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As a TA, I was confronted with a real life instance of the NP-complete Scheduling
problem. To solve the problem, I turned to the classic Least Processing Time First
(LPTF) approximation algorithm. In this article, we’ll see that because LPTF is
a monoid homomorphism, we can implement it using HLearn’s HomTrainer type
class. This gives us parallel and online versions of LPTF “for free.” We’ll also be
able to use these same techniques to solve a related problem called BinPacking.
Hopefully, at the end of the article you’ll understand when the HomTrainer class
might be a useful tool, and how to use and build your own instances.

Framing The Problem

I enjoy TAing the introduction to C++ course at my university. Teaching pointer
arithmetic can be immensely frustrating, but it’s worth it to see the students when
it all finally clicks. Teaching is even better when it causes you to stumble onto an
interesting problem. Oddly enough, I found this cool Haskell problem because of
my C++ teaching assistanceship.

The professor wanted to assign a group project, and I had to pick the groups.
There had to be exactly five groups, and the groups needed to be as fair as possible.
In other words, I was supposed to evenly distribute the best and worst students.

After a little thought, I realized this was an instance of the NP-complete Schedul-
ing problem in disguise. This problem was first formulated in the context of
concurrent computing. In the textbook example of Scheduling, we are given
p processors and n tasks. Each task ti has some associated time it will take to
complete it. The goal is to assign the tasks to processors so as to complete the
tasks as quickly as possible.
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The Scheduling problem is shown graphically in Figure 1. Processors are
drawn as bins, and tasks are drawn as green blocks inside the bins. The height
of each task represents the length of time required to process it. Our goal is to
minimize the processing time given a fixed number of processors.
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Figure 1: The Scheduling problem

What does this have to do with the problem my professor gave me? Well, we
can think of the number of groups as the number of processors, each student is
a task, and the student’s current grade is the task’s processing time. Then, the
problem is to find a way to divvy up the students so that the sum of grades for the
“best” group is as small as possible. We’ll see some code for solving this problem
in a bit.

There is another closely related problem called BinPacking that is easily con-
fused with Scheduling. In BinPacking, instead of fixing the number of bins
and minimizing the amount in the bins, we fix the bin size and minimize the total
number of bins used. Compare Figure 2 below and Figure 1 above to see the dif-
ference. The BinPacking problem was originally studied by shipping companies,
although like Sheduling it occurs in many domains.
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Figure 2: The BinPacking problem
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Both Scheduling and BinPacking are NP-complete. Therefore, I had no
chance of creating an optimal grouping for my professor—the class had 100 stu-
dents, and 2100 is a big number! So I turned to approximation algorithms. One
popular approximation for Scheduling is called Longest Processing Time First
(LPTF). When analyzing these approximation algorithms, it is customary to com-
pare the quality of their result with that of the theoretical optimal result. In this
case, we denote the total processing time of the schedule returned by LPTF as
LPTF, and the processing time of the optimal solution as OPT. It can be shown
that the following bound holds:

LPTF ≤
(

4

3
− 1

3n

)
OPT

This bound was proven in the late 1960’s, but the original paper remains quite
readable today [1]. By making this small sacrifice in accuracy, we get an algorithm
that runs in time Θ(n log n) instead of Θ(2n). Much better! In the rest of this arti-
cle, we’ll take a detailed look at a Haskell implementation of the LPTF algorithm,
and then briefly use similar techniques to solve the BinPacking problem.

The Scheduling HomTrainer

When implementing an algorithm in Haskell, you always start with the type signa-
ture. LPTF takes a collection of tasks and produces a schedule, so it’s type might
look something like:

:: [Task] → Schedule

Anytime I see see a function of this form, I ask myself, “Can it be implemented
using HLearn’s HomTrainer type class?” HomTrainers are useful because the com-
piler automatically derives online and parallel algorithms for all instances. In
this section, we’ll get a big picture view of how this class will help us solve the
Scheduling problem. We start by looking at the format of a HomTrainer instance
as shown graphically in Figure 3 below.
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Figure 3: Basic requirements of the HomTrainer type class
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There’s a lot going on in Figure 3, but we’ll look at things piece-by-piece. The
black boxes represent data types and the black arrows represent functions. In our
case, the data set is the collection of tasks we want scheduled and the model is
the schedule. The train function is the LPTF algorithm, which generates a model
from the data points. Finally, our model is only useful if we can ask it questions.
In this case, we might want to ask, “Which processor is assigned to task t10?” or
“What are all the tasks assigned to processor 2?”

The blue arrows in the diagram impose some constraints on the data types and
functions. These requirements are a little trickier: they specify that our training
algorithm must be a monoid homomorphism from the free monoid. These are
scary sounding words, but they’re pretty simple once you’re familiar with them.
We’ll define them and see some examples.

In Haskell, the Monoid type class is defined as having an identity called mempty

and a binary operation called mappend:

class Monoid m where

mempty :: m

mappend :: m → m → m

Sometimes, we use the infix operation (�) = mappend to make our code easier to
read. All instances must obey the identity and associativity laws:

mempty � m = m � mempty = m

(m1 � m2) � m3 = m1 � (m2 � m3)

Lists are one of the simplest examples of monoids. Their identity element is the
empty list, and their binary operation is concatenation:

instance Monoid [a] where

mempty = []

mappend = ++

Lists are an example of free monoids because they can be generated by any un-
derlying type. For the HomTrainer, when we say that our data set must be a
free monoid, all we mean is that it is a collection of some data points. For the
Scheduling problem, it is just a list of tasks.

A homomorphism from the free monoid is a function that “preserves the free
monoid’s structure.” More formally, if the function is called train, then it obeys
the law that for all xs and ys of type [a]:

train (xs ++ ys) = (train xs) � (train ys)

The LPTF algorithm turns out to have this property. Figure 4 shows this in picture
form with a commutative diagram. This means that it doesn’t matter whether
we take the orange path (first train schedules from our data sets, then combine
the schedules with mappend) or the purple path (first concatenate our data sets,
then train a schedule on the result). Either way, we get the exact same answer.
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Figure 4: The LPTF is a monoid homomorphism because this diagram commutes

Now that we understand what HomTrainer is, we can look at what it gives us.
Most importantly, it gives us a simple interface for interacting with our models.
This interface is shown in Figure 5. In the class, we associate a specific Datapoint

type to our model and get four functions for training functions. The most impor-
tant training function is the batch trainer, called train. This is the homomorphism
that converts the data set into a model. In our case, it will be the LPTF algo-
rithm. The second most important function is the online trainer add1dp. This
function takes a model and a datapoint as input, and “adds” the data point to the
model. Developing new online functions is an important research area in approxi-
mation algorithms. As we will see later, the compiler generates these two functions
automatically for all instances of HomTrainer.

Finally, HLearn comes with a higher order function for making all batch trainers
run efficiently on multiple cores. The function

parallel :: (...) ⇒
(container datapoint → model) → (container datapoint → model)

takes a batch trainer as input and returns a parallelized one as output. In the next
section, we’ll see an example of its use in practice.

5



The Monad.Reader

1 class (Monoid model) ⇒ HomTrainer model where

2 type Datapoint model

3
4 -- The singleton trainer

5 train1dp :: Datapoint model → model

6
7 -- The batch trainer

8 train :: (Functor container, Foldable container) ⇒
9 container (Datapoint model) → model

10
11 -- The online trainer

12 add1dp :: model → Datapoint model → model

13
14 -- The online batch trainer

15 addBatch :: (Functor container, Foldable container) ⇒
16 model → container (Datapoint model) → model

Figure 5: The HomTrainer type class

Using the Scheduling HomTrainer

Before we look at implementing a HomTrainer to solve Scheduling, we’ll take a
look at how it’s used. In particular, we’ll look at the Haskell code I used to solve
the problem of grouping my students. In order to run the code, you’ll need to
download the latest HLearn-approximation library:

cabal install HLearn-approximation-1.0.0

Let’s begin by doing some experiments in GHCi to get ourselves oriented. The
Scheduling type is our model, and here we ask GHCi for it’s kind signature:

ghci> import HLearn.NPHard.Scheduling

ghci> :kind Scheduling

Scheduling :: Nat → ∗ → ∗

Scheduling takes two type parameters. The first is a type-level natural number
that specifies the number of processors in our schedule. In HLearn, any parameters
to our training functions must be specified in the model’s type signature. In this
case, the type-level numbers require the DataKinds extension to be enabled. The
second parameter to Scheduling is the type of the task we are trying to schedule.

Next, let’s find out about Scheduling’s HomTrainer instance:

ghci> :info Scheduling

...
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instance (Norm a,...) ⇒ HomTrainer (Scheduling n a) where

...

We have a constraint on our task parameter specifying that it must be an instance
of Norm. What does that mean? In mathematics, a type has a norm if it has a
“size” of some sort. In HLearn, the Norm type class is defined in two parts. First
we associate a specific number type with our model using the HasRing type class.
Then, the Norm type class defines a function magnitude that converts a model into
the number type.

class (Num (Ring m)) ⇒ HasRing m where

type Ring m

class (HasRing m, Ord (Ring m)) ⇒ Norm m where

magnitude :: m → Ring m

Usually the associated ring will be a Double. But we might make it a Rational if
we need more accuracy or an Int if we don’t want fractions.

Figure 6 shows the code for solving the student groups problem. In this case,
I defined a new data type called Student to be the data points and defined the
magnitude of a Student to be its grade. Notice that since I am deriving an instance
of Ord automatically, I must define grade before name and section. This ensures
that the ordering over students will be determined by their grades, and so be the
same as the ordering over their magnitudes.

The main function is divided up into three logical units. First, we load a CSV
file into a variable allStudents::[Student] using the Cassava package [2]. The
details of how this works aren’t too important.

In the middle section, we divide up the students according to which section they
are in, and then train a Schedule model for each section. We use the function:

getSchedules :: Scheduling n a → [[a]]

to extract a list of schedules from our Schedule type, then print them to the termi-
nal. Just for illustration, we train the third section’s Scheduling model in parallel.
With only about 30 students in the section, we don’t notice any improvement. But
as the data sets grow, more processors provide drastic improvements, as shown in
Table 0.1.

In the last section, we combine our section specific models together to get a
combined model factoring in all of the sections. Because Scheduling is an instance
of HomTrainer, we don’t have to retrain our model from scratch. We can reuse the
work we did in training our original models, resulting in a faster computation.

7



The Monad.Reader

1 {-# LANGUAGE TypeFamilies, DataKinds #-}

2
3 import Data.Csv

4 import qualified Data.ByteString.Lazy.Char8 as BS

5 import qualified Data.Vector as V

6 import HLearn.Algebra

7 import HLearn.NPHard.Scheduling

8
9 ---------------------------------------------------------------------

10
11 data Student = Student

12 { grade :: Double

13 , name :: String

14 , section :: Int

15 }

16 deriving (Read,Show,Eq,Ord)

17
18 instance HasRing Student where

19 type Ring (Student) = Double

20
21 instance Norm Student where

22 magnitude = grade

23
24 ---------------------------------------------------------------------

25
26 main = do

27 Right allStudents ←
28 fmap (fmap (fmap (λ(n,s,g) → Student g n s) . V.toList) . decode True)

29 $ BS.readFile "students.csv" :: IO (Either String [Student])

30
31 let section1 = filter (λs → 1 == section s) allStudents

32 let section2 = filter (λs → 2 == section s) allStudents

33 let section3 = filter (λs → 3 == section s) allStudents

34 let solution1 = train section1 :: Scheduling 5 Student

35 let solution2 = train section2 :: Scheduling 5 Student

36 let solution3 = parallel train section3 :: Scheduling 5 Student

37 print $ map (map name) $ getSchedules solution1

38
39 let solutionAll = solution1 � solution2 � solution3

40 print $ map (map name) $ getSchedules solutionAll

Figure 6: Solution to my professor’s problem
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Implementing the LPTF HomTrainer

Now we’re ready to dive into the details of how our model, Scheduling works under
the hood. Scheduling is defined as:

data Scheduling (p::Nat) a = Scheduling

{ vector :: !(SortedVector a)

, schedule :: Map Bin [a]

}

Scheduling has two member variables. The first is a SortedVector. This custom
data type is a wrapper around the vector package’s Vector type that maintains the
invariant that items are always sorted. This vector will be used as an intermediate
data structure while performing the LPTF computations. The second member is
the actual schedule. It is represented as a Map with a Bin as the key and a list of
tasks as the value. Bin is just a type synonym for Int:

type Bin = Int

and it represents the index of the processor in the range of 1 to p.
Before we look at Scheduling’s Monoid and HomTrainer instances, we need to take

a more detailed look at the LPTF algorithm. Traditionally, LPTF is described as
a two step process. First, sort the list of tasks in descending order. Then, iterate
through the sorted list. On each iteration, assign the next task to the processor
with the least amount of work. Figure 7 shows a single iteration of this procedure.
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Figure 7: A single iteration of the LPTF algorithm
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This conversion process is implemented with the internal function vector2schedule,
whose code is shown in Figure 8 below. The details of this function aren’t par-
ticularly important. What is important is that vector2schedule runs in time
Θ(n log p). This will be important when determining the run times of the mappend

and train functions.

vector2schedule :: (Norm a) ⇒ Int → SortedVector a → Map.Map Int [a]

vector2schedule p vector = snd $ F.foldr cata (emptyheap p,Map.empty) vector

where

emptyheap p = Heap.fromAscList [(0,i) | i←[1..p]]

cata x (heap,map) =
let Just top = Heap.viewHead heap

set = snd top

prio = (fst top)+magnitude x

heap’ = Heap.insert (prio,set) (Heap.drop 1 heap)

map’ = Map.insertWith (++) set [x] map

in (heap’,map’)

Figure 8: The vector2schedule helper function for LPTF

Our mappend operation will implement the LPTF algorithm internally in a way
that reuses the results from the input Schedules. We won’t be able to reuse the
actual schedules, but we can reuse the sorting of the vectors. We do this by taking
advantage of the HomTrainer instance of the SortedVector type. It turns out
that merge sort is a monoid homomorphism, and so SortedVector can be made an
instance of the HomTrainer type class. The commutative diagram for SortedVector
is shown in Figure 9 below.
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Figure 9: Constructing a SortedVector is a monoid homomorphism
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It is important to note that SortedVector’s mappend operation does not take
constant time. In fact, it takes Θ(n) time, where n is the size of both input
vectors put together. The HomTrainer type class makes reasoning about these
non-constant mappend operations easy. By looking up in Table 0.1, we can find
the run times of the derived algorithms. Notice that if the monoid operation takes
time Θ(n), then our batch trainer will take time Θ(n log n), and this is exactly
what we would expect for a sorting. Details of how these numbers were derived
can be found in my TFP13 submission on the HLearn library [3].

Monoid operation Sequential batch trainer Parallel batch trainer Online trainer
(mappend) (train) (parallel train) (add1dp)

Θ(1) Θ(n) Θ
(

n
p

+ log p
)

Θ(1)

Θ(log n) Θ(n) Θ
(

n
p

+ (log n)(log p)
)

Θ(log n)

Θ(n) Θ(n log n) Θ
(

n
p

log n
p

+ n
)

Θ(n)

Θ(nb), b > 1 Θ(nb) no improvement no improvement

Table 0.1: Given a run time for mappend, you can calculate the run time of the
automatically generated functions using this table. The variable n is the total
number of data points being trained on or combined, and the variable p is the
number of processors available.

With all of these building blocks in place, the Monoid instance for Scheduling

is relatively simple. The mempty and mappend operations are exactly the same
as they are for SortedVector, except that we also call the helper function lptf.
This function just packages the SortedVector into a Scheduling type using the
vector2schedule function we saw earlier.

instance (Ord a, Norm a, SingI n) ⇒ Monoid (Scheduling n a) where

mempty = lptf mempty

p1 ‘mappend‘ p2 = lptf $ (vector p1) � (vector p2)

lptf :: forall a p. (Norm a, SingI p) ⇒ SortedVector a → Scheduling p a

lptf vector = Scheduling

{ vector = vector

, schedule = vector2schedule p vector

}

where p = fromIntegral $ fromSing (sing :: Sing n))

Figure 10: The Monoid instance for the Scheduling model
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Since vector2schedule runs in linear time and SortedVector’s mappend runs
in linear time, the Scheduling’s mappend runs in linear time as well. By Table
0.1 again, we have that the automatically derived batch trainer will take time
Θ(n log n). This is exactly what the traditional LPTF algorithm takes.

Of course, we still have to implement the HomTrainer instance. But this is easy.
Inside the HomTrainer class is a function called the “singleton trainer”:

train1dp :: HomTrainer model ⇒ Datapoint model → model

All this function does is create a model from a single data point.1 In practice, such
a singleton model is rarely useful by itself. But if we define it, then the compiler
can then use this function and mappend to build the other functions within the
HomTrainer class automatically. This is how we get the online and parallel functions
“for free.”

The resulting Scheduling instance looks like:

instance (Norm a, SingI n) ⇒ HomTrainer (Scheduling n a) where

type Datapoint (Scheduling n a) = a

train1dp dp = lptf $ train1dp dp

Figure 11: The HomTrainer instance is quite short and mechanical to write

That’s all we need to do to guarantee correct asymptotic performance, but we’ve
got one last trick that will speed up our train function by a constant factor. Recall
that when performing the mappend operation on Scheduling variables, we can only
reuse the work contained inside of vector. The old schedules must be completely
discarded. Since mappend is called many times in our automatically generated
functions, calculating all of these intermediate schedules would give us no benefit
but result in a lot of extra work. That is why in the Scheduling type, the vector

member was declared strict, whereas the schedule member was declared lazy. The
schedules won’t actually be calculated until someone demands them, and since no
one will ever demand a schedule from the intermediate steps, we never calculate
them.

Back to Bin Packing

Since BinPacking and Scheduling were such similar problems, it’s not too sur-
prising that a similar technique can be used to implement a BinPacking model.

1The train1dp function is analogous to the pure function in the Applicative class, or the
return function in the Monad class.
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The main difference is that we’ll replace the LPTF algorithm with another sim-
ple algorithm called Best Fit Decreasing (BFD). This gives us the performance
guarantee of:

BFD ≤ 11

9
OPT + 1

There are some slightly better approximations for BinPacking, but we won’t look
at them here because they are much more complicated. Chapter 2 of Approxima-
tion Algorithms for NP Hard Problems gives a good overview on the considerable
amount of literature for bin packing [4].

BFD is a two stage algorithm in the same vein as LPTF. First, we sort the data
points by size. Then, we iteratively take the largest item and find the “best” bin
to place it in. The best bin is defined as the bin with the least amount of space
that can still hold the item. If no bins can hold the item, then we create a new
bin and add the item there. This is shown graphically in Figure 12 below.
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Figure 12: One iteration of the Best First Decreasing (BFD) algorithm

The data type for bin packing is:

data BinPacking (n::Nat) a = BinPacking

{ vector :: !(SortedVector a)

, packing :: Map.Map Bin [a]

}

This is the exact same form as the Scheduling type had. The only difference is that
we will use the BFD strategy to generate our Map. Therefore, by similar reasoning,
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the BinPacking’s mappend function takes time Θ(n) and its train function takes
time Θ(n log n). Again, this is exactly what the traditional description of the BFD
algorithm requires.

Takeaways

Most instances of the HomTrainer type class are related to statistics or machine
learning, but the class is much more general than that. For example, we’ve just
seen how to use HomTrainers to approximate two NP-complete problems. So from
now on, whenever you see a function that has type:

:: [datapoint] → model

ask yourself, “Could this algorithm be implemented using a HomTrainer?” If yes,
you’ll get online and parallel versions for free.

Finally, we’ve looked at the monoid structure for Scheduling and BinPacking,
but these types also have Abelian group, Z-module, functor, and monad structure
as well. I’ll let you explore the documentation available on the GitHub repository
[5] (pull requests are always welcome!) to find creative ways to exploit these
structures. If you have any questions or feedback, I’d love to hear it.
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