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Abstract. Existing methods for predicting locations on the earth’s sur-
face use standard classification or nearest neighbor techniques. These
methods have poor theoretical properties because they do not take ad-
vantage of the earth’s spherical geometry. In some cases, they require
training data sets that grow exponentially with the number of feature di-
mensions. This paper introduces the Mixture of von-Mises Fisher (MvMF)
loss function, which is specifically designed to exploit the earth’s spher-
ical geometry. Theoretical analysis shows that the MvMF loss requires
only a dataset of size linear in the number of feature dimensions, and
empirical results show that it outperforms previous methods with orders
of magnitude less training data and computation. As a motivating ex-
ample, we focus on the problem of geolocating ground level images, but
we emphasize that the MvMF loss is equally suitable for working with
satellite image sources. This workshop paper is a short version of [1].

Keywords: Geolocation; Flickr; Deep Learning; von Mises-Fisher

1 Introduction

Consider the two images below:

Most people recognize that the left image is of the Eiffel Tower, located in Paris,
France. A trained expert can further recognize that the right image is a replica of
the Eiffel Tower. The expert uses clues in the image’s background (e.g. replicas of
other famous landmarks, tall cement skyscrapers) to determine that this image
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Fig. 1. To geolocate an image, we first generate features using the WideResNet50
[14], then pass these features to our novel mixture of von Mises-Fisher (MvMF) output
layer. The MvMF outputs a probability distribution over the earth’s surface, and is
particularly well-suited for visualizing the output of hard-to-geolocate images.

was taken in Shenzhen, China. We call these images strongly localizable because
the images contain all the information needed to exactly geolocate the images.
Existing geolocation algorithms work well on strongly localizable images. These
algorithms use deep neural networks to extract features, and can therefore detect
the subtle clues needed to differentiate these images.

Most images, however, are only weakly localizable because the image does
not contain enough information to exactly geolocate it. Consider the image in
Figure 1 of two men hiking. An expert can use clues like the geology of the
mountains, the breed of cattle, and the people’s appearance to determine that
this image was taken in the Alps. But the Alps are a large mountain range, and
there is simply not enough information in the image to pinpoint exactly where in
the Alps the image was taken. Existing geolocation algorithms are overconfident
when predicting locations for these images. These algorithms use either nearest
neighbor or classification methods to perform geolocation, and these procedures
do not take advantage of the earth’s spherical geometry. They therefore cannot
properly represent the ambiguity of these weakly localizable images.

In this paper, we introduce the MvMF output layer for predicting GPS coor-
dinates with deep neural networks. The MvMF has three advantages compared
to previous methods:

1. The MvMF takes advantage of the earth’s spherical geometry and so works
with both strongly and weakly localizable images.

2. The MvMF has theoretical guarantees, whereas no previous method has a
theoretical analysis.

3. The MvMF interpolates between the nearest neighbor and classification ap-
proaches to geolocation, retaining the benefits of both with the drawbacks
of neither.

In our experiments, we use the WideResNet50 [14] convolutional neural network
to generate features from images, but we emphasize that any deep neural network
serve as input to an MvMF layer. An extended version of this paper [1] provides
a more detailed comparison to prior work and details of the theoretical analysis.



The MvMF Loss for Predicting Locations on the Earth’s Surface 3

2 Geolocation via the MvMF

The MvMF is the first neural network loss function designed for predicting GPS
locations on the earth’s surface. In this section, we first introduce the MvMF as
a probabilistic model, then describe two alternative interpretations of the MvMF
as a classification model with a non-standard loss or as a nearest neighbor model
using non-standard features. A powerful property of the MvMF model is that
it can interpolate between the classification and nearest neighbor approaches to
geolocation, getting the best of both techniques while avoiding the limitations
of both.

2.1 The probabilistic interpretation

This subsection formally introduces the MvMF output layer as a mixture of von
Mises-Fisher distributions. Then we describe the training and inference proce-
dures.

The von Mises-Fisher (vMF) distribution is one of the standard distributions
in the field of directional statistics, which is the study of distributions on spheres.
The vMF can be considered the spherical analogue of the Gaussian distribution
[e.g. 10] and enjoys many of the Gaussian’s nice properties. Thus, the mixture of
vMF (MvMF) distribution can be seen as the spherical analogue of the commonly
used Gaussian mixture model (GMM). While the MvMF model has previously
been combined with deep learning for clustering [4] and facial recognition [5], we
are the first to combine the MvMF and deep learning to predict GPS coordinates.

Formally, the vMF distribution is parameterized by the mean direction µ ∈
S2, and the concentration parameter κ ∈ R+. The density is defined for all points
y ∈ S2 as

vMF(y;µ, κ) =
κ

sinhκ
exp(κiµ

>y). (1)

An important property of the vMF distribution is that it is symmetric about µ
for all µ ∈ S2. As shown in Figure 2, a gaussian distribution over GPS coordi-
nates does not account for the earth’s spherical geometry, and is therefore not
symmetrical when projected onto the sphere.

The mixture of vMF (MvMF) distribution is a convex combination of vMF
distributions. If the mixture contains c component vMF distributions, then it is
parameterized by a collection of mean directions M = (µ1, ..., µc), a collection
of concentration parameters K = (κ1, ..., κc), and a vector of mixing weights
Γ ∈ Rc satisfying

∑c
i=1 Γi = 1. Notice that we use capital Greek letters for

the parameters of the mixture distribution and lowercase Greek letters for the
parameters of the corresponding component distributions. The density is given
by

MvMF(y;M,K,Γ ) =

c∑
i=1

Γi vMF(y,Mi,Ki). (2)

To construct the MvMF loss function from this density, we assume that the
mean direction and concentration parameters do not depend on the input fea-
tures. The mixing weights are parameterized using the standard softmax function
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Fig. 2. The vMF distribution takes into account the curvature of the earth’s surface,
and so contour lines are equidistant from the center at all scales and locations. The
Gaussian distribution over GPS coordinates, in contrast, becomes elongated far from
the equator, and has discontinuities at the poles and at longitude ±180◦.

as

Γi(x;W ) =
exp(−x>wi)∑c
j=1 exp(−x>wj)

. (3)

where W = (w1, ...,wc) and each wi ∈ Rd. Taking the negative log of Equation
(2) and substituting Γi gives us the final MvMF loss:

`MvMF(x,y;M,K,W ) = − log

c∑
i=1

(
Γi(x;W ) vMF(y,Mi,Ki)

)
. (4)

When training a model with the MvMF loss, our goal is to find the best values for
M , K, and W for a given dataset. Given a training dataset (x1,y1), ..., (xn,yn)
the training procedure solves the optimization

M̂, K̂, Ŵ = arg min
M,K,W

1

n

n∑
i=1

`MvMF(xi,yi;M,K,W ). (5)

Training mixture models is difficult due to their non-convex loss functions, and
good initial conditions are required to ensure convergence to a good local min-
imum. We use the following initialization in our experiments: initialize the W
randomly; initialize µi to the center of the ith class used by the PlaNet method;
and initialize all κi to the same initial value κ0. We suggest using κ0 = exp(16)
based on experiments in Section 3.

The estimated GPS coordinate ŷ of a feature vector x is the coordinate with
minimum loss. That is,

ŷ = arg min
y∈S2

`MvMF(x,y;M,K,W ). (6)

Notice that this optimization is distinct from (5). This optimization does not get
evaluated during model training, but only during inference. This optimization
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Fig. 3. (Left) Classes near London created using the PlaNet method. (Middle) Classes
of the MvMF method with the µi initialized from the centers of the PlaNet classes.
(Right) After training with the MvMF loss, the µi have shifted slightly to better fit
the data, resulting in a new class partition.

is non-convex, and may have up to c distinct local minima. Algorithms exist for
finding the minima of mixture models [3], but these algorithms require significant
computation. Calculating ŷ for a single image may be feasible, but calculating
ŷ for an entire test set is prohibitive. The classification interpretation of the
MvMF loss presents an easy to interpret, computationally more efficient method
for inference.

2.2 Interpretation as a classifier

The MvMF model can be interpreted as a classification model where each com-
ponent represents a class. The mixture weights Γi(x,W ) then become the prob-
ability associated with each class. The estimated location ỹ is then the mean
direction of the class with largest weight. Formally,

ỹ = µĩ, where ĩ = arg max
i∈{1,...,c}

Γi(x,W ). (7)

Because this optimization is over a discrete space, it is extremely fast. When
the mean directions M are initialized using the centers of the PlaNet classes,
then there is a one-to-one correspondence between the MvMF classes and the
PlaNet classes, albeit with the class shapes differing slightly (see Figure 3). In
our experiments in Section 3, we use ỹ as the estimated position.

Another advantage of the MvMF classes over the PlaNet classes is that the
MvMF classes are fully parameterized by M . This means by jointly optimizing
both W and M , we can learn not only which classes go with which images, but
where on the earth the classes should be located.

2.3 Interpretation as a nearest neighbor method

We now describe how the MvMF model interpolates between classification mod-
els and nearest neighbor models. Recall that

Γi(x,W ) =
exp(−x>wi)∑c
j=1 exp(−x>wj)

∝ exp(−x>wi). (8)
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Solving for the ĩ in Equation (7) that maximizes Γi is therefore equivalent to
finding the wi that minimizes the inner product with x. Minimum inner product
search is a well studied problem, and in particular, it can be reduced to nearest
neighbor search [2]. Therefore, when the number of classes equals the number
of data points (i.e. c = n), and for each i we have µi = yi and wi = xi, then
solving Equation (7) to find the output class is equivalent to solving a nearest
neighbor problem.

2.4 Analysis

The MvMF’s estimation error converges to zero at a rate of O(
√
d/n), where d

is the number of feature dimensions and n the number of data points. This is in
contrast to nearest neighbor methods (which converge at the exponential rate
Ω(dn1/d) [Theorem 19.4 of 12]), and the cross entropy loss (which converges at
a rate of Ω(

√
cd/n) [Theorem 4 of 7]). Because c and d are both large in the

geolocation setting, the MvMF loss requires significantly less training data to
converge. Formal statements and proofs of these results can be found in [1].

3 Experiments

We evaluate the MvMF loss on the challenging task of image geolocation. In par-
ticular, we compare our MvMF method to the PlaNet method [13], since PlaNet
is representative of cross entropy-based methods for geolocation. We show that
the cross entropy-based methods require careful tuning of the hyperparameter c,
but that our MvMF’s performance always improves when increasing the number
of classes c (as our theory predicts). This leads to significantly better perfor-
mance of the MvMF method.

3.1 Procedure

Training Data. We use a previously existing publicly available dataset of geo-
tagged images from Mousselly et. al. [11]. This dataset contains about 6 million
images crawled from Flickr,1 and the crawl was designed to be as representative
as possible of Flickr’s image database. The only filtering the dataset performed
was to remove low resolution images. This dataset therefore comes from a dis-
tribution more similar to the PlaNet dataset than the other datasets.

Features. We use the WideResnet50 model [14] to generate a standard set of
features in our experiments. WideResnet50 was originally trained on the Ima-
geNet dataset for image classification, so we “fine-tune” the model’s parameters
to the geolocation problem. We chose the WideResnet50 model because empir-
ical results show that fine-tuning works particularly well on resnet models [9],
and the WideResnet50 is the best performing resnet model.

1 The dataset originally contained about 14 million images, but many of them have
since been deleted from Flickr and so were unavailable to us.
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Fig. 4. Higher values of κ0 result in better performance at fine grained prediction,
and lower values of κ0 result in better performance for course-grained prediction.

Fine-tuning a model is computationally cheaper than training from scratch,
but it is still expensive. We therefore fine-tune the model only once, and use the
resulting features in all experiments. To ensure that our fine-tuned features do
not favor the MvMF method, we create a simple classification problem to fine-
tune the features on. We associate each image with the country the image was
taken in or “no country” for images from Antarctica or international waters. In
total, this gives us a classification problem with 194 classes. We then fine-tune the
WideResnet50 model for 20 epochs using the cross entropy loss, WideResnet50’s
standard feature augmentation, and the Adam [8] variant of SGD with a learning
rate of 1 × 10−5. This took about 2 months on a 4 CPU system with a Tesla
K80 GPU and 64GB of memory. Because this fine-tuning procedure uses a cross
entropy loss, the resulting features should perform especially well with cross
entropy geolocation methods. Nonetheless, we shall see that the MvMF loss still
outperforms cross entropy methods.

3.2 Results

Tuning the MvMF’s hyperparameters. In this experiment, we set c = 215

and train MvMF models with κ0 = 0...20. The results are shown in Figure
4. Accuracy @Xkm is a standard method for evaluating the performance of a
geolocation system, and is equal to the fraction of data points whose estimated
location is within Xkm of the true location. (Higher values are better.) For
small X, Accuracy @Xkm measures the ability to geolocate strongly localizable
images, and for large X, Accuracy @Xkm measures the ability to geolocate
weakly localizable images.

We see that large values of κ0 cause better geolocation for strongly localizable
images, and small values of κ0 cause better geolocation for weakly localizable
images. This behavior has an intuitive explanation. When κ0 is small, the vari-
ance of each component vMF distribution is large. So on each SGD step, weights
from vMF components that are far away from the training data point will be
updated. If the image is weakly localizable, then there are many locations where
it might be placed, so many component weights should be updated. Conversely,
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Fig. 5. The performance of the MvMF output layer increases monotonically as we in-
crease the number of mixture components c, whereas the perfomance of PlaNet depends
unpredictably on c.

when κ0 is large, the component variances are small, and so only a small number
of components get updated with each SGD step. Strongly localizable images can
be exactly located to a small number of components, and so only a few compo-
nents should be updated. We suggest using a value of κ0 = 16 as a good balance,
and use this value in all other experiments.

Tuning the number of classes c. This experiment demonstrates that c must
be carefully tuned in the PlaNet method, but that increasing c always increases
performance of the MvMF method. We emphasize that the original PlaNet paper
[13] does not report results on the tuning of c, and so observing these limitations
of the PlaNet method is one of the contributions of our work.

We train a series of models using the MvMF loss and PlaNet loss, varying
c from 24 to 217. Theoretically, both methods support class sizes larger than
c = 217, but our GPU hardware only had enough memory for 217 classes. Figure
5 shows the results. For all X, we observe that PlaNet’s performance is highly
unpredictable as c varies, but the MvMF method always has improved accuracy
as c increases. Figure 6 shows qualitatively why the PlaNet method is more
sensitive to c than the MvMF.

Fine-tuned performance. In this experiment, we select several cross entropy
and MvMF models and perform a second round of fine-tuning, this time with
their true loss functions. We fine-tune with the Adam optimizer running for
5 epochs with learning rate 1 × 10−5, which takes approximately 2 weeks per
model on a single GPU. We evaluate the resulting model against the standard
Im2GPS test set introduced by [6]. The results are shown in Table 1. When
using the standardized training data and features, the MvMF loss significantly
outperforms the cross entropy loss.

In Table 1, we also include results reported in the original PlaNet paper [13].
These results use a training data set that is 2 orders of magnitude larger than
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Fig. 6. The PlaNet [13] method’s performance is highly sensative to the number of
classes c. Consider the highlighted region. When c = 26, PlaNet assigns no probability
to the region. (Brighter red indicates classes with higher probability.) When c = 27,
PlaNet has split many other cells, causing the probability of the highlighted region to
increase. When c = 28, PlaNet splits the highlighted region, causing the probability
to drop again. This effect is exaggerated for weakly localizable images because many
classes should be assigned high probability. In comparison, when the number of classes
increases for the MvMF loss, the output smoothly takes on the shape of the underlying
geography, which is the desired output for a weakly localizable image of grass.

the standardized training set, and so have significantly better performance than
the cross entropy loss on the standard training set. This illustrates that the
training data has a huge impact on the final model’s performance. Surprisingly,
the MvMF loss trained on standardized training set with only 6 million data
points outperforms the PlaNet method trained on 126 million images.

4 Conclusion

The MvMF is the first neural network loss function designed for geolocating
objects on the surface of the earth. The MvMF has better theoretical guarantees
than previous nearest neighbor and classification methods, and these guarantees
translate into better real world performance. We emphasize that the MvMF layer
can be applied to any geolocation problem, not just image geolocation.
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et al. von mises-fisher mixture model-based deep learning: Application to face
verification. arXiv preprint arXiv:1706.04264, 2017.

6. James Hays and Alexei A Efros. Im2gps: estimating geographic information from
a single image. In CVPR. IEEE, 2008.

7. Elad Hazan, Tomer Koren, and Kfir Y Levy. Logistic regression: Tight bounds for
stochastic and online optimization. In COLT, 2014.

8. Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

9. Simon Kornblith, Jonathon Shlens, and Quoc V Le. Do better imagenet models
transfer better? arXiv preprint arXiv:1805.08974, 2018.

10. K.V. Mardia and P.E. Jupp. Directional Statistics. 2009.
11. Hatem Mousselly-Sergieh, Daniel Watzinger, Bastian Huber, Mario Döller, Elöd
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