
Open sourcing the classroom

[extended abstract]

Mike Izbicki
UC Riverside

900 University Ave.
Riverside, CA 92521
mike@izbicki.me

ABSTRACT
At UC Riverside, we’ve created a course on open source
software construction called CS100. The course is similar
to the standard project-based software construction course,
with the exception that projects must be developed and re-
leased on GitHub. It is a required course for sophomores.
Our main pedagological contribution is that we open sourced
everything about the class, including creating the first “open
source textbook.” The textbook is hosted in a git repository
that students are required to contribute to throughout the
term. Currently, 88% of the textbook is written by students,
including many of the assignments.

We evaluate the course’s success in three ways. First, stu-
dents self report a strong desire to contribute to open source
projects and a high confidence in their ability to do so.
Second, students have high levels of participation in so-
cial networks related to open source software (e.g. GitHub,
StackOverflow, Reddit, and Hacker News). Third, student
projects have received tens of thousands of downloads from
around the world.

1. CS100: COURSE OVERVIEW
The goal of CS100 is to prepare students to develop their
own programs. In the course, students undertake their first
longterm project: implementing a significant portion of the
Unix shell. The course is taken immediately after their data
structures course and is a prerequisite for all upper division
major courses.

Over the 2014-15 school year, we extended CS100 to in-
clude a new goal: to teach students how to effectively use
and contribute to open source projects. Open source soft-
ware is becoming increasingly important in both industry
and academia. Large companies like Facebook, Google, and
Twitter are depend on open source products to keep their
infrastructure running. A great way for students to get hired
at the companies is to have a portfolio of open source con-
tributions that demonstrate their knowledge.

CS100 successfully achieved this goal. Figures 1.a and 1.b,
show that students self report a high confidence in their
ability to contribute to open source software. Figure 2 shows
that students are actively contributing to the open source
community after the end of the class.

The next two sections briefly describe how the course’s pro-
gramming and written projects effectively taught students

the techniques needed for open source software. A full de-
scription of the course structure can be found on the course
webpage1.

2. THE PROGRAMMING PROJECT
The programming project is to create a Unix shell called
rshell that implements a subset of the POSIX standard.
This project accomplishes three pedagogical goals.

First, the project exposes students to the operating system’s
interface. To implement a Unix shell, students must under-
stand how to use system calls like execvp, fork, and wait.
Understanding how to use these system calls prepares stu-
dents for their future operating systems class where they
discuss how these functions are implemented.

Second, the project exposes students to the need for soft-
ware engineering principles. The rshell project takes the
full quarter to complete. To keep students on track, the
project is divided into the following four assignments: 1. Stu-
dents create an executable called rshell that reads com-
mands from stdin and executes them. 2. Students imple-
ment their own version of the ls command. 3. Students add
support for piping and i/o redirection to rshell. 4. Students
add the cd command to rshell and a signal handler to catch
SIGINT so that rshell does not exit when ^C is pressed.

In order to simulate the development of a real open source
project, we explicitly required that students make their rshell
code public on GitHub. To turn in an assignment, the stu-
dents would “push” their work to their GitHub repository;
the grader would then “clone” the repo to download the sub-
mission. Git is a notoriously difficult tool for beginners to
learn, so several labs were dedicated just to git practice be-
fore the actual assignment deadlines. Still, many students
struggled to correctly submit their code and we had to offer
them the opportunity to reshow for reduced credit.

The bulk of the project was completed individually. This en-
sured students were learning the required operating systems
material. But many smaller components were completed in
teams. For example, students were required to implement
the rm, cp, and mv commands in another students repository
via a “pull request.” This would not have been possible if
the projects were not open source.

The open source nature of the project came with a major

1http://github.com/mikeizbicki/ucr-cs100

http://github.com/mikeizbicki/ucr-cs100


I understand how to
contribute to an open source

project.

strongly disagree

disagree

slightly disagree

slightly agree

agree
strongly agree

nu
m

be
r 

of
 r

es
po

ns
es

(a)

I understand how to start an
open source project.

strongly disagree

disagree

slightly disagree

slightly agree

agree
strongly agree

nu
m

be
r 

of
 r

es
po

ns
es

(b)

The assigned textbook
readings contributed to my

learning.

strongly disagree

disagree

slightly disagree

slightly agree

agree
strongly agree

nu
m

be
r 

of
 r

es
po

ns
es

(c)

Extra credit tasks
contributed to my learning.

strongly disagree

disagree

slightly disagree

slightly agree

agree
strongly agree

nu
m

be
r 

of
 r

es
po

ns
es

(d)

Figure 1: At the end of the winter and spring quarters, we gave students an anonymous survey on the effectiveness of CS100.
The results of four questions are shown above. Interestingly, figures (a) and (b) show that students are more comfortable
starting their own projects than contributing to another person’s project. Many students said they “don’t know where to
start” when trying to understand a new project. Figures (c) and (d) show that the open source textbook was successful.
Students’ writings were effective in teaching future students how to accomplish important tasks related to the assignments.
The extra credit referred to in figure (d) is fixing mistakes in the textbook.

potential disadvantage: since everyone’s code was easily ac-
cessible on the internet, plagiarism became much easier. To
detect plagiarism, we used the MOSS program[1] combined
with git’s automatic history tracking features. Overall we
found 7 cases of plagiarism out of the 178 students who
took the course. This is a comparable rate to other com-
puter science classes.

The last pedagogical purpose of the programming project is
to motivate the written project discussed in the next section.

3. THE WRITTEN PROJECT
Students had two options for the written project. The sim-
plest option was to extend the course’s textbook. Students
were instructed to pick an area of the programming project
that they found particularly difficult and write the tutorial
“they wished existed when they were working on the assign-
ment.” Of the submitted writeups, 3 were incorporated into
required lab exercises and 18 become required reading for
future students taking CS100. Figure 1.C shows that future
students found these readings useful in their learning.

The harder option for students was to create their own open
source project and provide documentation for it. Once com-
plete, these projects were advertised on social networking
sites like Facebook, Hacker News, and Reddit. Good docu-
mentation was the key to making these projects “go viral”
and get seen by a large audience. Table 1 lists the projects
created by students.

Finally, all students were given the opportunity to earn extra
credit by finding and fixing mistakes in the course. Students
submitted more than 800 of these corrections. Minor typo
fixes were awarded 1 pt of extra credit, but more signifi-
cant fixes could earn more. Figure 1.d shows that students
particularly liked this aspect of the course.

4. REFERENCES
[1] K. W. Bowyer and L. O. Hall. Experience using

“MOSS” to detect cheating on programming
assignments. In FIE’99.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

0 5 10 15 20 25

nu
m

be
r 

of
 s

tu
de

nt
s

th
at

 h
av

e 
w

or
ke

d 
on

 th
is

 m
an

y 
pr

oj
ec

ts
af

te
r 

th
e 

en
d 

of
 th

e 
co

ur
se

number of projects

Figure 2: After completing CS100, 136 students (76%) have
continued to work on open source GitHub projects outside
of class. (GitHub makes user activity publicly available.)
Before taking CS100, only 15 students (8%) had ever worked
on a GitHub project.

Project Name Students Watching Stars Forks

BrightTime 2 1 15 2
git-game 2 82 2101 190
git-game-v2 3 17 323 9
manga-tracker 1 1 2 0
Melody-Matcher 3 3 43 2
PacVim 1 26 492 48
regexProgram 2 21 301 50
rhype 1 1 9 0

Table 1: Eight teams of students chose to create and docu-
ment their own project for the written assignment. The ta-
ble shows the name of the project (click to visit the project’s
webpage), number of students who worked on the project,
and GitHub statistics about the projects popularity. The
projects have cumulatively had more than 30,000 downloads
and the projects’ documentation has had more than 150,000
visitors from around the world.

https://github.com/Team-Unguided/BrightTime
https://github.com/git-game/git-game
https://github.com/git-game/git-game-v2
https://github.com/svtanthony/manga-tracker
https://github.com/MiaoXiao/Melody-Matcher
https://github.com/jmoon018/PacVim
https://github.com/Liniarc/regexProgram
https://github.com/eneva002/rhype

	CS100: Course overview
	The Programming Project
	The Written Project
	References

