoint, and the WAL will clear,
and the cycle will continue. But the checkpoint completes its work if it finds an end-point marker for any
currently active reader. That means a very long-running transaction or read activity can keep the
checkpoint from making progress, even on subsequent attempts. This in turn means the WAL file keeps
growing in size, with commensurately longer seek times for new readers to find pages.

Another performance consideration is how much work is triggered when a transaction hits the
checkpoint threshold. You may find that the variable nature of lots of very fast transactions and then one
slightly longer one that must perform the checkpoint work for its predecessors unattractive in some
scenarios.

For both of these performance hypotheticals, you are essentially weighing up read and write
performance. Our recommended approach is to first remember that you can’t have the best of both, so
some compromise will be needed, and then if necessary use the sqlite3_wal_checkpoint()and
sqlite3_wal_autocheckpoint() tools to balance the load and find a happy equilibrium.

Recovery
Versions of SQLite prior to 3.7.0 have no knowledge of WAL, nor the methods used for recovering WAL-
based databases. To prevent older versions trampling all over a WAL-enabled SQLite database during
crash recovery, the database file format number was bumped up from 1 to 2. When an older version of
SQLite attempts to recover a database with this change, it realizes it is not a “valid” SQLite database and
will report an error similar to the following.

file is encrypted or is not a database

Don’t panic! Your database is fine, but the version of SQLite will need to be upgraded in order to
work with it. Alternatively, you can change back to the rollback journal.

PRAGMA journal_mode=DELETE;

This resets the database file format number to 1.

CHAPTER 11 ■ SQLITE INTERNALS AND NEW FEATURES

322

Summary
That concludes our journey through SQLite, not only in this chapter but the book as well. We hope you
have enjoyed it. As you saw in Chapter 1, SQLite is more than merely a free database. It is a well-written
software library with a wide range of applications. It is a database, a utility, and a helpful programming
tool.

What you have seen in this chapter barely scratches the surface of the internals, but it should give
you a better idea about how things work nonetheless. And it also gives you an appreciation for how
elegantly SQLite approaches a very complex problem. You know firsthand how big SQL is, and you’ve
seen the complexity of the models behind it. Yet SQLite is a small library and manages to put many of
these concepts to work in a small amount of code and excels!

323

Index

■Special Characters
$argc parameter, 225
$func_ref parameter, 225
$name parameter, 225
$name variable, 250
$type_id variable, 250
$x variable, 245
% operator, 61
& operator, 61
* operator, 61
rowid value, 94
| operator, 61
|| operator, 61
+ operator, 61
< operator, 61
<< operator, 61
<= operator, 61
<> operator, 61
!= operator, 61
= operator, 61
== operator, 61
> operator, 61
>= operator, 61
>> operator, 61
/ operator, 61
- operator, 61

■A
abort policy, 113
abort resolution, 113–115

abs() function, 66
access functions, for B-tree module API,

308–309
activation, of WAL, 319
add column clause, 55
ADD COLUMN command, 12
ADD CONSTRAINT command, 12
Add File dialog box, 263
Additional Dependencies property page,

28
administration, 118–124

attaching databases, 118–119
cleaning databases, 119
of databases, 35–45

backing up database, 42–43
creating database, 35–37
database file information, 44–45
exporting data, 39
formatting data, 40–41
getting schema information, 37–39
importing data, 40
unattended maintenance, 41–42

explain query plan command, 123
and pragmas, 120–122

auto_vacuum, 122
cache size, 120
database schema, 120–121
integrity_check, 122
synchronous, 121–122
temp_store, 122
temp_store_directory, 122

■ INDEX

324

sqlite_master table, 123
administrators, SQLite for, 3
Advanced tab, 19
after keyword, 108
after trigger, 110
after value, 134
aggregates, 67

in Extension C API, 204–209
example of, 206–209
registering, 205–206

with language extensions
for Perl, 225–226
for Python, 231–232

user-defined, 137
aliases, for tables, 77–79
ALTER COLUMN command, 12
ALTER TABLE command, 12, 54
alter table statement, 286, 288
altering tables, 54–55
ambiguity, of column names, 77
aName variable, 272
AND operator, 61
Android DDMS, 280
Android Developer Tools, 280–281
Android development, 279–301

backup service for databases, 300
and large databases, 300–301
prerequisites for, 279–284

additional components, 281–284
downloading Android Developer

Tools, 280–281
downloading Android SDK Starter

Package, 280
JDK (Java Development Kit), 280

Seinfeld Android app, 294–300
adding database to project, 296
creating project, 295–296
linking data and user interface, 298–

299

querying foods table, 296–297
user interface for, 297–298
viewing app, 299–300

SQLiteDatabase class, 286–290
convenience methods for, 288–289
executing queries with, 287–288
implementing, 290–292
opening and closing databases with,

286–287
transactions with, 289
useful methods for, 290

SQLiteOpenHelper class, 285–286, 290–
292

SQLiteQueryBuilder class, 293–294
Android Platforms component, 282
Android Virtual Device (AVD), 283
android.database.sqlite namespace, 285
API, for B-tree module

access functions, 308–309
configuration functions, 310
cursor functions, 309
record functions, 310
table functions, 309

Appcelerator Titanium framework, 258,
284

Application Settings, 26, 28
applicationDidFinishLaunching event, 276
applicationDidFinishLaunching function,

269
applicationWillTerminate event, 272
apt utility, 31
apt-get utility, 31
architecture, 5–8

back end, 7–8
compiler, 6
interface, 6
utilities, 8
virtual machine, 6–7

Arithmetic operators, 62

■ INDEX

325

as keyword, 79
asc sort order, 65
atomic principle, 111
attach command, 118
ATTACH event, 182
attach statement, 184
attaching databases, 118–119
auto_vacuum pragma, 119, 122, 128
autocommit mode, and write transactions,

143–145
autoincrement column, 95
autoincrement constraint, 95–96
autoincrement keyword, 94–95
available_drivers() function, 222
AVD (Android Virtual Device), 283
avg() function, 67, 137, 195
avg aggregate, 67

■B
b column, 317
back end, architecture of SQLite, 7–8
backing up, 42–43
BackupAgentHelper API, 300
BackupManager API, 300
Bakery row, 64
bar.db database, 10–11
base table, 54
before keyword, 108
before trigger, 110
begin command, 111, 116–118, 139, 141
begin exclusive command, 118, 148
begin immediate command, 118, 148–149
begin line, 141
begin statement, 117
begin.commit command, 141
begin...commit/rollback transaction

scope, 112
beginTransaction() method, 249, 289

beginTransactionWithListener() method,
289

binaries
for Linux, 30–31
for Mac OS X, 30–31
for POSIX systems, 30–31

binary collation, 101, 138, 216
Binary large object (BLOB), 4, 102
binary operators, for where clause, 60–62
bind_param() method, 234
bind_params() method, 234
BLOB (Binary large object), 4, 102
blob class, 102–103, 196
blob columns, 315
B-tree module, 303–310

API for
access functions, 308–309
configuration functions, 310
cursor functions, 309
record functions, 310
table functions, 309

data structures of SQLite, 127
and database file format

B+trees, 304–305
field types in, 305–306
hierarchical data organization in,

307
overflow pages in, 307–308
page reuse in, 304
record structure in, 305
records in, 304

btree.c file, 310
btree.h file, 310
Build and Run menu option, 272
buildUnionQuery() method, 294
busy() function, 147
busy conditions, error handling in C API

of, 176–177

■ INDEX

326

busy handler, using with transactions,
146–147

■C
C API, 153–193

error handling in, 174–176
of busy conditions, 176–177
of schema changes, 177–178

fetching records with, 164–169
column information for, 165–166
column values in, 166–167
example of, 168–169

operational control functions, 178–189
commit_hook() function, 178–179
rollback_hook() function, 179
set_authorizer() function, 180–189
update_hook() function, 179–180

parameterized queries with, 169–174
named parameters, 173
numbered parameters, 172
Tcl parameters, 173–174

prepared queries with, 161–164
compilation of, 161–162
execution of, 162
finalization of, 163–164

threading support in, 190–193
and memory management, 193
shared cache mode, 190–193

wrapper functions in, 153–160
for connecting and disconnecting,

153–155
exec() function, 155–159
get_table() function, 159–160

Cache partition size parameter, 284
cache_size pragma, 120, 145
Cartesian join, 75
cascade action, 101
case expression, 83–84

cast() function, 212, 317
cast table, 115
cast.name column, 115
check constraints, 99–100, 137, 315, 317–

318
checkpoints, and WAL, 318
Churcher, Claire, 47
class values, 103
Classes folder, 265
-classpath option, 237
clauses

distinct clause, 72
group by clause, 67–71
limit clause, 64
order by clause, 64–66
where clause, 59–64

binary operators, 60–62
glob operator, 64
like operator, 63
logical operators, 63
operators, 60
values, 60

cleaning databases, 119
cleanup handlers, for functions in

Extension C API, 202–203
clone command, 23
close() method, 228, 244, 285, 287
Close instruction, 151
closing databases, with SQLiteDatabase

class, 286–287
CLP (command-line program), 17, 32–35

in command-line mode, 34–35
installing on Windows, 18–21
in shell mode, 33–34

cnx argument, 197
coalesce function, 85–86
code and SQLite, 149–152

importance of finalizing, 150–151
shared cache mode, 151–152

■ INDEX

327

using multiple connections, 149–150
collate keyword, 101
collate nocase constraint, 54
collate1.sql file, 209
collate2.sql file, 210
Collation interface, 199
collation_name parameter, 119
collations

for columns, and indexes, 107
and domain integrity, 101
in Extension C API, 209–217

defined, 210–212
on demand, 216–217
example of, 212–216
overview of, 210–212
types of, 212

user-defined, 138
column constraints, 54
column names, and ambiguity of, 77
column types, and type affinity, 313
column_def attribute, 55
column_definitions attribute, 54
column_list variable, 87
columns

collations for, and indexes, 107
information about, in C API, 165–166
values of, in C API, 166–167

columns() method, 239
columns variable, 106
command-line program. See CLP
commands

delete command, 92
explain query plan command, 123
insert command, 87–91

multiple rows, 90–91
one row, 87–89
set of rows, 89–90

select command, 57–59
syntax for SQL in SQLite, 51–52

update command, 91–92
comma-separated values (CSV), 40
comments, syntax for SQL in SQLite, 53
commit() method, 249
commit command, 111, 115, 118, 139, 141,

143
commit line, 141
commit_hook() function, in C API, 178–

179
compactness, features of SQLite, 9
compilation, of prepared queries, 161–162
compile() method, 239
compiler, 6
compileStatement() method, 288
compound queries, 81–83
con.commit() lines, 230
concurrency, and WAL, 319
Configuration drop-down box, 26, 28
configuration functions, for B-tree module

API, 310
configure command, 30
conflict resolution, and transactions, 112–

115
connect() function, 227
connecting to SQLite, using language

extension
for Java, 238
for Perl, 222
for PHP, 248
for Python, 227
for Ruby, 233
for Tcl, 244

Connection::create_aggregate() method,
231

connections, data structures of SQLite,
126–127

constraints
of check, 99–100
of foreign key, 100–101
of not null, 98–99

■ INDEX

328

of primary key, 94–97
of unique, 93

contacts database, 93
contacts table, 92, 94, 97
contacts.name column, 101
Control Panel, 19
convenience, features of SQLite, 10–11
correlated subquery, 80
:cosmo parameter, 173
count() function, 67, 69, 137, 195
count aggregate, 67–68, 72
count(*)<20 predicate, 71
create index command, 115
Create Table As Select (CTAS), 91
create table command, 53–55, 88, 90
create table statement, 91, 100, 161, 286,

288
create_function() method, 230
CREATE_IF_NECESSARY behavior, 287
createaggregatefunction() function, 137
crf() function, 216
cross joins, 75–76
cross product, 75
c:\sqlite directory, 25, 33
CSV (comma-separated values), 40
CTAS (Create Table As Select), 91
ctx argument, 198
current_date reserved word, 98
current_time reserved word, 98
current_timestamp reserved word, 98
cursor functions, for B-tree module API,

309
Cursor.executemany() method, 229

■D
data argument, 179, 216
data definition language (DDL), 38, 53
data integrity, 92–104

domain integrity, 97–101
check constraints, 99–100
and collations, 101
default values, 98
foreign key constraints, 100–101
NOT NULL constraints, 98–99

entity integrity, 93–97
primary key constraints, 94–97
unique constraints, 93

indexes, 106–108
and collations for columns, 107
utilization of, 107–108

storage classes for SQLite, 101–104
triggers, 108–111

error handling with, 110
and updatable views, 110–111
update triggers, 109–110

views in SQLite, 104–106
Data Manipulation Language (DML), 39,

53, 87
data source name (DSN), 248
data structures, 126–135

B-tree and pager, 127
connections and statements, 126–127

database administrator (DBA), 3
database file format, and B-tree module

B+trees, 304–305
field types in, 305–306
hierarchical data organization in, 307
overflow pages in, 307–308
page reuse in, 304
record structure in, 305
records in, 304

database schema pragma, 120–121
database_list pragma, 118, 121
database_name parameter, 118–119
Database::create_function() method, 236
Database::get_first_row() method, 235
Database::get_first_value() method, 235

■ INDEX

329

databaseName variable, 271
databasePath variable, 270
Database::prepare() method, 233
Database::query() method, 235
databases

attaching, 118–119
backing up, 42–43
cleaning, 119
connecting to, 128
creating, 35–37, 53–55
example, 47–50

installation, 48–49
running examples, 49–50

exporting data from, 39–41
file information for, 44–45
formatting data, 40–41
importing data into, 40
querying, 55–86

daterepr property, 241
db argument, 216
db parameter, 293
db2 database, 119
db2.foo table, 119
DBA (database administrator), 3
DBI::connect function, 222
DBL (declarative burger language), 51
DDL (data definition language), 38, 53
DDMS, Android, 280
deadlocks, and transactions, 116–117
declarative burger language (DBL), 51
declarative language, 50
default constraint, 98–99
default keyword, 98
default values, and domain integrity, 98
default_cache_size pragma, 120
deferrable clause, 101
deferred transaction type, 117
delete command, 92, 108, 111
delete operation, 135, 179–180

Delete SQLITE_BUSY value, 146
delete statement, 12, 132, 159, 184
delete trigger, 109, 111
derived tables, 80, 104
desc sort order, 65
description value, 83
detach command, 119, 185
DETACH event, 182
detach statement, 184
details view, 105
Developer Program, membership of, 254
Developer Tools, Android, 280–281
developers, 2–3
difference operation, 82
disconnect method, 222
distinct clause, 72
distinct keyword, 72, 293
distutils package, 226
divide operation, 56
Djava.library.path=. option, 237
DLL (Dynamic-link library), installing on

Windows, 21–22, 25–27
dlltool utility, 22
DML (Data Manipulation Language), 39,

53, 87
do() method, 223
Documentation component, 282
domain integrity, 97–101

check constraints, 99–100
and collations, 101
default values, 98
foreign key constraints, 100–101
NOT NULL constraints, 98–99

double data type, 241
downloading SQLite, 17–18
dpkg utility, 31
DROP COLUMN command, 12
drop index command, 107, 193
drop table command, 193

■ INDEX

330

drop table statement, 286
DROP VIEW command, 106
dselect utility, 31
DSN (data source name), 248
.dump command, 39–40, 42–43
dylib file, 262
.dylib shared library, 17
Dynamic-link library (DLL), installing on

Windows, 21–22, 25–27

■E
.e command, 34
echo() function, 203–204, 233
.echo command, 40
Edit System Variables dialog box, 19
else condition, 84
embedded databases, 1
Empty Project check box, 26, 28
endTransaction() method, 289
entity integrity, 93–97

primary key constraints, 94–97
unique constraints, 93

Environmental Variables button, 19
episodes table, 7, 48, 78–79, 145–146, 151,

306
episodes_foods table, 78
equality (=) operator, 108
errmsg argument, 157
error conditions, for functions in

Extension C API, 203
error handling

in C API, 174–176
of busy conditions, 176–177
of schema changes, 177–178

and SQLite API, 133–134
with triggers, 110

eTextRep argument, 197
example database, 47–50

installation, 48–49

running examples, 49–50
examples folder, 195
examples zip file, 221
except keyword, 81
except operation, 82
exclusive command, 118
EXCLUSIVE lock, 138, 143–145, 148
exclusive state

and transactions, 145
for write transactions, 142–143

exclusive transaction type, 117–118
exec() function, in C API, 155–159
exec_query() function, 240
execSQL() methods, 287–288
execute() method, 222–224, 228–229, 233
executemany() method, 230
.exit command, 20, 32, 34, 37, 42
explain query plan command, 123
exporting data from database, 39–41
Extension C API, 195–217

aggregates with, 204–209
example of, 206–209
registering, 205–206

collations with, 209–217
defined, 210–212
on demand, 216–217
example of, 212–216
overview of, 210–212
types of, 212

functions with, 200–204
cleanup handlers for, 202–203
error conditions for, 203
returning input values, 203–204
values for, 202

registering functions in, 196–197
step function for, 198
values for, 198–199

■ INDEX

331

■F
f parameter, 266
factory parameter, 287
fail resolution, 113–114
fcntl() implementation, 12
features, 8–11

compactness, 9
convenience, 10–11
flexibility, 9
liberal licensing, 9
portability, 8
reliability, 10
simplicity, 9
zero configuration, 8

fetch() method, 222–223
fetchrow_array() method, 223
fetchrow_hashref() method, 223
f.id variable, 80
field types, and database file format, 305–

306
file information, for database, 44–45
file value, 122
file.csv file, 41
filename argument, 154
filename parameter, 118
file.sql file, 39–40
fillData() method, 298
final() function, 198
finalize() method, 137, 150–151, 231
find utility, 3
finish() method, 224
Fink package management system, 31
flags parameter, 155, 287
flexibility of SQLite, 9
FLOAT class, 196
float data type, 241
FlushFileBuffers() function, 143
foo table, 118–119, 185–186
foo_idx index, 108

Food class, in iSeinfeld example app, 265–
266

foo.db database, 11
FoodViewController class, in iSeinfeld

example app, 266–268
FoodViewController UIViewController

class, 266
FoodViewController.h file, 266–267
FoodViewController.m file, 267
FoodViewController.xib file, 266–267
FOR EACH ROW behavior, 12
FOR EACH STATEMENT trigger, 12
foreign key, constraints of, 100–101
foreign key relationship, 72
fork() function, 190
formatting

data from database, 40–41
SQL statements, 134–135

Fossil source control, compiling source
code on Windows, 23–25

fossil.exe file, 23
framework alternatives, for iOS

development, 258–259
frequency column, 84
frequency values, 84
from clause, 57–59, 67, 70, 73, 80
frq argument, 189
fsync() function, 143, 320
full mode, 122
full outer join, 76
FULL OUTER JOIN statement, 12
full synchronous pragma, 121
functions

for B-tree module API
access functions, 308–309
configuration functions, 310
cursor functions, 309
record functions, 310
table functions, 309

■ INDEX

332

in Extension C API, 200–204
cleanup handlers for, 202–203
error conditions for, 203
registering, 196–197
returning input values, 203–204
values for, 202

SQL for SQLite, 66
user-defined, 136–137

■G
GCC (GNU Compiler Collection), 28, 31
gdbm storage manager, 4
get_table() function, 132–133, 159–160
getAttribute() method, PDO class, 249
getReadableDatabase() method, 285
getWriteableDatabase() method, 285
glob operator, where clause, 64
GNU Compiler Collection (GCC), 28, 31
GRANT command, 13
grep utility, 3
group by clause, 67–71
group_concat() function, 206

■H
.h command, 34
.h file, 26
Häring, Gerhard, 226
having clause, 71
having predicate, 70
.headers command, 37–38, 40
hello_newman() method, 136–137, 200,

225, 231, 236, 240–241, 247, 251
.help command, 20, 32–33
-help switch, 34
Hewlett-Packard Unix (HP-UX), 3
Hipp, Richard, 3, 5
history of SQLite, 3–4
hot journal, 145

HP-UX (Hewlett-Packard Unix), 3
.htaccess controls, 248

■I
ICL (imperative chef language), 51
id column, 37, 54, 76, 87, 89, 94–95, 110,

124
id value, 89, 100
identifiers, 53
if construct, 271
ignore argument, 110
ignore resolution, 113
IllegalStateException exception, 289
immediate transaction type, 117–118
imperative chef language (ICL), 51
imperative language, 50
.import [file][table] command, 40
.import command, 39
importing data into database, 40
IN operator, 61, 79, 108
index_info schema pragma, 121
index_list schema pragma, 121
index_name variable, 106
indexes, 106–108

and collations for columns, 107
utilization of, 107–108

.indices [table name] command, 37

.indices shell command, 107
init function, 226, 265
init option, 42
initialValues ContentValue map, 289
initialValues map, 289
initWithName function, 265–266
inline views, 80
inner joins, 74–75
Input submenu, 26, 28
insert() method, 289
insert command, 87–91

■ INDEX

333

multiple rows, 90–91
one row, 87–89
set of rows, 89–90

insert filter, 183
insert operation, 135, 179–180
insert or replace expression, 114
INSERT OR REPLACE (...) statement, 10
insert statements, 37, 88–89, 98, 132, 159,

183, 288, 312, 315
insert trigger, 109, 111
Install New Software screen, 280
Installation Type screen, 256
instead of keywords, 110
INSTEAD OF triggers, 12
int data type, 241
integer class, 102–103, 196
integer column, 314
integer primary key, 54, 88, 94–96
integer type, 54
integrity_check pragma, 122
interface, architecture of SQLite, 6
Interface Builder tool, 267–268
intersect keyword, 81
intersect operation, 81–82
intersection, 74
inTransaction() method, 289
iOS development, 253–277

framework alternatives for, 258–259
iSeinfeld example app, 259–276

accessing database upon startup,
269–272

adding SQLite framework to project,
261–262

creating Xcode project, 259–260
Food class in, 265–266
foods database or, 263–264
FoodViewController class in, 266–

268
and large databases, 276

prerequisites for, 253–259
Developer Program membership,

254
downloading iOS SDK, 254–258

is not null operator, 85
is null operator, 85
IS operator, 62
iSeinfeld example app, 259–276

accessing database upon startup, 269–
272

adding SQLite framework to project,
261–262

creating Xcode project, 259–260
Food class in, 265–266
foods database or, 263–264
FoodViewController class in, 266–268

iSeinfeldAppDelegate class, 269
iSeinfeldAppDelegate.h file, 269
iSeinfeldAppDelegate.m file, 269–270, 274
isReadOnly() method, 285–286

■J
Java, language extension for, 236–243

connecting to, 238
installation of, 237
JDBC support with, 241–243
query processing with, 238–240
user-defined functions with, 240–241

Java Database Connectivity (JDBC),
support for Java language
extension, 241–243

Java Development Kit (JDK), 280
Java runtime environment (JRE), 280
java.lang.String data type, 241
java.sql.Date data type, 241
javasqlite3.mak file, 237
javasqlite.mak file, 237
java.sql.Time data type, 241
java.sql.Timestamp data type, 241

■ INDEX

334

JDBC (Java Database Connectivity),
support for Java language
extension, 241–243

JDK (Java Development Kit), 280
join condition, 75
joining tables, 72–77

cross joins, 75–76
inner joins, 74–75
natural joins, 77
outer joins, 76
preferred syntax for, 77

journal_mode PRAGMA, 320
JRE (Java runtime environment), 280
justincase savepoint, 112

■K
keywords, 53

■L
Label elements, 267
language extensions, 219–252

Java, 236–243
connecting to, 238
installation of, 237
JDBC support with, 241–243
query processing with, 238–240
user-defined functions with, 240–

241
Perl, 221–226

aggregates with, 225–226
connecting to, 222
installation of, 221–222
parameters for, 224
query processing with, 222–224
user-defined functions with, 224–

225
PHP, 247–252

connecting to, 248

installation of, 248
query processing with, 248–251
user-defined functions with, 251–

252
Python, 226–232

aggregates with, 231–232
APSW as alternative, 232
connecting to, 227
installation of, 226–227
parameters for, 229–230
query processing with, 227–229
user-defined functions with, 231

Ruby, 232–236
connecting to, 233
installation of, 232–233
parameters for, 234–235
query processing with, 233–234
user-defined functions with, 236

selecting, 220–221
Tcl, 243–247

connecting to, 244
installation of, 243–244
query processing with, 244–246
user-defined functions with, 247

large databases, and Android
development, 300–301

large file support (LFS), 176
last_insert_rowid() function, 37, 88–89,

159
last_step() function, 241
left outer join, 76
LEFT OUTER JOIN statement, 12
length_first collation, 212–214, 216
length(name) expression, 67
LFS (large file support), 176
liberal licensing, features of SQLite, 9
libsqlite_jni.so file, 237
libsqlite3.0.dylib file, 262
libsqlite3.dylib library, 262

■ INDEX

335

life cycles, for transactions, 138–139
like operator, 37, 62–64
limit clause, 64, 80, 293
limit keyword, 64–65
Linker folder, 26, 28
Linux, 30–32

binaries and packages, 30–31
compiling SQLite from source, 31–32

.list command, 40
literals, syntax for SQL in SQLite, 52
lock states, transactions, 139–141
LockFile() function, 148
LockFileEx() function, 148
locks

and deadlocks, 116–117
and transactions, 115–116

log table, 109
log_sql() function, 201
logical operators, for where clause, 63
lower() function, 66

■M
Mac OS X, 30–32

binaries and packages, 30–31
compiling SQLite from source, 31–32

MacPorts package management system, 31
main database, 119
main.xml file, 297
make command, 30
manifest typing, 311–313
match predicate, 64
max() function, 67
maxed_out table, 96
maxed_out.id value, 95
Maximum VM application heap size

option, 284
memcmp() function, 101, 103–104, 195,

212

memory management, and threading
support in C API, 193

:memory: string, 128
memory value, 122
MERGE statement, 10
methods, for SQLiteDatabase class, 288–

290
min() function, 67
MinGW, building SQLite with on Windows,

28–30
.mode command, 37–38, 40
modifying data, 87–92
Module Definition File property page, 26
multiple connections, using in code, 149–

150
myDatabaseAdapter class, 298
myDatabaseHelper class, 294, 296, 300

■N
n parameter, 266
name attribute, 48, 106
name column, 54–55, 87–88, 93, 98, 101,

109, 115, 123
name parameter, 104, 106, 285
name table, 104
name value, 101, 109
named parameters, in C API, 173
nArg argument, 197–198
natural joins, 77
nBytes argument, 198
new.name column, 110
newrow() method, 239
next() method, 233
no action action, 101
nocase collation, 101, 138, 212
normal synchronous pragma, 122
not null constraints, 54, 98–99, 113
NOT operator, 64
null, 84

■ INDEX

336

NULL class, 102–103, 196
null values, 83–84, 89
nullColumnHack parameter, 289
nullif function, 86
.nullvalue command, 40
numbered parameters, in C API, 172

■O
ODBC (Open Database Connectivity), 4
off synchronous pragma, 122
offset clause, 64
offset keyword, 64–65
oid value, 94
on delete restrict option, 100
onCreate() method, 285–286, 298
onOpen() method, 285–286
onUpgrade() method, 285–286
open command, 25
Open Database Connectivity (ODBC), 4
Open drop-down box, 19
openDatabase() method, 287
opening databases, with SQLiteDatabase

class, 286–287
openOrCreate Database() method, 287
operation_code argument, 180
operational control, with SQLite API, 135
operators

glob operator, where clause, 64
for where clause, 60–63

binary operators, 60–62
like operator, 63
logical operators, 63

OR operator, 61
order by clause, 64–66, 80–82, 210
order by keyword, 66
order by subquery, 80
outer joins, 76
.output [filename] command, 39

.output stdout command, 39
overflow pages, and database file format,

307–308
Owens, Michael, 226

■P
p->zResult field, 208
package require directive, 244
packages

for Linux, 30–31
for Mac OS X, 30–31
for POSIX systems, 30–31

page cache, and write transactions, 145–
146

page_size pragma, 128
pager, 127
pages, and database file format

overflow pages in, 307–308
reuse of, 304

parameters
in C API, 169–174

named parameters, 173
numbered parameters, 172
Tcl parameters, 173–174

for language extensions
for Perl, 224
for Python, 229–230
for Ruby, 234–235

and SQLite API, 131–132
Path entry, 19
PATH environment variable, 23
pBlocked parameter, 193
PDO (PHP Data Objects), 247–248
PDO_ATTR_TIMEOUT parameter, 249
PDOStatement class, 248
PDOStatement::bindColumn() method,

250
PDOStatement::bindParam() method, 249
pending state, for write transactions, 142

■ INDEX

337

performance
and limitations of SQLite, 11–13
and WAL, 321

Perl, language extension for, 221–226
aggregates with, 225–226
connecting to, 222
installation of, 221–222
parameters for, 224
query processing with, 222–224
user-defined functions with, 224–225

perlsum() aggregate, 225
perlsum.pm package, 225
phone column, 54, 93, 98–99
phone value, 93, 99, 101
PhoneGap framework, 258, 284
PHP, language extension for, 247–252

connecting to, 248
installation of, 248
query processing with, 248–251
user-defined functions with, 251–252

PHP Data Objects (PDO), 247–248
phpsum aggregate, 251
Platforms component, Android, 282
pNotifyArg pointer, 192
portability, features of SQLite, 8
POSIX systems, 30–32

binaries and packages, 30–31
compiling SQLite from source, 31–32

power consumption, 12
ppDb argument, 155
ppStmt parameter, 161
PRAGMA commands, 39
PRAGMA journal_mode=WAL setting, 319
pragmas, 120–122

auto_vacuum, 122
cache size, 120
database schema, 120–121
integrity_check, 122
synchronous, 121–122

temp_store, 122
temp_store_directory, 122

Precompiled Binaries For Windows
section, 21

--prefix=DIR option, 237
prepare() method, 131–132, 222, 224, 249
prepared queries

with C API, 161–164
compilation of, 161–162
execution of, 162
finalization of, 163–164

executing, 129–131
prerequisites

for Android development, 279–284
additional components, 281–284
downloading Android Developer

Tools, 280–281
downloading Android SDK Starter

Package, 280
JDK (Java Development Kit), 280

for iOS development, 253–259
Developer Program membership,

254
downloading iOS SDK, 254–258

primary key constraints, 54, 94–97
print_sql_result() function, 187, 201
.prompt [value] command, 40
Property Pages dialog box, 26
public boolean

isDbLockedByOtherThreads()
method, 290

public int getVersion() method, 290
public long getMaximumSize() method,

290
public static int releaseMemory() method,

290
pUserData argument, 197–198
pysum() aggregate, 137, 231
Python, language extension for, 226–232

aggregates with, 231–232

■ INDEX

338

APSW as alternative, 232
connecting to, 227
installation of, 226–227
parameters for, 229–230
query processing with, 227–229
user-defined functions with, 231

pzTail parameter, 164

■Q
queries, with SQLiteDatabase class, 287–

288
query() method, 239, 248–249, 287–288
querying databases, 55–86

compound queries, 81–83
executing prepared queries, 129–131
executing wrapped queries, 132–133
relational operations, 55–56
subqueries, 79–80

queryWithFactory() method, 288

■R
raise() function, 110
RANK() function, 13
rawQuery() method, 287–288, 294
rawQueryWithFactory() method, 288
RDBMS (relational database management

system), 1
.read command, 40
read transactions, 141
read_committed pragma, 191
read_uncommitted pragma, 151, 191
readFoodsFromDatabase function, 270
README file, 196
read-uncommitted isolation level, shared

cache mode, 191–192
read-uncommitted mode, 151
real class, 102–103

record functions, for B-tree module API,
310

records, and database file format, 304–305
recovery, issues with WAL, 321–322
recursive triggers, 12
referential integrity, 92
regexp predicate, 64

registering in Extension C API

aggregates, 205–206
functions, 196–197

reindex command, 119
relational database management system

(RDBMS), 1
relational operations, querying databases,

55–56
relational operators, 62
release command, 112
reliability, features of SQLite, 10
rename clause, 55
rename operation, 77
RENAME TABLE command, 12
replace() methods, 289
replace command, 114
res folder, 297
RESERVED connection, 148
RESERVED lock, 140–141, 144, 148
RESERVED state, 140–142, 144–145, 147–

148
reset() function, 132, 150–151
Resources folder, 263
restrict action, 101
resultp argument, 159
resultp pointer, 159
reverse collation, 101
REVOKE command, 13
right outer join, 76
RIGHT OUTER JOIN statement, 12
R.java file, 298

■ INDEX

339

rollback() method, 249
rollback command, 111–112, 139
rollback resolution, 113, 115
rollback_hook() function, in C API, 179
rootpage column, 123
Row class, 239
ROW_NUMBER() function, 13
rowid argument, 180
rowid column, 96–97
rowid value, 94–96
rows, and insert command

multiple rows, 90–91
one row, 87–89
set of rows, 89–90

rsync utility, 3
RTRIM collation, 138
Ruby, language extension for, 232–236

connecting to, 233
installation of, 232–233
parameters for, 234–235
query processing with, 233–234
user-defined functions with, 236

■S
SAggCtx struct, 208
Samples component, 282
savepoint command, 112
.schema [table name] command, 38
.schema command, 42, 55
.schema foods shell command, 88
schema information, administration of

databases, 37–39
.schema shell command, 55
schema view, 37, 40
scope, for transactions, 111–112
SDK Starter Package, prerequisite for

Android development, 280
Seinfeld Android app, 294–300

adding database to project, 296
creating project, 295–296
linking data and user interface, 298–299
querying foods table, 296–297
user interface for, 297–298
viewing app, 299–300

select clause, 57–59, 65, 67–68, 70–71, 79,
89

select command, 55–59, 67, 72, 75, 80, 87
select form, insert command, 90
select hello_newman() function, 137
select id clause, 77
SELECT statements, 10–11, 129, 131, 210
selectrow() function, 222
select-stmt parameter, 104
.separator command, 40
SET clause, 92
set default action, 101
set null action, 101
set_authorizer() function, in C API, 180–

189
setAttribute() method, PDO class, 249
setDistinct() method, 293
setProjectionMap (Map<String, String>

columnMap) method, 293
setTables() method, 293
setTransactionSuccessful() method, 289
setup.cfg file, 227
setup.exe file, 28–29
shared cache mode

overview, 151–152
threading support in C API, 190–193

read-uncommitted isolation level,
191–192

unlock notification, 192–193
SHARED connection, 148
Shared library, 31
SHARED locks, 142, 144, 146–147, 149–151
shared object (so), 17

■ INDEX

340

SHARED state, 140–142, 144–145
shell mode, command-line program in,

33–34
shell.c file, 26, 28
short data type, 241
.show command, 40
show_datatypes pragma, 242
simplicity, features of SQLite, 9
sleep() function, 177
so (shared object), 17
source clause, 78
source code

compiling on Linux, 31–32
compiling on Mac OS X, 31–32
compiling on POSIX systems, 31–32
compiling on Windows, 22–25

Fossil source control, 23–25
stable source distribution, 22

Source Code section, 22
spam_mother_in_law() function, 147
sprintf() function, 134
sql argument, 156, 159
sql column, 123
SQL for SQLite

administration, 118–124
attaching databases, 118–119
cleaning databases, 119
explain query plan command, 123
and pragmas, 120–122
of pragmas, 122
sqlite_master table, 123

aggregates, 67
aliases, for tables, 77–79
and ambiguity of column names, 77
case expression, 83–84
compound queries, 81–83
creating databases, 53–55

altering tables, 54–55
creating tables, 53–54

data integrity, 92–104
domain integrity, 97–101
entity integrity, 93–97
indexes, 106–108
storage classes for SQLite, 101–104
triggers, 108–111
views in SQLite, 104–106

delete command, 92
distinct clause, 72
example database, 47–50

installation, 48–49
running examples, 49–50

functions, 66
group by clause, 67–71
indexes, 106–108

and collations for columns, 107
utilization of, 107–108

insert command, 87–91
multiple rows, 90–91
one row, 87–89
set of rows, 89–90

joining tables, 72–77
cross joins, 75–76
inner joins, 74–75
natural joins, 77
outer joins, 76
preferred syntax for, 77

limit clause, 64
modifying data, 87–92

null in SQLite, 84
order by clause, 64–66
querying databases, 55–86
select command, 57–59
storage classes for, 101–104
subqueries, 79–80
syntax for, 50–53

commands, 51–52
comments, 53

■ INDEX

341

identifiers, 53
keywords, 53
literals, 52

transactions, 111–118
and conflict resolution, 112–115
and deadlocks, 116–117
and locks, 115–116
scope for, 111–112
types of, 117–118

triggers, 108–111
error handling with, 110
and updatable views, 110–111
update triggers, 109–110

update command, 91–92
views in, 104–106
where clause, 59–64

binary operators, 60–62
glob operator, 64
like operator, 63
logical operators, 63
operators, 60
values, 60

SQLite
for administrators, 3
for developers, 2–3
downloading, 17–18
embedded database, 1
history of, 3–4
tools for, 45
where used, 4–5

SQLite API, 125–138
core API, 127–135

connecting to database, 128
and error handling, 133–134
executing prepared queries, 129–131
executing wrapped queries, 132–133
formatting SQL statements, 134–135
and parameters, 131–132

operational control with, 135

principal data structures, 126–135
B-tree and pager, 127
connections and statements, 126–

127
user-defined extensions

aggregates, 137
collations, 138
functions, 136–137

using threads, 136
sqlite directory, 33
sqlite_analyzer view, 44
SQLITE_ATTACH event, 182
SQLITE_BUSY error, 118, 133
SQLITE_BUSY value, 146–148, 151
sqlite_column_type() function, 199
sqlite_complete() function, 164
sqlite_create_funtion() function, 64
SQLITE_CREATE_INDEX event, 181
SQLITE_CREATE_TABLE event, 181
SQLITE_CREATE_TEMP_INDEX event,

181
SQLITE_CREATE_TEMP_TABLE event, 181
SQLITE_CREATE_TEMP_TRIGGER event,

181
SQLITE_CREATE_TEMP_VIEW event, 181
SQLITE_CREATE_TRIGGER event, 181
SQLITE_CREATE_VIEW event, 181
SQLITE_DELETE event, 181
SQLITE_DENY constant, 180
SQLITE_DETACH event, 182
SQLITE_DONE value, 129, 151
SQLITE_DROP_INDEX event, 181
SQLITE_DROP_TABLE event, 181
SQLITE_DROP_TEMP_INDEX event, 181
SQLITE_DROP_TEMP_TABLE event, 181
SQLITE_DROP_TEMP_TRIGGER event,

181
SQLITE_DROP_TEMP_VIEW event, 181
SQLITE_DROP_TRIGGER event, 181

■ INDEX

342

SQLITE_DROP_VIEW event, 181
SQLITE_ENABLE_COLUMN_METADATA

directive, 166
SQLITE_ENABLE_MEMORY_MANAGEME

NT directive, 193
SQLITE_ERROR error, 133
SQLITE_FULL error, 95
SQLITE_IGNORE constant, 180, 183
SQLITE_INSERT event, 181
SQLITE_LOCKED value, 151
sqlite_master table, 107, 123, 186, 188, 192,

303–304
sqlite_master view, 38, 44, 135
SQLITE_NOMEM error, 208
SQLITE_OK constant, 180
SQLITE_OPEN_CREATE flag, 154
SQLITE_OPEN_FULLMUTEX flag, 155
SQLITE_OPEN_NOMUTEX flag, 155
SQLITE_OPEN_PRIVATECACHE flag, 155
SQLITE_OPEN_SHAREDCACHE flag, 155
SQLITE_PRAGMA event, 181
SQLITE_READ event, 180–181, 187
SQLITE_RESULT value, 151
sqlite_result_xxx() functions, 202
SQLITE_ROW value, 129
SQLITE_SCHEMA condition, 178, 189
SQLITE_SCHEMA errors, 162, 178, 192
SQLITE_SCHEMA event, 189
SQLITE_SELECT event, 181, 187
sqlite_sequence table, 95
SQLITE_TRANSACTION event, 182
SQLITE_UPDATE event, 180, 182
sqlite3 command, 244
sqlite3 handle, 126, 128, 132
sqlite3 package, 244
sqlite3 structure, 248
sqlite3_aggregate_context() function, 198,

207–208
sqlite3_analyzer tool, 145

sqlite3_bind() function, 176
sqlite3_bind_double() function, 170
sqlite3_bind_parameter_index() function,

173
sqlite3_bind_xxx() functions, 167, 170, 202
sqlite3_busy_handler() function, 176–177
sqlite3_busy_timeout() function, 147, 176–

177
sqlite3_changes() function, 159
sqlite3_close() function, 155, 192, 272
sqlite3_collation_needed() function, 216
sqlite3_column_blob() function, 167
sqlite3_column_bytes() function, 167
sqlite3_column_count() function, 165
sqlite3_column_decltype() function, 165–

166
sqlite3_column_name() function, 165
sqlite3_column_origin_name() function,

166
sqlite3_column_text() method, 272
sqlite3_column_type() function, 165
sqlite3_column_xxx() functions, 161, 166,

199, 203, 272
sqlite3_commit_hook() function, 135,

178–179
sqlite3_complete() function, 164
sqlite3_create_collation() function, 138
sqlite3_create_collation_v2() function, 213
sqlite3_create_function() function, 136,

196–198, 205, 213
sqlite3_data_count() function, 165
sqlite3_db_handle() function, 169
sqlite3_errcode() function, 134
sqlite3_errmsg() function, 134, 162, 169,

174
sqlite3_exec() function, 132, 155–156, 158–

159, 161, 164, 189–190, 248
sqlite3_finalize() function, 129, 161, 163,

171, 224, 272
sqlite3_free() function, 157, 203

■ INDEX

343

sqlite3_free_table() function, 159
sqlite3_free(errmsg) function, 157
sqlite3_get_table() function, 132–133, 159–

161, 164, 189
sqlite3_interrupt() function, 189
sqlite3_last_insert_rowid() function, 159
sqlite3_malloc() function, 159, 202
sqlite3_mprintf() function, 134, 171, 203
sqlite3_open() function, 128, 154
sqlite3_open_v2() function, 154–155, 174,

271
sqlite3_open_v2(), sqlite3_prepare()

method, 263
sqlite3_open16() function, 154
sqlite3_prepare() function, 163–164, 169–

170, 172–173, 178, 228
sqlite3_prepare()_v2 function, 131
sqlite3_prepare_v2() function, 129, 131,

161–162, 164, 174, 202, 223
sqlite3_progress_handler() function, 189,

237
sqlite3_release_memory() function, 193
sqlite3_reset() function, 132, 161, 163, 171,

229, 235
sqlite3_result_error() function, 203
sqlite3_result_error_nomem() function,

208
sqlite3_result_text() function, 202–203,

208
sqlite3_result_value() function, 203
sqlite3_result_xxx() function, 203, 208
sqlite3_rollback_hook() function, 135, 179
sqlite3_set_authorizer() function, 135,

176, 180, 188, 237
sqlite3_soft_heap_limit() function, 193
sqlite3_step() function, 129, 161–162, 170–

171, 177–178, 192, 223, 228
sqlite3_stmt handle, 127, 129, 227
sqlite3_stmt structure, 161, 170, 233–234,

248
sqlite3_trace() function, 178, 201, 237

sqlite3_unlock_notify() function, 192
sqlite3_update_hook() function, 135, 179
sqlite3_user_data() function, 198
sqlite3_value_blob() function, 199
sqlite3_value_bytes() function, 199
sqlite3_value_text() function, 208
sqlite3_value_type() function, 199
sqlite3_value_xxx() functions, 198–199
sqlite3_vmprintf() method, 240
sqlite3_wal_autocheckpoint() function,

320–321
sqlite3_wal_checkpoint() function, 320–

321
sqlite3_wal_hook() function, 320
sqlite3BtreeBeginStmt routine, 309
sqlite3BtreeBeginTrans routine, 308
sqlite3BtreeClearTable routine, 309
sqlite3BtreeClose routine, 308
sqlite3BtreeCloseCursor function, 309
sqlite3BtreeCommit routine, 308
sqlite3BtreeCommitStmt routine, 309
sqlite3BtreeCreateTable routine, 309
sqlite3BtreeCursor function, 309
sqlite3BtreeData function, 310
sqlite3BtreeDataSize function, 310
sqlite3BtreeDelete function, 310
sqlite3BtreeDropTable routine, 309
sqlite3BtreeFirst function, 309
sqlite3BtreeGetAutoVacuum function, 310
sqlite3BtreeGetPageSize function, 310
sqlite3BtreeInsert function, 310
sqlite3BtreeKey function, 310
sqlite3BtreeKeySize function, 310
sqlite3BtreeLast function, 309
sqlite3BtreeMoveto function, 309
sqlite3BtreeNext function, 309
sqlite3BtreeOpen routine, 308
sqlite3BtreePrevious function, 309
sqlite3BtreeRollback routine, 309

■ INDEX

344

sqlite3BtreeRollbackStmt routine, 309
sqlite3BtreeSetAutoVacuum function, 310
sqlite3BtreeSetBusyHandler function, 310
sqlite3BtreeSetCacheSize function, 310
sqlite3BtreeSetPageSize function, 310
sqlite3BtreeSetSafetyLevel function, 310
sqlite3.def file, 21, 26
sqlite3.dll file, 21
sqlite3.exe file, 19–20, 30
sqlite3.lib library, 21–22, 28
SQLite.Callback interface, 237, 239
sqliteCreateAggregate() method, 251
sqliteCreateFunction() method, 251
SQLiteDatabase class, 286–290

convenience methods for, 288–289
executing queries with, 287–288
implementing, 290–292
opening and closing databases with,

286–287
transactions with, 289
useful methods for, 290

SQLiteDatabase::compile() method, 238
SQLite.Database.create_function()

function, 241
SQLiteDatabase.CursorFactory class, 285
SQLite.Database::exec() method, 240
SQLite.Database.function_type() function,

241
SQLiteDatabase::open() method, 238
sqlite.fossil file, 23
SQLite.Function interface, 240–241
sqlite.jar file, 237, 241
SQLite.JDBCDriver class, 241
SQLiteJDBCExample.java file, 242
SQLiteJNIExample.java file, 238
SQLiteman tool, 45
SQLiteManager tool, 46
SQLiteOpenHelper() method, 287

SQLiteOpenHelper class, for Android
development, 285–286, 290–292

SQLiteQueryBuilder class, for Android
development, 293–294

sql.sql file, 49
src folder, 25
stable source distribution, compiling

source code on Windows, 22
stackable flags parameter, 287
startup, accessing database upon, 269–272
Statement::bind_params() method, 234
Statement.close() method, 234
statements, data structures of SQLite, 126–

127
Statically linked command-line program,

31
step() function, 131, 137, 146–148, 151,

198, 231, 241
storage classes

for SQLite, 101–104
and type affinity, 314
and type conversions, 315–318

str_agg() function, 206–207, 209
str_agg_finalize() function, 206–208
str_agg_step() function, 206–208
strcat() function, 206
subqueries, 79–80
subselects, 79
sum() function, 67, 137, 195
sum_agg() finalize function, 208
Synaptic utility, 31
synchronous pragma, 121–122, 143
syncs() function, 310
syntax for SQL in SQLite, 50–53

commands, 51–52
comments, 53
identifiers, 53
keywords, 53
literals, 52

System Variables list, 19

■ INDEX

345

■T
t parameter, 266
table functions, for B-tree module API, 309
table parameter, 293
table_info pragma, 121, 242
table_name attribute, 54
table_name variable, 106
table_name.column_name notation, 73
tables

aliases for, 77–79
altering, 54–55
creating, 53–54
joining, 72–77

cross joins, 75–76
inner joins, 74–75
natural joins, 77
outer joins, 76
preferred syntax for, 77

.tables [pattern] command, 37
tables variable, 58
TakeOffGW network installer, 28–29
TakeOffGW package, 28–30
tar -xzvf sqlite-amalgamation-

3.6.23.1.tar.gz command, 30
Tcl

language extension for, 243–247
connecting to, 244
installation of, 243–244
query processing with, 244–246
user-defined functions with, 247

parameters in C API, 173–174
Tcl Extension Architecture (TEA), 18
tclsqlite.c file, 26
TEA (Tcl Extension Architecture), 18
temp database, 118
temp keyword, 54
temp_store pragma, 122, 131
temporary keyword, 54
temporary table, 54

test table, 36–38, 40–42, 114
test_idx index, 38
test2 table, 41
test2.db database, 42
test3.db database, 42
test.csv file, 41
test.db database, 35, 42
test.db file, 36, 39, 43
test.sql file, 42–43, 49
text class, 102–103, 196
Text Field elements, 267
threading

with SQLite API, 136
support in C API, 190–193

and memory management, 193
shared cache mode, 190–193

THREADSAFE preprocessor flag, 21
three-value logic, 85
/tmp folder, 33
tokens, 52
Transaction method, 246
transactions, 111–118, 138–149

and conflict resolution, 112–115
and deadlocks, 116–117
and exclusive state, 145
life cycles for, 138–139
lock states, 139–141
and locks, 115–116
read transactions, 141
scope for, 111–112
sizing page cache, 145–146
with SQLiteDatabase class, 289
types of, 117–118
using busy handler, 146–147
write transactions, 141–145

and autocommit, 143–145
exclusive state, 142–143
and page cache, 145
pending state, 142

■ INDEX

346

reserved state, 141–142
triggers, 108–111

error handling with, 110
and updatable views, 110–111
update triggers, 109–110

tristate logic, 85
type affinity, 313–315

and column types, 313
example of, 314–315
and storage classes, 314

type conversions, and storage classes, 315–
318

type_id attribute, 48, 65, 68, 71
type_id column, 72, 76, 87–88, 100
type_id group, 68
type_id values, 68, 71–72, 83, 89
typeof() function, 102, 317
typeof(b) column, 315
types() method, 239
types subquery, 80

■U
UIViewController class, 266
unary operators, 60
union all operation, 81
union keyword, 81
union operation, 81
UNION statement, 12
unique constraints, 54, 91–93, 96–97, 106,

112–113, 115
unique keyword, 106
unlock notification, shared cache mode,

192–193
UNLOCKED state, 140–144
UnlockFile() function, 148
updatable views, and triggers, 110–111
update command, 91–92, 98, 108, 115,

141–142, 145, 147, 149
update filter, 183

update operation, 135, 179–180
UPDATE statement, 10–12, 110, 112
update triggers, 109–110
update_hook() function, in C API, 179–180
update_list column assignment, 91
upper() function, 66
UPSERT statement, 10
USB Driver for Windows component, 282
user interface, linking data with, 298–299
User Interfaces group, 266
user-defined functions, with language

extensions
for Java, 240–241
for Perl, 224–225
for PHP, 251–252
for Python, 231
for Ruby, 236
for Tcl, 247

utilities, 8

■V
vacuum command, 119, 122
VACUUM operation, 189
value argument, 199
value field, 36, 41
value_list variable, 87
values

for Extension C API, 198–199
for where clause, 60

varchar(100) column, 9
VDBE (virtual database engine), 6, 161
Venn diagram, 74
version parameter, 285
views, in SQLite, 104–106
virtual database engine (VDBE), 6, 161
VM (virtual machine), 6–7, 238
VM::step() method, 239
void method, 288

■ INDEX

347

■W
WAL (Write Ahead Log), 318–322

activation of, 319
advantages and disadvantages of, 320
and checkpoints, 318
and concurrency, 319
configuration of, 320
operational issues with, 321–322
overview, 318

when condition, 83–84
where clause, 59–64

binary operators, 60–62
glob operator, 64
like operator, 63
logical operators, 63
operators, 60
values, 60

where keyword, 57
where predicate, 84
while loop, 149
.width option, 49
Win 32 Application Wizard, 28
Win32 Project template, 27
Windows, 18–30

building dynamically linked SQLite
client with Visual C++, 27–28

building SQLite DLL with Microsoft
Visual C++, 25–27

building SQLite with MinGW, 28–30
compiling SQLite source code on

Windows, 22–25
installing command-line program, 18–

21
installing SQLite DLL, 21–22

Windows command shell, 19
\windows\system32 folder, 19

--with-jardir=DIR option, 237
wrapped queries, executing, 132–133
wrapper functions, in C API, 153–160

for connecting and disconnecting, 153–
155

exec() function, 155–159
get_table() function, 159–160

Write Ahead Log. See WAL
write transactions, 141–145

and autocommit, 143–145
exclusive state, 142–143
and page cache, 145
pending state, 142
reserved state, 141–142

Write-Ahead Log mode, 192

■X
xCallback function, 179
xcode_3.2.4_and_ios_sdk_4.1.dmg file, 254
xCompare argument, 213
xFinal argument, 197, 206
xFunc argument, 197, 206
xNotify function, 192
xStep argument, 197, 206

■Y
<yourdb>-shm file, 320
<yourdb>-wal file, 320

■Z
zero configuration, features of SQLite, 8
zFunctionName argument, 197
zVfs parameter, 155

	Prelim
	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Introducing SQLite
	Getting Started
	SQL for SQLite
	Advanced SQL for SQLite
	SQLite Design and Concepts
	The Core C API
	The Extension C API
	Language Extensions
	iOS Development with SQLite
	Android Development with SQLite
	SQLite Internals and New Features
	Index

