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Outline

o Why care about faster cover trees?

o Making cover trees faster.
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Methods for fast nearest neighbor queries:

provable arbitrary high
speedup metric dimensions
quadtree
kd-tree somewhat
hashing
ball tree somewhat
cover tree

!
N (Beygelzimer, Kakade, and Langford, 2006)
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Other uses of cover trees

Any learning algorithm that cares about distance can be
made faster using cover trees.
Examples:

o k-nearest neighbor

o Support vector machines (Segata and Blanzieri, 2010)
o Dimensionality reduction (Lisitsyn et. al., 2010)

o Reinforcement learning (Tziortziotis et. al., 2014)
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Outline

o Why care about faster cover trees?

o Making cover trees faster.
» Experimental setup
» Simpler definition reduces the number of nodes
» The nearest ancestor invariant
» Better cache performance

» Constructing and querying the tree in parallel
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Experimental setup

Three data sources:
o MLPack benchmarks with Euclidean distance
o Protein dataset with the random walk graph distance

o Yahoo! 1.5 million creative common images with the
earth movers distance

Benchmarking procedure:
e Construct a cover tree on the dataset

o For each data point in the dataset, find the nearest
neighbor
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The simplified cover tree

@ level 3
° @ level 2
0 ° level 1

The covering invariant. For every node p, define the function
covdist(p) = 2'7XP). For each child g of p

d(p,q) < covdist(p)

The separating invariant. For every node p, define the function
sepdist(p) = 2'veLP)=1  For all distinct children g; and go of p

d(q1, g2) = sepdist(p)
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The simplified cover tree

@ level 3
° @ level 2
0 ° level 1

Advantages of the simplified cover tree:
@ Maintains all runtime guarantees of the original cover tree.

@ Significantly easier to understand and implement.
The original cover tree was described in terms of an infinitely large
tree, only a subset of which actually gets implemented.

@ Requires exactly n nodes instead of O(n) nodes.
Fewer nodes means a faster constant factor for all algorithms.

Izbicki and Shelton (UC Riverside) Faster Cover Trees July 7, 2015 7/21



The simplified cover tree
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The nearest ancestor cover tree

@ Q level 3
Ce) o Ca) (o) (i) 2
O®OOE OEO@E) ™

A nearest ancestor cover tree is a simplified cover tree where every
point p satisfies the additional invariant that if g1 is an ancestor of p and
g> is a sibling of g1, then

d(p,q1) < d(p, q2)
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The nearest ancestor cover tree

level 3

Insertions require rebalancing.
No runtime guarantees on the rebalance step.

In practice, queries are much faster and construction is only slightly slower.
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Comparing cover trees on construction time
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Comparing cover trees on construction and query time
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All of the cover trees scale similarly

This experiment uses the protein data and the random walk graph kernel.
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Cache oblivious cover tree

Need to consider cache accesses for fast, modern data structures

Disk
1T
Memory
1T
L3 cache

1T
L2 cache

Latency

Capacity

image from: http://1024cores.net
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http://1024cores.net

Cache oblivious cover tree

Arrange nodes in memory according to a preorder traversal of the tree
(van Emde Boas et al., 1966; Demaine, 2002)

image from: Wikipedia
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The cache efficiency of three cover tree implementations
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Measured using Linux's perf stat utility on an Amazon AWS instance
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Merging cover trees

Merging cover trees gives us a parallel tree construction algorithm

Sometimes, merging cover trees is easy:

level 3

No runtime bound on the merge operation, but it is fast in practice
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Merging cover trees

Merging cover trees gives us a parallel tree construction algorithm

Sometimes, merging cover trees is hard:

level 3

No runtime bound on the merge operation, but it is fast in practice
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The effect of parallel tree construction on small datasets
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Experiments run on an Amazon AWS instance with 16 true cores
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Parallel tree construction really matters on larger data sets

On large datasets with an expensive metric, parallelism is more useful

Yahoo! Flickr dataset with 1.5 million images and earth mover distance

num cores simplified tree nearest ancestor tree
time speedup time speedup

1 70.7 min 1.0 210.9 min 1.0

2 36.6 min 1.9 94.2 min 2.2

4 18.5 min 3.8 48.5 min 4.3

8 10.2 min 6.9 25.3 min 8.3

16 6.7 min 10.5 12.0 min 17.6
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The effect of parallel tree construction and query

normalized total runtime
(both construction and query)

I Reference cover tree
[ MLPack's cover tree
I Our cover tree

Experiments run on an Amazon AWS instance with 16 true cores
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Summary

You should use cover trees.
We made them easier to implement and faster.

All the code is licensed under the BSD3 and available at:

http://github.com/mikeizbicki/hlearn

Izbicki and Shelton (UC Riverside) Faster Cover Trees July 7, 2015 21 /21


http://github.com/mikeizbicki/hlearn

