
Estoy en CSUN para explicar

Howtogeolocate social
mediamessages



Case study: Power and Kibell (2017)

911 operator receives report of thick black smoke somewhere outside Melbourne

A “social media intelligence analyst” searches Twitter for more information

They find two important tweets:

The fire chief uses these photos to dispatch firefighters

Tire fires are dangerous and difficult to extinguish

Require prompt response to prevent spread

Require bulldowzers and aircraft

Intelligence from Twitter enabled a prompt response, preventing disaster

How does this happen?!
Need software that

understands the physical GPS coordinates of messages

understands the topic of messages

searches massive datasets efficiently
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The geolocation problem

or

The @9NewsMelb
news chopper is flying
above a tyre storage

fire in Broadmeadows

Machine Learning

image location

probability
distribution

over the earth

This talk

Many other applications:

identify witnesses to a crime
(Truelove et al., 2017)

map the spread of influenza
(Paul et al., 2014)

estimate unemployment rates
(Antenucci et al., 2014)

monitor climate change
(Wentz et al., 2014)

... and more ...
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Outline

Geolocating images with deep learning
I Examples
I Deep learning review
I The PlaNet method (Weyand et al., 2016)
I The mixture of von Mises-Fisher distribution

Geolocating text with deep learning
I Overview of Twitter
I Examples
I Word-based methods
I UnicodeCNN, a character based method

Future research directions
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Easy Examples
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Easy Examples

Image contains sufficient information for exact geolocation

Trained humans can geolocate <1km

Many algorithms also have great accuracy

Hays and Efros (2008)

Hays and Efros (2015)

Weyand et al. (2016)

Vo et al. (2017)

... and more ...
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Hard Examples
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Hard Examples
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Hard Examples

Images do not contain sufficient information for exact geolocation

Trained humans can determine general regions

Existing algorithms are “overconfident” and fail for these images

Most images fall into this category
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The data

5 million geotagged images provided by Mousselly-Sergieh et al. (2014)

Geotags generated by

cellphones GPS enabled
DSLR cameras

manual entry

Most images accurate to within ∼10m, some outliers
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The data (visualized)
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Deep learning for image classification

Deep Neural Network

Feature Generation

Logistic Regression

other 1 %

cat 3 %

dog 96 %

other 2 %

cat 95 %

dog 3 %

other 2 %

cat 43 %

dog 55 %

LeNet (LeCun et al., 1998)
AlexNet (Krizhevsky et al., 2012)
VGG (Simonyan and Zisserman, 2014)
Inception v1 (Szegedy et al., 2015)
Inception v2 (Ioffe and Szegedy, 2015)
Inception v3 (Szegedy et al., 2016)
Inception v4 (He et al., 2016)
ResNet (Witten et al., 2016)
ResNet2 (He et al., 2016)
WideResNet (Zagoruyko and Komodakis, 2016)
SqueezeNet (Iandola et al., 2016)
MobileNet (Howard et al., 2017)
DenseNet (Huang et al., 2017)
ResNext (Lin et al., 2018)
NASNet (Zoph et al., 2018)
PNASNet (Liu et al., 2018)

better than humans in practice

treat as black box

Known since the 1800s, good theoretical properties

Let d be number of features,
c be number of classes,
n be number of data points,

then the generalization error = Θ

(√
cd
n

)
So more classes requires more data
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Prior methods for image geolocation

Step 1: Divide the world into classes

Google’s PlaNet method (Weyand et al., 2016)

Step 2: Classify using a deep neural network

Advantage: easy to implement

Problem: does not understand the earth’s geometry

Problem: optimal choice of c unclear

if c ↑, then the resolution ↑
if c ↑, then the generalization error ↑

The Mixture of von Mises-Fisher distribution fixes these problems
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Generating classes using S2 geometry

level: 0
classes: 6
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Generating classes using S2 geometry

level: 1
classes: 24
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Generating classes using S2 geometry

level: 2
classes: 96
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Generating classes using S2 geometry

level: 3
classes: 384

Mike Izbicki Geolocating Social Media Data February 26, 2019 12 / 36



Generating classes using S2 geometry

level: 4
classes: 1536
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Generating classes using S2 geometry

level: 5
classes: 6144
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Generating classes using S2 geometry

level: 6
classes: 24576
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Generating classes using S2 geometry

level: 6
classes: 24576

exponential growth, very bad!
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Generating classes using S2 geometry (and data)

level: 0
classes: 6

Mike Izbicki Geolocating Social Media Data February 26, 2019 12 / 36



Generating classes using S2 geometry (and data)

level: N/A
classes: 9
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Generating classes using S2 geometry (and data)
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Generating classes using S2 geometry (and data)
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Generating classes using S2 geometry (and data)

level: N/A
classes: 18
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Generating classes using S2 geometry (and data)

level: N/A
classes: 21
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Generating classes using S2 geometry (and data)

level: N/A
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Generating classes using S2 geometry (and data)

level: N/A
classes: 27
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Generating classes using S2 geometry (and data)

level: N/A
classes: 30
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Generating classes using S2 geometry (and data)

level: N/A
classes: 64
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Generating classes using S2 geometry (and data)

level: N/A
classes: 128
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Generating classes using S2 geometry (and data)

level: N/A
classes: 256
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Generating classes using S2 geometry (and data)

level: N/A
classes: 512
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Generating classes using S2 geometry (and data)

level: N/A
classes: 1024
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Generating classes using S2 geometry (and data)

level: N/A
classes: 2048
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Generating classes using S2 geometry (and data)

level: N/A
classes: 4096
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Generating classes using S2 geometry (and data)

level: N/A
classes: 8192
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Generating classes using S2 geometry (and data)

level: N/A
classes: 16384
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Generating classes using S2 geometry (and data)

level: N/A
classes: 32768
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Generating classes using S2 geometry (and data)

level: N/A
classes: 65536
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Prior methods for image geolocation

Step 1: Divide the world into classes

Google’s PlaNet method (Weyand et al., 2016)

Step 2: Classify using a deep neural network

Advantage: easy to implement

Problem: does not understand the earth’s geometry

Problem: optimal choice of c unclear

if c ↑, then the resolution ↑
if c ↑, then the generalization error ↑

The Mixture of von Mises-Fisher distribution fixes these problems
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image location

Does not understand earth’s geometry

# classes = c = 27
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image location

Does not understand earth’s geometry

# classes = c = 27

all wrong classes treated equally bad
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image location

How to choose c?

# classes = c = 27 red indicates high probability
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image location

How to choose c?

# classes = c = 28 red indicates high probability
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image location

How to choose c?

# classes = c = 29 red indicates high probability
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Prior methods for image geolocation

Step 1: Divide the world into classes

Google’s PlaNet method (Weyand et al., 2016)

Step 2: Classify using a deep neural network

Advantage: easy to implement

Problem: does not understand the earth’s geometry

Problem: optimal choice of c unclear

if c ↑, then the resolution ↑
if c ↑, then the generalization error ↑

The Mixture of von Mises-Fisher distribution fixes these problems
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What is the Mixture of von Mises-Fisher Distribution?

The von Mises-Fisher (vMF) distribution is like the Gaussian for spheres

vMF(y;µ, κ) =
κ

sinhκ
exp(κy>µ)

µ : mean direction
κ : concentration

The Mixture of vMF (MvMF) is a weighted sum of vMF distributions

MvMF(y) =
c∑

i=1

wi vMF(y;µi, κi)

wi : mixture weights

Idea: represent each class by a vMF
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Geolocation with the MvMF

Step 1: divide the world into classes

Google’s PlaNet method (Weyand et al., 2016)

Step 2: initialize an MvMF distribution with µi determined by classes

Step 3: learn the mixture weights

Advantage: easy to implement

Advantage: does understand the earth’s geometry

Advantage: increasing c always improves statistical performance

in practice

in theory
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image location

MvMF understands earth’s geometry

# classes = c = 27
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image location

The MvMF and c (practice)

# classes = c = 27
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image location

The MvMF and c (practice)

# classes = c = 28
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image location

The MvMF and c (practice)

# classes = c = 29
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image location

The MvMF and c (practice)

# classes = c = 210
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# classes = c = 212
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The MvMF and c (practice)

# classes = c = 213
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image location

The MvMF and c (practice)

# classes = c = 214
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The MvMF and c (theory)

Theorem (Informal)

If we minimize the MvMF loss using stochastic gradient descent, then

generalization error ≤ O

(√
d

n

)
. (1)

Notice: no dependence on the number of mixture components c.

Proof sketch. Stochastic gradient descent guarantees that for any convex loss,

generalization error ≤ O
(
G√
n

)
, (2)

where G is the maximum gradient of the loss.

For logistic regression, G ≤
√
dc.

For MvMF, G ≤
√
d.

Mike Izbicki Geolocating Social Media Data February 26, 2019 19 / 36



The MvMF and c (theory)

Theorem (Informal)

If we minimize the MvMF loss using stochastic gradient descent, then

generalization error ≤ O

(√
d

n

)
. (1)

Notice: no dependence on the number of mixture components c.

Proof sketch. Stochastic gradient descent guarantees that for any convex loss,

generalization error ≤ O
(
G√
n

)
, (2)

where G is the maximum gradient of the loss.

For logistic regression, G ≤
√
dc.

For MvMF, G ≤
√
d.

Mike Izbicki Geolocating Social Media Data February 26, 2019 19 / 36



The MvMF and c (theory)

Theorem (Informal)

If we minimize the MvMF loss using stochastic gradient descent, then

generalization error ≤ O

(√
d

n

)
. (1)

Notice: no dependence on the number of mixture components c.

Proof sketch. Stochastic gradient descent guarantees that for any convex loss,

generalization error ≤ O
(
G√
n

)
, (2)

where G is the maximum gradient of the loss.

For logistic regression, G ≤
√
dc.

For MvMF, G ≤
√
d.

Mike Izbicki Geolocating Social Media Data February 26, 2019 19 / 36



The MvMF and c (theory)

Theorem (Informal)

If we minimize the MvMF loss using stochastic gradient descent, then

generalization error ≤ O

(√
d

n

)
. (1)

Notice: no dependence on the number of mixture components c.

Proof sketch. Stochastic gradient descent guarantees that for any convex loss,

generalization error ≤ O
(
G√
n

)
, (2)

where G is the maximum gradient of the loss.

For logistic regression, G ≤
√
dc.

For MvMF, G ≤
√
d.

Mike Izbicki Geolocating Social Media Data February 26, 2019 19 / 36



Quantitative Results
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image location

Qualitative results
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Outline

Geolocating images with deep learning
I Examples
I Deep learning review
I The PlaNet method (Weyand et al., 2016)
I The mixture of von Mises-Fisher distribution

Geolocating text with deep learning
I Overview of Twitter
I Examples
I Word-based methods
I UnicodeCNN, a character based method

Future research directions
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About

500 million tweets / day

Over 100 languages used on Twitter
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most tweets not written in English

most research only studies English tweets

57 other officially supported languages

45 million tweets per day

unknown number of unsupported languages

37 million tweets per day

Mike Izbicki Geolocating Social Media Data February 26, 2019 22 / 36



About

500 million tweets / day

Over 100 languages used on Twitter

0.0

0.1

0.2

0.3

0.4

0.5

English

Portuguese

Spanish

U
nknow

n

Japanese

Arabic

Turkish

Indonesian

Tagalog

other

fr
a
ct
io
n
o
f
tw

ee
ts

most tweets not written in English

most research only studies English tweets

57 other officially supported languages

45 million tweets per day

unknown number of unsupported languages

37 million tweets per day

Mike Izbicki Geolocating Social Media Data February 26, 2019 22 / 36



About

500 million tweets / day

Over 100 languages used on Twitter

0.0

0.1

0.2

0.3

0.4

0.5

English

Portuguese

Spanish

U
nknow

n

Japanese

Arabic

Turkish

Indonesian

Tagalog

other

fr
a
ct
io
n
o
f
tw

ee
ts

most tweets not written in English

most research only studies English tweets

57 other officially supported languages

45 million tweets per day

unknown number of unsupported languages

37 million tweets per day

Mike Izbicki Geolocating Social Media Data February 26, 2019 22 / 36



About

500 million tweets / day

Over 100 languages used on Twitter

0.0

0.1

0.2

0.3

0.4

0.5

English

Portuguese

Spanish

U
nknow

n

Japanese

Arabic

Turkish

Indonesian

Tagalog

other

fr
a
ct
io
n
o
f
tw

ee
ts

most tweets not written in English

most research only studies English tweets

57 other officially supported languages

45 million tweets per day

unknown number of unsupported languages

37 million tweets per day

Mike Izbicki Geolocating Social Media Data February 26, 2019 22 / 36



About

500 million tweets / day

Over 100 languages used on Twitter

0.0

0.1

0.2

0.3

0.4

0.5

English

Portuguese

Spanish

U
nknow

n

Japanese

Arabic

Turkish

Indonesian

Tagalog

other

fr
a
ct
io
n
o
f
tw

ee
ts

most tweets not written in English

most research only studies English tweets

57 other officially supported languages

45 million tweets per day

unknown number of unsupported languages

37 million tweets per day

Mike Izbicki Geolocating Social Media Data February 26, 2019 22 / 36



The data

My dataset:

900 million tweets

Every geotagged tweet sent between 26 Oct 2017 - 8 Jul 2018

Prior work:

Cheng et al. (2010) Li et al. (2012)
Han et al. (2013) Mahmud et al. (2014)
Compton et al. (2014) Zhang and Gelernter (2014)
Maier and Gómez-Rodŕıguez (2014) Gonçalves and Sánchez (2015)
Rahimi et al. (2015) Dredze et al. (2016)
Rahimi et al. (2017) Tinoco (2017)

Filter tweets to only contain popular languages

Filter tweets to only come from major cities/countries

Datasets contain < 5 million tweets

Goal: geolocate tweets in all languages sent from anywhere in the world
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The data (visualized)

noisy data
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Few tweets are “easy”

I’m at �r�z ���A�`T - �A�`T ��ml�
F`w - @ ksu in Riyadh

Google Translate: I’m at University Center - King
Saud University - @ ksu in Riyadh
Language: Arabic/English
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Most tweets are “hard”

故のAM放送はかにたまりません.
ロカル向けの情番なんか方言丸出
しなので省などで入り始めたら .だ
とMBCラジオはほぼ目なんですが昨
年、静で方言のCMなど数分受信出
来たには感度ものでした。

Google Translate: Hometown AM broadcasting
certainly does not collect. Informational program
for local The sort of dialect is sorting out because
dialect is somehow started, so if you start entering with
homecoming etc ..
Language: Japanese
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Google Translate: Hometown AM broadcasting
certainly does not collect. Informational program
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Most tweets are “hard”

#dragonfight d́ıa de muertos special
class miércoles 01 noviembre cover
$60 escuela dragon

Google Translate: #dragonfight day of the dead
special class wednesday 01 november cover $60 school
dragon
Language: Spanish
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Most tweets are “hard”

#dragonfight d́ıa de muertos special
class miércoles 01 noviembre cover
$60 escuela dragon

Google Translate: #dragonfight day of the dead
special class wednesday 01 november cover $60 school
dragon
Language: Spanish

content implies from Mexico

related content:
d́ıa de los muertos #diademuerto
dia de los muerto #diadelosmuertos
day of the dead #calavera
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Most tweets are “hard”

¿sabéis quien sigue en cama aún
teniendo que entrar en clase en 5
minutos? yo, si señor

Google Translate: Do you know who continues in bed
even having to enter class in 5 minutes? me, yes sir
Language: Spanish
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Most tweets are “hard”

¿sabéis quien sigue en cama aún
teniendo que entrar en clase en 5
minutos? yo, si señor

Google Translate: Do you know who continues in bed
even having to enter class in 5 minutes? me, yes sir
Language: Spanish

grammar implies from Spain

in Latin America, would be written “saben”
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Machine learning for tweet geolocation

Feature Generation

Logistic Regression

MvMF

Previous methods: generate features from words

UnicodeCNN: generates features from characters
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The features-from-words approach

Input text: ¿Sabéis quien sigue en cama?

¿sabéis quien sigue en cama?

lower case

¿saber quien seguir en cama?

normalize words

saber sequir cama

remove punctuation/stop words

Output features:

d ≈ 103 − 107

encode

bed

0
cam

a

1
coche

0
saber

1
sabot

0
seguir

1
sequin

0
stay

0

capitonyms:
chargers vs. Chargers

Spanish verbs have 204 forms,
and they vary by location.

emoticons: ^ ^ vs :)

emoji: vs

diademuerto vs dia de muerto

each language
is different!
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Input text: ¿Sabéis quien sigue en cama?
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The UnicodeCNN (features from characters)

Input text: ¿Sabéis quien sigue en cama?
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lower case

saber quien seguir en cama

normalize words

saber sequir cama

remove punctuation/stop words

Output features:
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encode
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a
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0
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seguir

1
sequin

0
stay
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capitonyms:
chargers vs. Chargers

Spanish verbs have 204 forms,
and they vary by location.

each language is different

diademuerto vs dia de muerto

Step 1: Encode each character as a vector of bits
Each bit represents a property from the Unicode standard

is it punctuation?

is it whitespace?

does it sound like ‘a’?

Step 2: Concatenate the vectors to form an “image”

Step 3: Apply image feature generation methods (i.e. CNN)

Feature Generator

Works for all languages

Know how to generate
good image features
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Input text: ¿Sabéis quien sigue en cama?
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Quantitative Results
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Qualitative Results: verb conjugations

no me apreséis no me apresen

0.0 0.2 0.4 0.6 0.8 1.0

Spain
Argentina

Brazil
0.0 0.2 0.4 0.6 0.8 1.0

Argentina
Mexico

United States

Neither the word apreséis nor apresen appears in the training data

The UnicodeCNN learned a general rule about Spanish dialects
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Outline

Geolocating images with deep learning
I Examples
I Deep learning review
I The PlaNet method (Weyand et al., 2016)
I The mixture of von Mises-Fisher distribution

Geolocating text with deep learning
I Overview of Twitter
I Examples
I Word-based methods
I UnicodeCNN, a character based method

Future research directions
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Future Work (1/3): analyzing social media data

Example student projects

Automatically discover, characterize, and map language dialects

no me apreséis no me apresen

0.0 0.2 0.4 0.6 0.8 1.0

Spain
Argentina

Brazil
0.0 0.2 0.4 0.6 0.8 1.0

Argentina
Mexico

United States

Correct for unbalanced data caused by unequal internet usage
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Future Work (2/3): machine learning theory ∩ practice

statistical and computational properties of learning algorithms

robust to outliers distributed

(ongoing) (ICML2013,ongoing)

learning with generalized metric spaces (ICML2015)

d(x,y) =

programming language support for machine learning
(TFP 2013, MLOSS 2013, Monad Reader 2013, DCP 2014)
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Future Work (3/3): open source education

Some of my projects:

Some student projects:

ICOPUST2015, graduate student research award SIGCSE2015

First open source contributions from North Koreans (Congressional Award)
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Questions?
¿Preguntas?

Questões?

Вопросы?

?Tl·F±�

질문이 있으십니까?

質問は？
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