Faster Cover Trees

Mike Izbicki and Christian R. Shelton
UC Riverside

Izbicki and Shelton (UC Riverside) aster Cover Trees July 7, 2015 1/21

Outline

o Why care about faster cover trees?

o Making cover trees faster.

Izbicki and Shelton (UC Riverside) Faster Cover Trees July 7, 2015 2/21

Methods for fast nearest neighbor queries:

provable arbitrary high
speedup metric dimensions
quadtree
kd-tree somewhat
hashing
ball tree somewhat
cover tree

!
N (Beygelzimer, Kakade, and Langford, 2006)

Izbicki and Shelton (UC Riverside) Faster Cover Trees

Other uses of cover trees

Any learning algorithm that cares about distance can be
made faster using cover trees.
Examples:

o k-nearest neighbor

o Support vector machines (Segata and Blanzieri, 2010)
o Dimensionality reduction (Lisitsyn et. al., 2010)

o Reinforcement learning (Tziortziotis et. al., 2014)

Izbicki and Shelton (UC Riverside) Faster Cover Trees July 7, 2015 4 /21

Outline

o Why care about faster cover trees?

o Making cover trees faster.
» Experimental setup
» Simpler definition reduces the number of nodes
» The nearest ancestor invariant
» Better cache performance

» Constructing and querying the tree in parallel

Izbicki and Shelton (UC Riverside) Faster Cover Trees July 7, 2015 5/21

Experimental setup

Three data sources:
o MLPack benchmarks with Euclidean distance
o Protein dataset with the random walk graph distance

o Yahoo! 1.5 million creative common images with the
earth movers distance

Benchmarking procedure:
e Construct a cover tree on the dataset

o For each data point in the dataset, find the nearest
neighbor

Izbicki and Shelton (UC Riverside) Faster Cover Trees July 7, 2015 6 /21

The simplified cover tree

@ level 3
° @ level 2
0 ° level 1

The covering invariant. For every node p, define the function
covdist(p) = 2'7XP). For each child g of p

d(p,q) < covdist(p)

The separating invariant. For every node p, define the function
sepdist(p) = 2'veLP)=1 For all distinct children g; and go of p

d(q1, g2) = sepdist(p)

Izbicki and Shelton (UC Riverside) Faster Cover Trees July 7, 2015

7/21

The simplified cover tree

@ level 3
° @ level 2
0 ° level 1

Advantages of the simplified cover tree:
@ Maintains all runtime guarantees of the original cover tree.

@ Significantly easier to understand and implement.
The original cover tree was described in terms of an infinitely large
tree, only a subset of which actually gets implemented.

@ Requires exactly n nodes instead of O(n) nodes.
Fewer nodes means a faster constant factor for all algorithms.

Izbicki and Shelton (UC Riverside) Faster Cover Trees July 7, 2015 7/21

The simplified cover tree

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

fraction of nodes in the original cover tree
required for the simplified cover tree

Izbicki and Shelton (UC Riverside) Faster Cover Trees July 7, 2015 8/21

The nearest ancestor cover tree

@ Q level 3
Ce) o Ca) (o) (i) 2
O®OOE OEO@E) ™

A nearest ancestor cover tree is a simplified cover tree where every
point p satisfies the additional invariant that if g1 is an ancestor of p and
g> is a sibling of g1, then

d(p,q1) < d(p, q2)

Izbicki and Shelton (UC Riverside) Faster Cover Trees July 7, 2015 9/21

The nearest ancestor cover tree

level 3

Insertions require rebalancing.
No runtime guarantees on the rebalance step.

In practice, queries are much faster and construction is only slightly slower.

Izbicki and Shelton (UC Riverside) Faster Cover Trees July 7, 2015 9/21

Comparing cover trees on construction time

9.1 Jan0d Joisadue isaies) [

99.3 4on0d paylidwis [N
99.3 Jon00 |euiSuO N

(9941 49102 |eUISLO By Aq pazijewlou)
A|uo uoI32M435U02 93.3 Ul
suosuedwod adue3sIp Jo Jaquinu

10 /21

July 7, 2015

Faster Cover Trees

Izbicki and Shelton (UC Riverside)

Comparing cover trees on construction and query time

9.1 Jan0d Joisadue isaies) [

99.3 4on0d paylidwis [N
99.3 Jon00 |euiSuO N

N~ ® © % o O
— o o o o

(zu Aq pazijew.ou)
Asonb pue uoI1on43sU0D 3.3 Ul
suosiiedwod 9due3sip Jo Jsquinu

11 /21

July 7, 2015

Faster Cover Trees

Izbicki and Shelton (UC Riverside)

All of the cover trees scale similarly

This experiment uses the protein data and the random walk graph kernel.

I 1600)
= >
ES 1400 + f':j
D =
25 1000 | g=
23 5 3 B
25 800 | 238
Og 8-0 (%
o5 600 &y
@ £= 9
55 400 BE
i Own =z
25 200 t+
G N1 m
2 0 50 100 150 200 250

number of data points (thousands)

Izbicki and Shelton (UC Riverside) Faster Cover Trees July 7, 2015 12 /21

Cache oblivious cover tree

Need to consider cache accesses for fast, modern data structures

Disk
1T
Memory
1T
L3 cache

1T
L2 cache

Latency

Capacity

image from: http://1024cores.net

July 7, 2015 13 /21

Faster Cover Trees

Izbicki and Shelton (UC Riverside)

http://1024cores.net

Cache oblivious cover tree

Arrange nodes in memory according to a preorder traversal of the tree
(van Emde Boas et al., 1966; Demaine, 2002)

image from: Wikipedia

Izbicki and Shelton (UC Riverside) Faster Cover Trees July 7, 2015

14 /21

The cache efficiency of three cover tree implementations

—~~ 1

)

a

to} (2]
o | | Id
v © 5]
= v o
Cc T

o)

mu 06' T (]
(9] E-c
(QU v o
(O] - u
o] 0.4 >
[SI] 5o
c.2 3>
E o2}] 5£
o .

< ==
O

[0}

S 0 ID

Measured using Linux's perf stat utility on an Amazon AWS instance

Izbicki and Shelton (UC Riverside) Faster Cover Trees July 7, 2015 15 /21

Merging cover trees

Merging cover trees gives us a parallel tree construction algorithm

Sometimes, merging cover trees is easy:

level 3

No runtime bound on the merge operation, but it is fast in practice

Izbicki and Shelton (UC Riverside) Faster Cover Trees July 7, 2015 16 / 21

Merging cover trees

Merging cover trees gives us a parallel tree construction algorithm

Sometimes, merging cover trees is hard:

level 3

No runtime bound on the merge operation, but it is fast in practice

Izbicki and Shelton (UC Riverside) Faster Cover Trees July 7, 2015 17 /21

The effect of parallel tree construction on small datasets

(]

£

z o+l | number of processors |

9

=

g 2+0 L 1 i

o 2

& 5

c 27+t -

o 274 L 8 - +
273 ¢ 1 S

'8 o

N 5

T 274t . S

€

A

O I

e

Experiments run on an Amazon AWS instance with 16 true cores
Izbicki and Shelton (UC Riverside) Faster Cover Trees July 7, 2015 18 / 21

Parallel tree construction really matters on larger data sets

On large datasets with an expensive metric, parallelism is more useful

Yahoo! Flickr dataset with 1.5 million images and earth mover distance

num cores simplified tree nearest ancestor tree
time speedup time speedup

1 70.7 min 1.0 210.9 min 1.0

2 36.6 min 1.9 94.2 min 2.2

4 18.5 min 3.8 48.5 min 4.3

8 10.2 min 6.9 25.3 min 8.3

16 6.7 min 10.5 12.0 min 17.6

Izbicki and Shelton (UC Riverside) Faster Cover Trees July 7, 2015

19 /21

The effect of parallel tree construction and query

normalized total runtime
(both construction and query)

I Reference cover tree
[MLPack's cover tree
I Our cover tree

Experiments run on an Amazon AWS instance with 16 true cores
Izbicki and Shelton (UC Riverside) Faster Cover Trees July 7, 2015 20 /21

Summary

You should use cover trees.
We made them easier to implement and faster.

All the code is licensed under the BSD3 and available at:

http://github.com/mikeizbicki/hlearn

Izbicki and Shelton (UC Riverside) Faster Cover Trees July 7, 2015 21 /21

http://github.com/mikeizbicki/hlearn

