
HLearn: A Machine Learning Library for Haskell

Michael Izbicki

UC Riverside

Abstract. HLearn is a Haskell-based library for machine learning. Its
distinguishing feature is that it exploits the algebraic properties of learn-
ing models. Every model in the library is an instance of the HomTrainer

type class, which ensures that the batch trainer is a monoid homomor-
phism. This is a restrictive condition that not all learning models satisfy;
however, it is useful for two reasons. First, this property lets us easily
derive three important functions for machine learning algorithms: online
trainers, parallel trainers, and fast cross-validation algorithms. Second,
many popular algorithms (or variants on them) satisfy the condition and
are implemented in the library. For example, the HLearn library imple-
ments the standard version of many distribution estimators and Bayesian
classification, as well as homomorphic variants of perceptrons, kd-trees,
decision trees, ensemble algorithms, and clustering algorithms. Further-
more, many of these learning models have additional algebraic structure
that the HLearn library exploits. In particular, if a model has Abelian
group structure, then we can perform more efficient cross-validation; and
if it has R-module structure, then we can use weighted data points. Hope-
fully, this algebraic framework makes it easier to incorporate machine
learning into the average Haskell application.

1 Why another library for machine learning?

Machine learning libraries need to be fast. In order to get this speed, the most
popular libraries are written in low level languages (see Table 1). Unfortunately,
this emphasis on speed has meant that the libraries are often inconvenient to
use. Current practice is to provide bindings to these low level libraries in higher
level languages (e.g. R, Matlab, Python, and even Haskell); but this still leaves
much to be desired. These interfaces are not standardized and require specialist
knowledge to understand and use. In practice, they are rarely used by the average
programmer writing an average program. The machine learning community is
well aware of this deficiency, although there is relatively little effort to fix it [20].

The goal of the HLearn1 library is to change this status quo and make ma-
chine learning techniques easily usable by non-specialists. We don’t claim to have
solved this problem, but only that we’re aiming in that direction. We do this by
characterizing learning models according to their algebraic structure. This is a

1 The H in HLearn stands for both Haskell (because that is the language the library
is written in) and homomorphism (because all batch trainers in the library must be
homomorphisms; see section 2).

Table 1. Most popular machine learning libraries are written in non-functional lan-
guages. Weka is the most fully featured of these packages, and it is the easiest for a
novice to use. It is no coincidence that it is written in the highest level language.

Library Language

C4.5 Decision Trees C
Fast Artificial Neural Networks (FANN) C
Stuttgart Neural Network Simulator (SNNS) C
Support Vector Machines Light (SVMLight) C
Library for Support Vector Machines (LibSVM) C++ and Java
Open Computer Vision (OpenCV) C++
Weka Java

powerful design pattern commonly used in functional programming libraries [21].
This pattern makes libraries easy to build and maintain by reducing the amount
of boilerplate code. More importantly, it makes libraries easy to use—once a
user understands an algebraic structure, then she automatically understands all
instances of that structure. For example, the normal distribution forms a vector
space, but Markov chains only form a monoid. As we shall see later, this means
that they can use the same functions for online and parallel training, but that
normal distributions support more efficient cross-validation and the weighting
of data points. The user doesn’t have to know anything about how these models
actually work, just what algebraic structure they have.

Of course, there have been many other attempts to write machine learning
algorithms in a functional language. The fact that probability distributions have
a monad structure [9, 12, 18] has formed the foundation for a number of libraries
for probabilistic programming [2, 7, 15]. The HLearn library is orthogonal to this
work, and in principle both designs could exist side-by-side. Other attempts to
integrate functional programming with machine learning have not used algebra
[3, 14, 1]. Instead, they use the power of type classes, higher order functions,
and pattern matching to express learning algorithms in a functional setting.
The HLearn library incorporates much of these ideas. Finally, we note that all
of this previous work has taken place within the Haskell language. Haskell is
a good choice for this type of experimentation because it is both fast and was
designed from the beginning to incorporate experimental language features [11,
17]. HLearn relies on a number of recent language extensions implemented in
the Glasgow Haskell Compiler (GHC), such as TypeFamilies, GADTs, DataKinds,
ConstraintKinds, and TemplateHaskell.

Besides the theoretical advantages of the HLearn library, there is also a prac-
tical advantage: a standardized interface for many learning tasks. While it’s true
that there are a number of excellent Haskell packages for machine learning,2

unfortunately each of these packages uses a different interface. This makes it

2 There are too many packages to describe them all here. For a complete list, visit
the Hackage repository (http://hackage.haskell.org), and look under the sections:
statistics, artificial intelligence, machine learning, and data mining.

difficult to compose learning routines, ruining one of the main advantages of
functional programming. For example, the statistics package assumes that all
input data points will be stored inside unboxed vectors, whereas the KdTree

package requires data points stored in lists. The HLearn library has no such
requirements—we can store our data points however is most convenient for our
particular application. We only require that the container be a foldable functor.
One neat trick this lets us do is work with data sets larger than memory by using
containers that seamlessly swap to and from disk.

The remainder of this paper focuses on HLearn’s internal mechanics. Section
2 describes the HomTrainer type class, and why it accurately captures our notions
of what it means to be a learning model. The HomTrainer class gives us a sim-
ple method for defining new models, and useful bounds on their training time.
Section 3 looks at other algorithms for manipulating algebraic models. These
let us automatically parallelize our training procedures, perform asymptotically
faster cross-validation, and apply weightings to our data points. Section 4 con-
cludes with the future of the HLearn library. Finally, the haddock documentation
contains tutorials and further details on practical usage of the library.3

2 The HomTrainer type class

Every learning model is represented by a data type, and that type must be an
instance of HomTrainer. Table 3 lists all current instances. The wide selection
of models—there are statistical distributions, classifiers, unsupervised learners,
Markov chains, and even NP-approximation algorithms—demonstrates the ver-
satility of the HomTrainer class. In this section, we will show why the class is also
powerful.

For each of these models, the HomTrainer class associates a unique Datapoint

type and provides four training functions (see Code Snippet 1). The two most
important training functions are the batch trainer train and the online trainer
add1dp. The batch trainer takes a set of data points and returns the corresponding
trained model. Typically, we would use it when analyzing historical data that
was generated by some previous process. In contrast, the online trainer is used for
analyzing data as it is generated. It takes an already trained model and “adds”
a data point to the model. Which is more useful depends on our particular
application.

There is a lot of interest in the machine learning community about the rela-
tionship between online and batch training. In general, online training is much
harder [16, 4, 13, 6]. For our purposes, this means that not every learning model
has a known online trainer that would satisfy the laws of the HomTrainer type
class (discussed below). By limiting ourselves in this way, we gain a simpler,
more powerful, easier to use interface. This tradeoff is reasonable because many
popular learning algorithms have variants that do satisfy the HomTrainer laws.

The HomTrainer class also includes two other functions. First, the singleton
trainer train1dp is included because it often makes defining new models easier.

3 http://hackage.haskell.org/package/HLearn-algebra

Code Snippet 1 The HomTrainer type class

class (Monoid model) ⇒ HomTrainer model where

type Datapoint model

-- The singleton trainer

train1dp :: Datapoint model → model

-- The batch trainer

train :: (Functor container, Foldable container) ⇒
container (Datapoint model) → model

-- The online trainer

add1dp :: model → Datapoint model → model

-- The online batch trainer

addBatch :: (Functor container, Foldable container) ⇒
model → container (Datapoint model) → model

As Section 2.1 shows, we only need to implement one of the training functions
and the rest can be derived automatically. The singleton trainer can often be im-
plemented in only a single line of code. Second, the online batch trainer addBatch

is included for efficiency reasons. If we have a large list of data points to add to
our model, it is more efficient to add them all at a single time than it is to add
them one-by-one.

Every instance of HomTrainer must obey four laws. First, the batch trainer
must be a monoid homomorphism. That is,

train (xs ++ ys) = (train xs) � (train ys)

The next three laws ensure that no matter how we train our model, as long as
we use the same data points we will get the same model:

add1dp (train xs) x = train (xs ++ [x])

train1dp x = train (point x)

addBatch (train xs) ys = train (xs ++ ys)

Next, we discuss how to define new HomTrainers and the complexity of the re-
sulting training functions.

2.1 Construction

In this section, we present four higher order functions that convert between the
four types of training functions. The functions are shown in Code Snippet 2.

Code Snippet 2 Higher order functions for constructing training functions

-- convert singleton trainer into batch trainer

batch :: (Functor container, Foldable container) ⇒
(datapoint → model) → (container datapoint → model)

batch f = λ xs → reduce (map f xs)

-- convert batch trainer into singleton trainer

unbatch :: (Functor container) ⇒
(container datapoint → model) → (datapoint → model)

unbatch f = λ x → f [x]

-- convert singleton trainer into online trainer

online :: (datapoint → model) → (model → datapoint → model)

online f = λ m x → m � f x

-- convert online trainer into singleton trainer

offline :: (model → datapoint → model) → (datapoint → model)

offline f = λ x → f mempty x

When implementing the HomTrainer instance for a particular model, we need
to implement only one of the training functions. Then, we can use these higher
order functions to derive the other trainers. We can do this because the following
diagram commutes:

datapoint → model

model → datapoint → model

conatiner datapoint → model

model → conatiner datapoint → model

batch

unbatch

online . batch . offline

online . unbatch . offline

o
n
l
i
n
e

o
f
f
l
i
n
e

o
n
l
i
n
e

o
f
f
l
i
n
e

Next, we must prove that the resulting training functions obey the HomTrainer

laws. We show the proof for the first law, and the other three laws are similar:

Theorem 1. Given a singleton trainer f :: datapoint → model, the batch trainer
batch f :: container datapoint → model is a monoid homomorphism.

Proof. Let xs and ys be arbitrary data sets with type

(Functor container, Foldable container) ⇒ container datapoint

Then, the following statements are equivalent:

(batch f) (xs ++ ys)

(λ xs → reduce (map f xs)) (xs ++ ys)

reduce (map f (xs ++ ys))

reduce ((map f xs) ++ (map f ys))

(reduce (map f xs)) � (reduce (map f ys))

((batch f) xs) � ((batch f) ys)

The first and last lines above are the definition of a monoid homomorphism. ut

2.2 Computational Complexity

Now that we have seen a simple way to construct HomTrainers, we must inves-
tigate the complexity of these constructions. In particular, we will compare the
batch trainer’s running time with the monoid operation’s running time.

First, we need some definitions. We denote the batch trainer’s running time
as α(n), where n is the number of elements in the input data set. In order to
compare this complexity to that of the monoid operation, we must write the
monoid operations’s run time in terms of n. We do this by defining the model’s
size as the number of elements it took to train it. We can therefore write the
running time of m1 � m2 as a function β(n1, n2), where ni is the number of
elements it took to train model mi.

This is not a standard technique in computational algebra. Most previous
work assumes that the algebraic operations take constant time. That is, the
complexity of an algorithm is determined only by the number of times the alge-
braic operations get called. This assumption does not make sense for us, how-
ever, because there are many algebraic operations in Haskell that do not run
in constant time. Haskell’s immutable lists provide a familiar example. Using
our notation above, the function (++) :: [a] → [a] → [a] has time complex-
ity β(n1, n2) = n1. Table 3 shows the run times for the batch trainer and monoid
operations of all the learning methods currently implemented in HLearn, many
of which also have non-constant run time.

Upper bound on the batch trainer We can always use the function batch to
construct a batch trainer from the singleton trainer and the monoid operation;
therefore, this construction creates an upper bound on the batch trainer’s run
time. The batch trainer created by batch proceeds in two steps. First, it maps the
singleton trainer onto each of the n data points. This takes time O(n) because
the singleton trainer always takes constant time. Then, we reduce the result
using the fan-in reduction strategy (see Code Snippet 3). Fan-in reduction is an
iterative procedure. On each iteration i, we group pairs of elements of the list
and apply the monoid operation. This results in O(n

2i) monoid operations per
iteration. The number of data elements in each monoid element on iteration i is

Code Snippet 3 Fan-in reduction on lists

reduceL :: (Monoid m) ⇒ [m] → m

reduceL [] = mempty

reduceL [x] = x

reduceL xs = reduceL $ itr xs

where

itr :: (Monoid m) ⇒ [m] → [m]

itr [] = []

itr [x] = [x]

itr (x1:x2:xs) = (x1�x2):(itr xs)

O(2i), so the cost of the monoid operation is β(2i, 2i). After dlog2 ne iterations
we will be left with only a single element and be done. The total run time of the
reduction is the sum of each iteration’s run time, which is:

dlog2 ne∑
i=0

n

2i+1
β(2i, 2i)

The batch trainer’s run time α(n) is upper bounded by the sum of the map and
reduce steps:

α(x) ≤ n+

dlog2 ne∑
i=0

n

2i+1
β(2i, 2i)

which simplifies to:

α(x) ≤ O

(
n

logn∑
i=0

β(2i, 2i)

2i

)
This equation is difficult to understand intuitively, so Table 2 precomputes limits
on α in terms of β. Notice that under the standard assumption that the monoid
operation takes time β(n1, n2) = O(1), the fan-in reduction has the same running
time as a right or left fold, i.e. O(n). But in the case where β(n1, n2) > O(1),
the fan-in reduction will be asymptotically faster.

Table 2. Upper bound of the batch trainer’s run time α(n) in terms of the monoid
operation’s run time β(n1, n2), with n = n1 + n2. The parallelization procedure is
described in Section 3.1.

β(n1, n2) α(n) parallel batch trainer with p processors

O(1) O(n) O
(

n
p

+ log p
)

O(loga n), a > 0 O(n) O
(

n
p

+ (loga n)(log p)
)

O(n) O(n logn) O
(

n
p

log n
p

+ n
)

O(nb), b > 1 O(nb) no improvement

The results in Table 2 give us two useful tools for implementing new HomTrainer

instances. First, many real-world learning problems have monoid operations with
non-constant run time, and Table 2 simplifies our analysis of their batch train-
ers. For example, finger trees form a monoid whose binary operation takes time
O(log n) [10]. The k-Centers clustering algorithm implemented in HLearn uses
finger trees (as implemented in Data.Sequence) to keep track of which points are
in each cluster. This dominates the running time of the monoid operation, so by
Table 2 we can prove that our batch trainer still must have a linear run time.
As a second example, binary search trees form a monoid whose binary opera-
tion takes time O(n). In the HLearn library, we implement kd-trees using binary
search trees. This means that their monoid operation takes time O(n), and so
their batch trainer takes time O(n log n).

Second, if our monoid operation takes time greater than O(n), then it is not
useful. The resulting batch trainer would take the exact same time as the monoid
operation. Therefore, the monoid operation can never save us any work. We are
only interested in monoid operations with run time less than or equal to O(n).

Upper bound on the monoid operation’s complexity We can trivially
bound the monoid operations’s complexity in terms of the batch trainer. Because
we know that for all data sets xs and ys:

train xs � train ys = train (xs ++ ys)

We can always use the batch trainer to directly perform the monoid operation.
Therefore, the monoid operation must take time less than or equal to the batch
trainer on a similar input. That is,

β(n1, n2) ≤ α(n1 + n2)

Of course, if β(n1, n2) = α(n1 + n2), then using our monoid operation will not
save us any work and so it is essentially useless. We are only interested in models
where β is strictly less than α.

3 More fun with algebra

HLearn uses algebra for more than just deriving HomTrainers. The beauty of
algebra is that if we can write an algorithm for any particular algebraic structure,
then it will apply to all instances of that structure. This makes our algorithms as
generic as possible. In this section, we will see three of these algorithms. First,
we’ll create a higher order function called parallel that makes any monoid
homomorphism run efficiently on multiple cores. This function will let us easily
parallelize the training of any model in the HLearn library. Second, we’ll see two
algorithms for fast cross-validation that take advantage of monoid and Abelian
group structures. Finally, we’ll see that R-Module structures give us the ability
to weight the importance of our data points.

3.1 Parallelization

In this section, we show how to parallelize monoid homomorphisms. Monoids
have a strong theoretical connection with parallel computing. In particular, the
“parallel complexity class” NC1 can be defined in terms of programs over finite
monoids [19]. For a more concrete example, the reduce step in Google’s MapRe-
duce framework is a monoid computation [5]. Our contribution is that we do
not make the assumption that the monoid operation takes constant time. This
generalization will let us train any HomTrainer instance in parallel.

The parallelization procedure has three steps. Given p processors: (i) parti-
tion the data set into p subsets; (ii) map a batch trainer on the list of subsets; then
(iii) reduce the results. The parallel execution time is the sum of each of these
steps. Step (i) takes constant time for each partition, and each partition can be
created in parallel. Step (ii) takes time α(n

p) for each subset, and each subset

can be processed in parallel. Step (iii) takes dlog2 pe reduction iterations. In each
iteration, every reduction can be done in parallel; therefore, iteration i only takes
as long as a single monoid operation β(n

p 2i, np 2i). The overall execution time is
the sum of these steps:

α

(
n

p

)
+

dlog2 pe∑
i=0

β

(
n

p
2i,

n

p
2i
)

Table 2 precalculates the parallel executation time for a number of cases, and
Table 3 shows the parallel run time for all implemented models.

HLearn currently implements local parallelism using the higher order func-
tion:

parallel :: (Semigroup model, NFData model, Partitionable container) ⇒
(container datapoint → model) → (container datapoint → model)

This function takes a sequential batch trainer, and returns a parallel one. The
resulting function will use all available cores on the machine efficiently. Those
readers familiar with Google’s MapReduce framework [5] should see that our
procedure can be easily implemented using MapReduce. It would be nice to cre-
ate a similar higher order function that would perform distributed parallelism on
a Haskell-based MapReduce cluster using, for example, the Holumbus project.4

3.2 Algebraic algorithms for faster cross-validation

Cross-validation is a procedure for estimating the accuracy of a learning model.
We use cross-validation to avoid one of the most common mistakes in data
analysis: over fitting. Over fitting happens when our trained model performs
well on the input data points, but generalizes poorly to other data points it
hasn’t yet seen. When analyzing data, we must run cross-validation procedures
every time we train a new model to ensure we are not over fitting. Faster cross-
validation therefore makes the practicing data analyst more efficient. HLearn’s

4 http://holumbus.fh-wedel.de/trac

contribution is to make it clear when we can and cannot use fast cross-validation.
In this section we will present the standard method for k-fold cross-validation,
then compare it to the faster Abelian group cross-validation. Both methods
calculate the exact same answer; the only difference is their run time.

Haskell code for k-fold cross-validation is shown in Code Snippet 4. In the
standard algorithm, we first divide the data set into k subsets. The crossvalidate

function assumes this has already been done for us, and accepts the subsets as
the input variable xs. The do notation is for the list monad. In each iteration, we
select one of the subsets. This is called the testset. The union of the remaining
subsets is the trainingset. We train our model on the trainingset, and measure
its performance on the testset using a LossFunction. Loss functions are how
we measure just how well our algorithm performs. For classification tasks, error
rate and log-loss are two popular functions. The final result of cross-validation
is the mean and variance of the losses from each iteration. We calculate this
by training a Normal distribution. If we make the simplifying assumption that
our loss function takes constant time and our training function takes time O(n),
then our overall run time is O(kn).

Code Snippet 4 Standard cross-validation

type LossFunction model = model → [Datapoint model] → Double

crossvalidate :: (HomTrainer model, Eq (Datapoint model)) ⇒
[[Datapoint model]] → LossFunction model → Normal Double

crossvalidate xs f = train $ do

testset ← xs

let trainingset = concat $ filter (/=testset) xs

let model = train trainingset

return $ f model testset

We can speed up this procedure using Abelian groups. Abelian groups are
monoids with two extra properties. Type classes for these properties are shown
in Code Snippet 5.

Code Snippet 5 Abelian and Group type classes

class (Monoid m) ⇒ Abelian m

class (Monoid m) ⇒ Group m where

inverse :: m → m

The Abelian type class has no member functions, but all instances must have
a commutative monoid operation. That is, they must obey the law that:

m1 � m2 == m2 � m1

Intuitively, if a learning model is Abelian, then the order in which we train data
points does not matter. For example, when estimating a normal distribution
from a list of numbers, we don’t care what order the numbers are in. We’ll get
the same answer for all possible orderings. Therefore, the normal distribution is
Abelian.

Second, groups are monoids that provide a unary operation inverse. Groups
must obey the law that:

m � inverse m == inverse m � m == mempty

Intuitively, this inverse function let’s us subtract models from each other.

Haskell code for Abelian group cross-validation is shown in Code Snippet 6.
First, we train a model for each subset of data points. In the code, this gets zipped
with the points themselves to create the variable modelL. We can reduce this list
of models to get the model trained on the entire data set, called fullmodel. In
each iteration of do, we then use the inverse function to subtract those data
points from fullmodel to generate the model we will test. Because of the laws of
the Abelian and Group classes, we are guaranteed to get the same exact answer
as with standard cross-validation. But our run time is now much less. With the
same simplifying assumptions as above, we get a run time of O(k + n) instead
of O(kn).

Code Snippet 6 Abelian group fast cross-validation

crossValidate_group :: (HomTrainer model, Group model) ⇒
[[Datapoint model]] → LossFunction model → Normal Double

crossValidate_group xs f = train $ do

(testset,testModel) ← modelL

let model = fullmodel � inverse testModel

return $ f model testset

where

modelL = zip xs $ map train xs

fullmodel = reduce $ map snd modelL

3.3 R-Modules and weighted data

Intuitively, the weight of a data point specifies “how many times” the data
point appears in the data set. For example, if our data points are of type
Char, and our weighted data points are of type (Int,Char), then the data sets
[’a’,’a’,’a’,’a’,’a’] and [(5,’a’)] are equivalent—they will train exactly the
same model. Handling these weighted data points is a common task in data anal-

ysis. In this section, we show that models that have the algebraic structure of
an R-module allow data points weighted by elements in the ring R.5

An R-module is an Abelian group with operations for scalar multiplication.
The HLearn library uses the Module type class to capture this structure, as shown
in Code Snippet 7.

Code Snippet 7 R-Module type class

class (Num (Ring m), Abelian m, Group m) ⇒ Module m where

type Ring m

(.∗) :: Ring m → m → m

(∗.) :: m → Ring m → m

All instances must obey the standard R-module laws. That is, if r ~ Ring m,
then:

r .∗ m = m ∗. r

r .∗ (m1 � m2) = (r .∗ m1) � (r .∗ m2)

(r1 + r2) .∗ m = (r1 .∗ m) � (r2 .∗ m)

(r1 ∗ r2) .∗ m = r1 .∗ (r2 .∗ m)

1 .∗ m = m

These laws imply the following classic theorem from algebra:

Theorem 2. If f :: (Module m1, Module m2) ⇒ m1 → m2 is a monoid homo-
morphism, then f is also an R-module homomorphism (more commonly called
a linear transformation).

We use this theorem to allow weighted data points with the WeightedHomTrainer

type class (see Code Snippet As seen in the code, the single instance of the
WeightedHomTrainer is all we need. To make a learning model handle weighted
data points, we simply make it an instance of Module. 8).

Finally, we note that if our ring is actually a field (i.e. implements Fractional),
then our model forms a vector space and can be weighted with fractional data
points. This means that (0.5,’a’) would be a valid data point in our earlier
example. It doesn’t necessarily “make sense” to have only half a data point in
our data set; however, this generalization is useful in practice—the resulting
weighted training methods are equivalent to the standard methods for weighted
training.

4 Future directions

The HLearn library is still a work in progress, and it does not yet meet it’s
goal of making machine learning techniques accessible to the lay-programmer.

5 We use the Num type class to represent rings.

Code Snippet 8 The WeightedHomTrainer type class

class (Module ring model, HomTrainer datapoint model) ⇒
WeightedHomTrainer ring datapoint model

where

train1dpW :: (ring,datapoint) → model

train1dpW (r,dp) = r .∗ train1dp dp

trainW :: (Foldable container, Functor container) ⇒
container (ring,datapoint) → model

trainW = batch train1dpW

add1dpW :: model → (ring,datapoint) → model

add1dpW = online $ unbatch $ offline addBatchW

addBatchW :: (Foldable container, Functor container) ⇒
model → container (ring,datapoint) → model

addBatchW = online trainW

instance (Module ring model, HomTrainer datapoint model) ⇒
WeightedHomTrainer ring datapoint model

It needs three practical improvements to get there. First, the interface needs to
be stabalized. It is currently under heavy development, which results in inter-
face changes that would break client programs. Second, numerical stability is a
major concern in libraries that involve statistics. Currently, it requires special-
ist knowledge to understand when numerical stability breaks down on many of
HLearn’s models. Finally, HLearn still needs to be faster. Asymptotically, all
the implemented routines should be correct, but there is still a relatively large
constant factor for many models. The library has seen almost no optimization
work yet, and so speed improvements should be possible.

HLearn also presents exciting directions for future research. The machine
learning community has done essentially no work on the algebraic structures
of learning models, and is worse off for the neglect. We are currently working
on a homomorphic variant of the AdaBoost algorithm [8]. This is a popular
method in machine learning. It has a number of online and parallel variants,
but these are all approximations, and none of these satisfy the HomTrainer laws.
By developing an algebraic variant of AdaBoost we would get exact online and
parallel algorithms, as well as the first method for fast cross-validation.

There is also still a lot of interesting work to be done from the functional
programing perspective as well. In particular, the HomTrainer class should be
easy to use with reactive programming and streaming IO libraries. But more of
the practical issues with the library will need to be taken care of before it makes
sense to explore in this direction.

References

1. Darko Aleksovski, Martin Erwig, and Saso Dzeroski. A Functional Programming
Approach to Distance-based Machine Learning. 2008.

2. Lloyd Allison. Types and Classes of Machine Learning and Data Mining. In ACM
International Conference Proceeding Series, pages 207–215, 2003.

3. Lloyd Allison. Models for machine learning and data mining in functional pro-
gramming. Journal of Functional Programming, 15:15–32, 2005.

4. Shai Ben-david, Eyal Kushilevitz, and Yishay Mansour. Online Learning versus
Offline Learning. Machine Learning, 29:45–63, 1997.

5. Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplied Data Processing on
Large Clusters. In Operating Systems Design and Implementation, pages 137–150,
2004.

6. Ofer Dekel. From Online to Batch Learning with Cutoff-Averaging. In Neural
Information Processing Systems, pages 377–384, 2008.

7. Martin Erwig and Steve Kollmansberger. Functional Pearls: Probabilistic func-
tional programming in Haskell. Journal of Functional Programming, 16:21–34,
2006.

8. Yoav Freund and Robert E. Schapire. Experiments with a New Boosting Algo-
rithm. In International Conference on Machine Learning, pages 148–156, 1996.

9. Michèle Giry. A categorical approach to probability theory. In B. Banaschewski,
editor, Categorical Aspects of Topology and Analysis, volume 915 of Lecture Notes
in Mathematics, pages 68–85. Springer Berlin Heidelberg, 1982.

10. Ralf Hinze and Ross Paterson. Finger trees: a simple general-purpose data struc-
ture. Journal of Functional Programming, 16:197–217, 2006.

11. Paul Hudak, John Hughes, Simon L. Peyton Jones, and Philip Wadler. A history
of Haskell: being lazy with class. In History of Programming Languages, pages
1–55, 2007.

12. Claire Jones and Gordon D Plotkin. A probabilistic powerdomain of evaluations.
In Logic in Computer Science, 1989. LICS’89, Proceedings., Fourth Annual Sym-
posium on, pages 186–195. IEEE, 1989.

13. Sham M. Kakade and Adam Kalai. From Batch to Transductive Online Learning.
In Neural Information Processing Systems, 2005.

14. Nittaya Kerdprasop and Kittisak Kerdprasop. Mining Frequent Patterns with
Functional Programming. 2007.

15. Eric Kidd. Build your own probability monads. 2007.
16. Nick Littlestone. From On-Line to Batch Learning. In Computational Learning

Theory, pages 269–284, 1989.
17. Simon Marlow. Haskell 2010 language report.
18. Carroll Morgan, Annabelle McIver, and Karen Seidel. Probabilistic predicate trans-

formers. ACM Transactions on Programming Languages and Systems (TOPLAS),
18(3):325–353, 1996.

19. Pascal Tesson and Denis Thrien. Monoids and Computations. International Jour-
nal of Algebra and Computation, 14:801–816, 2004.

20. Kiri Wagstaff. Machine learning that matters. International Conference on Ma-
chine Learning (ICML), 2012.

21. Brent A. Yorgey. Monoids: theme and variations (functional pearl). In Proceedings
of the 2012 symposium on Haskell symposium, Haskell ’12, pages 105–116, New
York, NY, USA, 2012. ACM.

Table 3. Learning models currently implemented or under development in the HLearn
library. More details on each model can be found in the haddock documentation.

Algebraic Structure Running Times

Model Monoid Group Abelian
Vector
Space

batch trainer
(sequential)

batch trainer (parallel)
monoid

operation
model use*

D
is

tr
ib

u
ti

o
n
s

Exponential X X X X O(n) O
(

n
p
+ log p

)
O(1) O(1)

LogNormal X X X X O(n) O
(

n
p
+ log p

)
O(1) O(1)

Normal X X X X O(n) O
(

n
p
+ log p

)
O(1) O(1)

Kernel Density Estimator† X X X X O(nk) O
(
k n

p
+ k log p

)
O(k) O(1)

Binomial X X X X O(n) O
(

n
p
+ log p

)
O(1) O(1)

Categorical X X X X O(nc) O
(

nc
p

+ c log p
)

O(c) O(log c)

Geometric X X X X O(n) O
(

n
p
+ log p

)
O(1) O(1)

Poisson X X X X O(n) O
(

n
p
+ log p

)
O(1) O(1)

Multivariate Normal X X X X O(nd2) O
(
d2 n

p
+ d2 log p

)
O(d2) O(d2)

Multivariate Categorical X X X X O(ncd) O
(
cd n

p
+ cd log p

)
O(cd) O(d log c)

C
la

ss
ifi

er
s

Naive Bayes X X X X O(nd) O
(
dn
p
+ d log p

)
O(d) O(d)

Full Bayes X X X X variable variable variable variable

Decision Stumps† X X X X O(nd) O
(
dn
p
+ d log p

)
O(d) O(1)

Decision Trees† X X X X variable variable variable variable

k-Nearest Neighbor (naive) X X X X O(1) O(1) O(n) O(n2)

k-Nearest Neighbor (kd-trees)† X X X X O(n logn) O
(

n
p
log n

p
+ n

)
O(n) O(logn)

Perceptron† X X X X O(nd) O
(
dn
p
+ d log p

)
O(d) O(d)

Bagging† X X X X variable variable variable variable

Free HomTrainer X X X X variable variable variable variable

O
th

er

Markov Chains X X - - O(nk) O
(
k n

p
+ k log p

)
O(k) O(d)

k-Centers X - - - O(n) O
(

n
p
+ (logn)(log p)

)
O(logn) N/A

Partition X X X X O(n logn) O
(

n
p
log n

p
+ n

)
O(n) N/A

key

c : number of distinct categories in categorical data

d : dimension of a data point

k : a parameter specific to each training algorithm

n : number of data points

p : number of processors available

* : for distributions, this means calling pdf; for classifiers, classify

† : these algorithms have been significantly modified from their standard published versions in order to obey the HomTrainer laws

